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Abstract—Low-background β detection is crucial for environ-
mental safety. This paper introduces a one-dimensional convolu-
tional neural network (1D CNN) algorithm for low background β
detection in Time Projection Chambers (TPC), aiming to classify
β and background signals detected within the TPC detectors
and recorded by the electronic system. Experimental results
demonstrate the capability of the proposed algorithm in handling
complex background and β signals. The neural network was
processed to datasets from two different conditions, both achieved
a background rejection rates of over 98%, while retaining β
event rates at about 55%. Compared to traditional lead-shielded
detection methods, the application of this algorithm enables
lead-free, low-background β detection. This significantly reduces
the instrument’s size and weight, thereby greatly expanding its
potential applications.

Index Terms—1D Convolutional Neural Network (1D CNN),
Lead-Free Shielding, Time Projection Chamber (TPC), Low
Background β Detection, Charge Sensitive Amplifiers (CSA),
Particle Identification.

I. INTRODUCTION

W ITH their prolonged half-lives, α and β radioactive
nuclides pose health risks through ionizing radiation

as they enter the human body via ecological cycles. Conse-
quently, monitoring α and β ionizing radiation in the envi-
ronment is crucial for assessing levels, identifying sources,
and evaluating impacts [1]–[3]. In nuclear accident sites like
Fukushima Daiichi Nuclear Power Plant, detecting α and
β particles, emitted from specific nuclear fission products
and plutonium in nuclear fuel, is crucial, in addition to
gamma photons [4]. In common scenarios, samples with
low activity levels and ambient background radiation require
low-background detection methods for precise discrimination.
Mainstream solutions, like multi-wire proportional chambers
and scintillation detectors, are commonly employed for this
purpose. [5], [6]. These methods analyze event energy to dif-
ferentiate samples and background radiation. However, thick
lead shielding required for low sample activity leads to bulky
instruments unfit for confined spaces like nuclear power plants.

Given the aforementioned considerations, a detection
scheme based on Time Projection Chambers (TPC) is in-
troduced [7], enabling the measurement of 3D trajectories
and energy deposition of charged particles [8]. By extracting

*Corresponding author: Changqing Feng (e-mail: fengcq@ustc.edu.cn).
This work was supported by the Fundamental Research Funds for the

Central Universities (Grant No.WK2360000011).
The authors are with State Key Laboratory of Particle Detection and

Electronics, University of Science and Technology of China, Hefei 230026,
China.

and utilizing a wider array of physical features rather than
solely relying on energy information, it effectively distin-
guishes between background signals and genuine radiation
events without the need for lead shielding. In α measurement
mode, this method achieves a background count rate below
1.6×10−3 counts per minute at a 95% confidence level, while
preserving around 96% of events generated by the 241Am
radioactive source employed for assessing detection efficiency.
However, in β mode, the similarity between various physical
characteristics of background events and genuine β sources
leads to a substantial reduction in the detection efficiency
of β radiation when using the aforementioned algorithm for
background screening.

In recent years, neural networks have been extensively
incorporated into the realm of particle identification [9]–
[11]. In this paper, leveraging the aforementioned lead-free
shielding detection method and electronic system, a low-
background β particle screening algorithm is devised using a
one-dimensional CNN neural network, facilitated by waveform
analysis of the samples. Applying the algorithm to experi-
mentally derived detector data enables effective differentiation
of background events while maintaining a high rate of β
data retention. Additionally, by comparing detector test result
before and after structural enhancements using this algorithm,
the efficacy of the improvement strategies can be further
validated.

II. TPC SYSTEM AND WAVEFORM CHARACTERISTICS

A. Detector and Readout Electronics

This algorithm is applicable to a range of TPC detection
system with the capability of detecting three-dimensional tra-
jectories and outputting waveforms. In this paper, we utilized
an enhanced version of the lead-free shielding α detector
previously mentioned [7] in Section I while retaining α
detection capabilities, comprising both the TPC system and
readout electronics.

As shown in Fig. 1, the TPC system consists of a TPC main
detector with a drift length of 53 mm (referred to as TPC
hereafter, while the TPC system denotes the entire system)
and an anti-coincidence detector with a drift length of 8 mm
assembled back-to-back. Events hitting both the TPC and
anti-coincidence detectors are considered muons from cosmic
rays and are thus filtered out.The readout electrodes of the
TPC consist of 120 strips in both X and Y directions, each
approximately 1.33 mm in width, covering a total sensitive
area of 150 mm × 150 mm. The entrance aperture is circular
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with a diameter of 70 mm, where β particles outside this
aperture are shielded by the aluminum casing of the detector.
Conversely, the anti-coincidence detector comprises 16 pads,
dividing the sensitive area into a 4 × 4 grid.

