(\#47) Hardware Accelerator for Compute-Intensive Tasks in Solving Neutron Transport Problems by MOC

Dr. Thuy T. Le, Professor \& Department Chair
Electrical Engineering, San José State university, San Jose, California 95192 U.S.A
https://www.sisu.edu/ee/

The author would like to thank his graduate students Dev Desai \& Priyansh Bhimani for their major contributions in this study

Approximations by Discretization

\square Continuous space \rightarrow discrete regions (1.2 billion regions). Material properties in each region are homogenized as constants \square Continuous neutron energy \rightarrow discrete energy (72 energy groups typically): Material properties are function of energy groups (energy homogenization)
\square Continuous neutron direction \rightarrow discrete angles (128 angles typically): Material properties are independent of neutron travel direction
(About 10 trillion unknowns)

Method of Characteristics (MOC)

\square Deterministic ray-based algorithm (similar to MC methods) \square For a partial differential equation (PDE)

MOC establishes rays (or tracks) crossing the whole spatial domain with fixed angular quadrature for each direction called characteristics

- Each characteristic is sub-divided into segments
- PDE becomes ODE along the characteristic lines

Solutions of the ODE is obtained along the characteristics and transformed back to PDE
Can be structured across the domain such that high-cost calculations are independent from the problem dimension and geometry

-The space and direction are transformed into "characteristic direction" $\overrightarrow{r_{0}}+s \vec{\Omega}$
$\frac{d \varphi_{g}}{d s}\left(\overrightarrow{r_{0}}+s \vec{\Omega}, \vec{\Omega}\right)+\Sigma_{t, g}\left(\overrightarrow{r_{0}}+s \vec{\Omega}\right) \varphi_{g}\left(\overrightarrow{r_{0}}+s \vec{\Omega}, \vec{\Omega}\right)=Q_{g}\left(\overrightarrow{r_{0}}+s \vec{\Omega}, \vec{\Omega}\right)$
$Q_{g}\left(\overrightarrow{r_{0}}+s \bar{\Omega}, \bar{\Omega}\right)=\sum_{g^{\prime}=1}^{G} \int_{0}^{4 \pi} \Sigma_{s, g^{\prime} \rightarrow g}\left(\overrightarrow{r_{0}}+s \bar{\Omega} ;, \overline{\Omega^{\prime}} \cdot \bar{\Omega}\right) \varphi_{g}\left(\overrightarrow{r_{0}}+s \overline{\Omega^{\prime}} ; \bar{\Omega}^{\prime}\right) d \overline{\Omega^{\prime}}$ $+\frac{\chi_{g}\left(\bar{r}_{0}+s \bar{\Omega}\right)}{4 \pi k_{e f f}}{\underset{g}{ }{ }^{\prime}=1}_{\sum_{0}^{G}}^{4 \pi} \Sigma_{f, g^{\prime}}^{4}\left(\bar{r}_{0}+s \overline{\Omega^{\prime}}\right) \varphi_{g^{\prime}}\left(\bar{r}_{0}+s \overline{\Omega^{\prime}}, \overline{\Omega^{\prime}}\right) d \overline{\Omega^{\prime}}$ \square Flat \& isotropic source approximations: Q_{g} in a region is calculated by regional average flux instead of angular flux φ_{g} -MOC solvers use nested power iteration scheme

$\left.\begin{array}{l}\varphi_{g, i, j}\left(\vec{r}_{0}+s_{i, j} \vec{\Omega}_{j}\right)=\varphi_{g, i, j}\left(\vec{r}_{0}\right) \exp \left(-\Sigma_{t, g, i,} s_{i, j}\right)+\frac{Q_{g, i}}{\Sigma_{t, g, i}}\left[1-\exp \left(-\Sigma_{t, g, i} s_{i, j}\right)\right] \\ \phi_{g, i}=\frac{1}{\Sigma_{t, g, i}}\left[Q_{g, i}+\frac{1}{V_{i}} \sum_{j \in V_{i}} w_{j}\left[\varphi_{g, i, j}(0)-\varphi_{g, i, j}\left(\ell_{i, j}\right)\right]\right.\end{array}\right]$Inner Iteration / Transport sweep
$Q_{g, i}=\sum_{g^{\prime}=1}^{G} \Sigma_{s, g^{\prime} \rightarrow g, i} \phi_{g^{\prime}, i}+\frac{\chi_{g, i}}{k_{e f f}} \sum_{g^{\prime}=1}^{G} \Sigma_{f, g^{\prime}, i} \phi_{g^{\prime}, i}$

Exponential: The Most Expensive
Relative Error of Exponential Function versus Types of Table Lookup

Number of intervals $[-10,0]$
$\begin{array}{llllll}1 . \mathrm{E}+01 & \text { 1. } \mathrm{E}+02 & 1 . \mathrm{E}+03 & \text { 1. } \mathrm{E}+04 & 1 . \mathrm{E}+05 & 1 . \mathrm{E}+06\end{array}$

\rightarrow Table lookup with linear interpolation
\rightarrow Table lookup with 2nd order interpolation
-Table lookup without interpolation
\rightarrow--level table lookup without interpolation
2.8 GHz Xeon processor with 2 MB L3 cache

Calculation time (ns) versus Calculation time (ns) for desired number of intervals
System exp function: 125 ns

\section*{| No. of Intervals $[-10,0]$ | |
| :---: | :---: |
| 10 | 100 |
 | | 10 | 100 | 1000 | 10000 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 44 | 44 | 44 | 45 |
| 2 | 47 | 47 | 50 | 54 |
| 3 | 43 | 43 | 43 | 44 |}

$1=$ TL without interpolation; $\quad 2=2$-level TL without interp.
$3=$ TL with linear interpolation; $4=$ TL with 2 nd order interp.

