(#47) Hardware Accelerator for Compute-Intensive Tasks in

Solving Neutron Transport Problems by MOC

Dr. Thuy T. Le, Professor & Department Chair Electrical Engineering, San José State university, San Jose, California 95192 U.S.A https://www.sjsu.edu/ee/

The author would like to thank his graduate students Dev Desai & Priyansh Bhimani for their major contributions in this study

Exponential: The Most Expensive Akio Yamamoto, Yasunori Kitamura, Yoshihiro Yamane (Annals of Nuclear Energy 31, 1027–1037) Relative Error of Exponential Function versus Types of Table Lookup Number of intervals [-10,0] 1.E+01 1.E+02 1.E+03 1.E+041.E+05 1.E+061.0E-0 1.0E-03 1.0E-05

FPGA Specifications

FPGA	Process	Logic Slices/ALM	DSP Slices	RAM (Kbits)
Virtex-7 (XC7V)	28 nm	91,050	1,260	28,620
Altera Arria-10	20 nm	339,620	1,518	48,460

Virtex-7: Logic slice = 4 6-input LUTs and 8 registers. Each DSP has a 25x18 multiplier and a 48-bit accumulator.

Arria-10: ALM = 8-input Adaptive Logic Module and 4 registers. Each DSP has two 18x19 multipliers and a 64-bit accumulator

Example: A Quarter PWR Core

Approximations by Discretization

- \Box Continuous space \rightarrow discrete regions (1.2 billion regions). Material properties in each region are homogenized as constants
- \Box Continuous neutron energy \rightarrow discrete energy (72 energy) groups typically): Material properties are function of energy groups (energy homogenization)
- \Box Continuous neutron direction \rightarrow discrete angles (128 angles) typically): Material properties are independent of neutron travel

Table lookup without interpolation

-2-level table lookup without interpolation

fsjo

itrk

ivfsjo

ivavf

MOC

Accelerator

ntrk

istart

ilst

2.8 GHz Xeon processor with 2 MB L3 cache

Calculation time (ns) versus number of intervals System exp function: 125 ns					accu	racies	for de = 125					
No. of Intervals [-10,0]					Desir	ed Acc	curacy					
		10	100	1000	10000			10-1	10-2	10-3	10-4	10-5
	1	44	44	44	45		1	44	44	45	96	155
	2	47	47	50	54		2	47	47	47	49	51
	3	43	43	43	44		3	43	43	43	43	43
	4	46	46	47	55		4	46	46	46	46	46
1 = TL without interpolation; $2 = 2$ -level TL without interp.												

3 = TL with linear interpolation; 4 = TL with 2nd order interp.

High-Cost Computations in MOC

- □ High cost due to repeated calculation of the **transport sweep** (~50 iterations): over 90% of total CPU time
- □ Traditional (software) transport sweep (each iteration)
- For all **assemblies**
- For all characteristics/tracks For all **segments**

Experiments

2D C5G7 Benchmark

- -4.17x17 pin cell assemblies, 7 different materials
- 7 energy group nuclear cross-section data
- Small model: 142,964 flat source regions

3D BEAVRS Benchmark

- Representing a Westinghouse PWR
- 193 fuel assemblies (17x17 fuel rods per assembly)
- Different enrichments in different assembly
- Using 70 group cross-section library

Simulations

- Transport sweep data exported from OpenMOC runs
- Repeat simulations for one assembly data

Experiment Results

Hardware Resources Used in Pipelined Arithmetic Implementation

FPGA	LUTs	Registers	DSP Slices
Virtex-7 (XC7V)	54,261	76,962	352
Altera Arria-10	28,448	41,952	192

direction

(About 10 trillion unknowns)

Method of Characteristics (MOC)

- **Deterministic ray-based algorithm** (similar to MC methods) □ For a partial differential equation (PDE)
 - MOC establishes rays (or tracks) crossing the whole spatial domain with fixed angular quadrature for each direction called characteristics
 - Each characteristic is **sub-divided into segments**
 - PDE becomes ODE along the characteristic lines
- Solutions of the ODE is obtained **along the characteristics** and transformed back to PDE
- Can be structured across the domain such that high-cost calculations are **independent from the problem dimension** and geometry