To validate the algorithm’s applicability, tests were also
conducted using an improved version of the aforementioned
detector. The enhancement of the TPC comprises two key
elements: externally, a drawer-shaped tray crafted from copper
material is employed to house the samples, serving to mitigate
a portion of the β or analogous radiation penetrating through
the membrane window from the surroundings. Internally, a
field cage fabricated from low-background material replaces
the previous one. For convenience, the terms ”Cond.A” and
”Cond.A” will be used to refer to tests using these two types
of detectors in the subsequent discussion. It’s important to
note that the PCB anode board also contributes significantly
to the background. While this improvement is slated for future
detector implementations, it has not yet been deployed.

Together, the readout electrodes of the two detectors con-
stitute the 256-channel signal of the input electronic system.
These signals undergo processing using a Front-End Card
(FEC) [12] and a Data Collection Module (DCM) [13].
Initially, they are fed into four Application-Specific Integrated
Circuits (ASICs) called ASIC for TPC Electronics (AGET)
within the FEC [14], where they undergo amplifying through
charge-sensitive amplifications (CSA), shaping, and sampling.
Subsequently, the analog signals are digitized using four 12-
bit Analog-to-Digital Converters (AD9235), after which they
are packaged and uploaded to the DCM via a Xilinx Artix-
7 series Field-Programmable Gate Array (FPGA). The DCM
then gathers all data packets from the FEC and transmits them
to a PC via Ethernet. It is worth mentioning that the algorithm
discussed in this paper is not restricted to the particular
detection system described above.

Fig. 1: Structure of the TPC system

Tests were conducted using 90Sr radioactive source and
empty detector without radioactive source to evaluate β and
background events. Henceforth, β and background will be used
to refer to these two sets of test results. The basic and the
improved detector were both subjected to testing. TABLEI
illustrates the total event counts of Cond.A and Cond.B These
data comprise the entire dataset in Section III-C. It is evident
that despite similar counting rate for the 90Sr radioactive

TABLE I: Dector Testing Result

Test Data Events Number Time duration Count rate

β dataset01 167,206 8min 20,900/min

β dataset12 217,310 10min 21,731/min

background2 128,953 3h 42,984/h

background2 95,977 4h 23,994/h

1 Cond.A.
2 Cond.B.

source, there is a notable decrease in the background counting
rate, thus demonstrates the effectiveness of the improvements.

B. Waveform Characteristics

The waveforms digitized by the electronic system men-
tioned in Section II-A are shown in Fig. 2, with a sampling rate
of 25 MHz, a peaking time of 500 ns, and a sampling window
consisting of 512 sampling points. Each event consists of sev-
eral such waveforms, each representing the anode strips struck
by incident particles in their respective electronic channels,
while waveforms from other channels are the baseline and
discarded during the upload process. These events constitute
the data set of this paper.

Mapping each baseline-subtracted waveform of the afore-
mentioned dataset to the position of the anode strips enables
the reconstruction of the particle’s three-dimensional trajectory
and energy loss. As depicted in Fig. 2, a series of waveforms
from specific events in a particular dimension enable the
reconstruction of particle trajectories along that dimension
within the detector, including the energy loss at each point.
In addition, the reconstructed trajectory provides information
on the particle’s initial position and drift time in the TPC.

(a) x channel waveforms (b) y channel waveforms

(c) x channel trajectory and en-
ergy reconstruction

(d) y channel trajectory and en-
ergy reconstruction

Fig. 2: Waveforms and trajectory energy reconstruction for
individual event
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III. ALGORITHM DESIGN

A. Neural Network Architecture

From the preceding text, the following features of the input
data can be inferred.

• Spatial structural information, implying that correlations
exist not only among sampling points along the time
dimension but also spatially across different waveforms.

• Translational invariance, indicating that shifting the wave-
forms along both the time and spatial dimensions is
akin to merely altering the time and position of particle
incidence, without altering other physical properties.

• Local correlation, pertaining to the interdependence
among localized information in the data, such as the
correspondence between the peak positions of individual
waveforms and the trajectory of particles along that
dimension.

• Sequential characteristics, meaning that the waveforms
along the time dimension form a fixed sequence.

• Extensive characteristics, necessitating large-scale, pro-
longed testing datasets for training neural networks.

Based on the above reasons, a one-dimensional CNN neural
network model is well-suited for this paper [15]. The algorithm
proposes the following neural network structure, as shown in
Fig. 3.