High-Cost Computations in MOC

- High cost due to repeated calculation of the transport sweep (~ 50 iterations): over $\mathbf{9 0 \%}$ of total CPU time
Traditional (software) transport sweep (each iteration)
For all assemblies
For all characteristics/tracks
For all segments
For all energy groups
Calculate angular fluxes
IImpossible to utilize subtask parallelism (pipelining) for the "energy groups" loop

FPGA Implementations

\square Maximize levels parallelism
For all assemblies
For all energy groups
For all number of track groups
Number of tracks are calculated in
parallel (hardware resources)
Pipelining segment calculations

-Bottlenecks

- Hardware resources
- Pipelining segments from different tracks: input constraints
- Managing data input, output and control signals

Two Implementations
\square Implement 3-stage Pipelined Arithmetic Circuits

- Max. number of pipelining stages by the adder
- Clock by the longest stage in the adder
- Performance is limited by the FPGA input constraint
- Pipeline depth: 18
-Implement Using Device Arithmetic IPs
- No need to pipeline arithmetic circuits
- Clock by the slowest arithmetic circuit

FPGA Specifications

FPGA	Process	Logic Slices/ALM	DSP Slices	RAM (Kbits)
Virtex-7 (XC7V)	28 nm	91,050	1,260	28,620
Altera Arria-10	20 nm	339,620	1,518	48,460

Virtex-7: Logic slice $=46$-input LUTs and 8 registers. Each DSP has a 25×18 multiplier and a 48 -bit accumulator.
Arria-10: ALM $=8$-input Adaptive Logic Module and 4 registers. Each DSP has two 18×19 multipliers and a 64 -bit accumulator

Experiments

-2D C5G7 Benchmark

- 417×17 pin cell assemblies, 7 different materials
- 7 energy group nuclear cross-section data
- Small model: 142,964 flat source regions

-3D BEAVRS Benchmark

- Representing a Westinghouse PWR
- 193 fuel assemblies (17x17 fuel rods per assembly)
- Different enrichments in different assembly
- Using 70 group cross-section library

\square Simulations

- Transport sweep data exported from OpenMOC runs
- Repeat simulations for one assembly data

Experiment Results

Hardware Resources Used in Pipelined Arithmetic

Implementation			
FPGA	LUTs	Registers	DSP Slices
Virtex-7 (XC7V)	54,261	76,962	352
Altera Arria-10	28,448	41,952	192

Hardware Resources Used in Device IP Implementation

FPGA	LUTs	Registers	DSP Slices
Virtex-7 (XC7V)	29,261	54,464	416
Altera Arria-10	15,648	41,952	192

Iteration Rates (in million) from 2D C5G7 Benchmark

Implementation	Xilinx Virtex-7	Altera Arria-10	IBM BG/Q	Intel Xeon
Non-Pipelining	261	396	7.11	65.4
3-stage Pipelined	$1,040.8$	$1,418.8$		

Iteration Rates (in million) from 3D BEAVRS Benchmark

Implementation	Xilinx Virtex-7	Altera Arria-10
Non-Pipelining	266	409
3-stage Pipelined	$1,057.1$	$1,434.3$

Conclusions

-The design is independent from problem geometry
-The level of parallelism in the implementations defines the degree of computational speedup

- The design mostly benefits large problems
-The level of parallelism depends on the input constraint of the hardware device and the available hardware resources
- Limitation due to I/O constraint can be minimized by utilizing device memory for I/O transmissions
\square Minor revision of the host program is required

Key References

- B. Kochunas, A hybrid parallel algorithm for the 3-D method of characteristics solution of the Boltzmann transport equation on high performance computing clusters. Ph.D. Thesis,
University of Michigan Department of Nuclear Eng and Radiological Sci, 2013.
 B. Kelley and E. LarSsen, "2D/D approximations to the 3D neutron transport equa
International Conference on Mathematics and Computational Methods Applied to International Conference on Mathematics and Computational Methods Applied to
Nuclear Science and Engineering, Sun Valley, ID. USA May 2013 Nuclear Science and Engineering, Sun Valley, ID, USA, May 2013.
W. Boyd, S. Shaner, L. Li, B. Forget, and K. Smith. "The OpenMOC Method of Characteristics Neutral Particle Transport Code," Annals of Nuclear Energy, vol. 68, pp. Characterisicic
43 -52, 2014.
W. Boyd, A. Siegel, S. He, B. Forget, and K. Smith, "Parallel performance results for the OpenMOC neutron transport code on multi-core platforms," International Journal of High Performance Computing Applications, vol. 30 Issue 3, pp. $360-375,2016$.