The space and direction are transformed into "characteristic direction" $\overrightarrow{r_0} + s\overrightarrow{\Omega}$ $\frac{d\varphi_g}{ds}\left(\vec{r_0} + s\vec{\Omega}, \vec{\Omega}\right) + \Sigma_{t,g}\left(\vec{r_0} + s\vec{\Omega}\right)\varphi_g\left(\vec{r_0} + s\vec{\Omega}, \vec{\Omega}\right) = Q_g\left(\vec{r_0} + s\vec{\Omega}, \vec{\Omega}\right)$ $Q_g\left(\overrightarrow{r_0} + s\overrightarrow{\Omega}, \overrightarrow{\Omega}\right) = \sum_{g'=1}^G \int_0^{4\pi} \Sigma_{s,g'} \to g\left(\overrightarrow{r_0} + s\overrightarrow{\Omega'}, \overrightarrow{\Omega'} \cdot \overrightarrow{\Omega}\right) \varphi_{g'}\left(\overrightarrow{r_0} + s\overrightarrow{\Omega'}, \overrightarrow{\Omega'}\right) d\overrightarrow{\Omega'}$

- For all **energy groups** Calculate angular fluxes Accumulate to regional scalar fluxes
- □ Impossible to utilize subtask parallelism (pipelining) for the "energy groups" loop

Accelerator Architecture

$fsji = \varphi_j(\overrightarrow{r_0}); fsjo = \varphi_j(\overrightarrow{r_0} + s_j\overrightarrow{\Omega}_j);$	fsji
$expj = \exp(-\Sigma_t \times s_j);$ $src = \frac{Q}{\Sigma_t};$	expj wj
$rinv = \frac{1}{\sum_t \times V}; wj = w_j; avf = \phi;$	rinv
$fsjo = fsji \times expj - src \times expj + src;$	SrC

 $avf = src + rinv \times \sum wj(fsji - fsjo)$

FPGA Implementations

□ Maximize levels parallelism For all **assemblies** For all energy groups For all number of track groups Number of tracks are calculated in

Hardware Resources Used in Device IP Implementation

FPGA	LUTs	Registers	DSP Slices
Virtex-7 (XC7V)	29,261	54,464	416
Altera Arria-10	15,648	41,952	192

Iteration Rates (in million) from 2D C5G7 Benchmark

Implementation	Xilinx	Altera	IBM	Intel
	Virtex-7	Arria-10	BG/Q	Xeon
Non-Pipelining	261	396	711	65 1
3-stage Pipelined	1,040.8	1,418.8	7.11	65.4

Iteration Rates (in million) from 3D BEAVRS Benchmark

Implementation	Xilinx Virtex-7	Altera Arria-10
Non-Pipelining	266	409
3-stage Pipelined	1,057.1	1,434.3

Conclusions

The design is independent from problem geometry

- The level of parallelism in the implementations defines the degree of computational speedup
 - The design mostly benefits large problems

The level of parallelism depends on the input constraint of the hardware device and the available hardware resources

– Limitation due to I/O constraint can be minimized by

$+\frac{\chi_g\left(\overrightarrow{r_0}+s\overrightarrow{\Omega}\right)}{4\pi k_{\rho ff}}\sum_{\sigma'=1}^G\int_{0}^{4\pi}v\Sigma_{f,g'}\left(\overrightarrow{r_0}+s\overrightarrow{\Omega'}\right)\varphi_{g'}\left(\overrightarrow{r_0}+s\overrightarrow{\Omega'},\overrightarrow{\Omega'}\right)d\overrightarrow{\Omega'}$

Flat & isotropic source approximations: Q_g in a region is calculated by regional average flux instead of angular flux φ_g

□ MOC solvers use nested **power iteration scheme**

parallel (hardware resources) Pipelining segment calculations

Bottlenecks

- Hardware resources
- Pipelining segments from different tracks: input constraints
- Managing data input, output and control signals

Two Implementations

- □ Implement 3-stage Pipelined Arithmetic Circuits
 - Max. number of pipelining stages by the adder
 - Clock by the longest stage in the adder
 - Performance is limited by the FPGA input constraint
- Pipeline depth: 18
- □ Implement Using Device Arithmetic IPs
 - No need to pipeline arithmetic circuits
 - Clock by the slowest arithmetic circuit
 - Pipeline depth: 6

utilizing device memory for I/O transmissions

☐ Minor revision of the host program is required

Key References

- B. Kochunas, A hybrid parallel algorithm for the 3-D method of characteristics solution of the Boltzmann transport equation on high performance computing clusters. Ph.D. Thesis, University of Michigan, Department of Nuclear Eng. and Radiological Sci., 2013.
- □ B. Kelley and E. LarSsen, "2D/1D approximations to the 3D neutron transport equation," International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Sun Valley, ID, USA, May 2013.
- U. Boyd, S. Shaner, L. Li, B. Forget, and K. Smith, "The OpenMOC Method of Characteristics Neutral Particle Transport Code," Annals of Nuclear Energy, vol. 68, pp. 43-52, 2014.
- U. Boyd, A. Siegel, S. He, B. Forget, and K. Smith, "Parallel performance results for the OpenMOC neutron transport code on multi-core platforms," International Journal of High Performance Computing Applications, vol. 30 Issue 3, pp. 360–375, 2016.

