Readout Electronics for TPC-based MeV Gamma-ray Telescope in Space

Maoyuan Zhao^{1,2}, Yu Wang^{1,2}, Zhengguang Yang^{1,2}, Ting Wang^{1,2}, Hao Zhuang^{1,2}, Changqing Feng^{1,2}, Zhiyong Zhang^{1,2}, Leipeng Hu^{1,2}, Shubin Liu^{1,2}

¹Deep Space Exploration Laboratory/School of Physical Sciences, University of Science and Technology of China ²State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China

Presented by Maoyuan Zhao

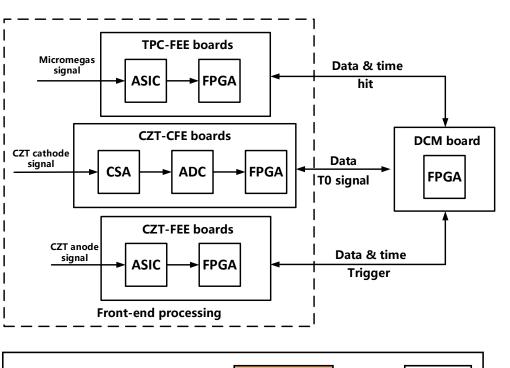
Apr 22nd to 26th, 2024, ICISE, Quy Nhon, Vietnam

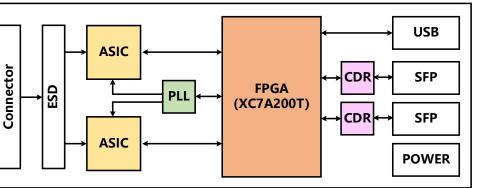
Poster ID: #79

24th IEEE Real Time, 2024

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

MeV gamma ray measurement


- MeV spectral line astronomy
- MeV polarization


Prototype

- 926 channel for TPC strips
- 121-pixel CdZnTe detectors

Challenges & Solutions

- Large mount of channels
 - Multiplexing method
- Low noise
 - Low noise ASIC

Readout

Plane

Field Cage

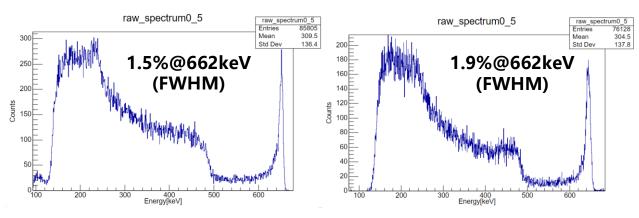
PSD ARM

G

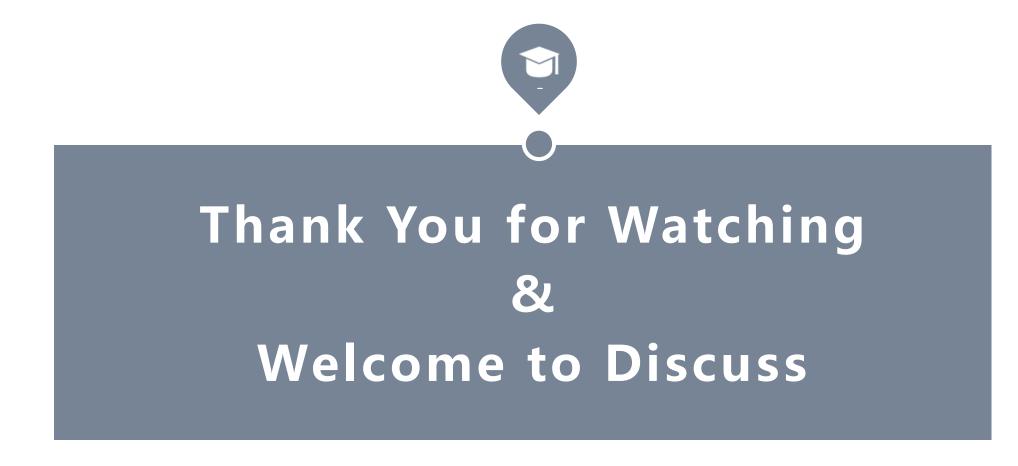
 φ_{geo}

Multiplexing method

- Multiple pads of different detectors can be connected to one readout channel.
- The cathode signal of CdZnTe shows which detector has been hit.


Test Result

The energy resolution of a single pixel get


 a bit worse than the original one, from
 1.5% to 1.9% at 662 keV (FWHM), but the
 channel amount is decreased.

Conclusion

We have preliminarily completed the readout electronics design.

Session: Poster A (#79)

Date & Time: 23/04/2024, Tuesday – 15:45 (Asia/Ho Chi Minh, Time Zone)