Fig. 3: Neural network architecture

The neural network comprises a dual-channel parallel one-
dimensional CNN network and fully connected layers [16].
To extract waveform features from each spatial dimension,

the CNN network adopts a dual-channel parallel configura-
tion where the data from each dimension is input into its
corresponding channel. In the dual-channel CNN network,
each channel consists of three layers of one-dimensional
convolutional layers. The basic structure of a one-dimensional
convolutional layer is as follows:

out (Ni,Coutj) =

bias (Coutj) +

Cin−1∑
k=0

weight (Coutj, k)× input (Ni, k)
(1)

The terms ”weight” and ”bias” denote the trainable parameters
encompassing the learnable weights and biases. The one-
dimensional convolutional layer employs a set of learnable fil-
ters (referred to as convolutional kernels or filters) to perform
convolution operations on input sequences. The network’s
input shape is a tensor of size 128 × 120. With 64 filters
of size 3 × 120, convolution is performed over the input
sequence, computing weighted summations of features within
each window at every position. This process is followed
by a nonlinear activation function to introduce nonlinear
transformations and enhance the network’s expressive power,
resulting in a tensor of size 128 × 64. Subsequently, the
same convolutional operation is applied with 3 × 64 ×32 and
3 × 64 × 4 filters sequentially. The LeakyReLU activation
function is employed in the convolutional layer to address the
issue of gradient vanishing often encountered with traditional
activation functions like ReLU [17]. Its introduction of non-
linearities to the network, as well as a group normalization
operator [18] to avoid early overfitting mitigates the risk
of neuron death, thus facilitating more effective updates to
neurons during training.

Upon entering this channel, the data undergoes three layers
of convolution before being passed through a pooling layer for
output. The placement of the pooling layer after convolution
is strategic, as the waveform data, representing the proportion
of channels hit in each event, is relatively sparse. Directly
pooling after convolution would result in significant feature
loss. Hence, to enhance the extraction and preservation of
diverse waveform features, convolutional layers are utilized
initially for feature extraction, followed by pooling for down-
sampling and feature compression. The pooling layer adopts
one-dimensional max-pooling (MaxPooling1D), structured as
follows:

out(Ni,Cj, k) =

max
m=0,1,...,kernelsize−1

input(Ni,Cj, stride× k +m) (2)

After the pooling layers, the data from the two channels
undergo dimensionality reduction before being concatenated
into a one-dimensional tensor format. This concatenated tensor
is then input into a series of three fully connected layers for
further feature compression and extraction.

y = xAT + b (3)

In the network’s fully connected layers, the Tanh activation
function is employed. This function constrains the output



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 4

within the [-1, 1] range, beneficial for scenarios needing
probabilistic outputs. Furthermore, Tanh maintains gradients
across the input range, aiding in gradient propagation during
training and expediting convergence.

The final layer of the fully connected layers employs
the sigmoid activation function. Consequently, the network
generates a probability vector with two elements through the
Softmax layer, indicating the likelihood of the input event
being classified as either a β particle or background [19],
respectively.

B. Data Preprocessing

To streamline data storage and minimize baseline interfer-
ence in waveforms, the original signals were cropped from the
22nd to the 278th sampling point, followed by downsampling
to yield a dataset with 128 sampling points and a sampling
rate of 12.5MHz. This dataset serves as the foundation for
subsequent algorithm development, as shown in Fig. 4.

Fig. 4: Waveform truncation and downsampling

Given the constraints of computer hardware, the prepro-
cessing of waveform data adopts sparse tensor [20] formats
based on channel numbers to economize storage space further.
Sparse tensors, characterized by mostly zero elements, store
only the positions and values of non-zero elements. This
approach optimizes the storage and processing of data in
large datasets, offering increased efficiency compared to dense
tensor representations. The dataset, stored in the pkl format,
utilizes a sparse tensor structure on the computer’s hard drive.
This serialization format encodes the target data in binary
form, offering superior storage efficiency and faster read/write
operations compared to traditional formats like dat and csv.
Particularly advantageous for managing extensive datasets,
pkl ensures optimal storage utilization and computational
performance.

C. Training Process

In traditional multi-event algorithms, the particle’s impact
position has a substantial impact on particle discrimination. To
mitigate the influence of source position changes on the re-
sults, we aim for greater algorithm universality. Consequently,
to simulate the real-world usage scenario of the detector and
the properties of the samples a radiation source with a 1
cm radius was positioned at a distance of 5.8 cm from the
detector’s membrane window, ensuring a relatively uniform
distribution of particle impact positions on the window. The
algorithm utilizes data obtained from measurements conducted

with the 90Sr radioactive source, as well as background data
acquired from measurements conducted without the presence
of a radioactive source. Furthermore, to minimize the influence
of hits occurring beyond the membrane window, we examined
the distribution of hit positions for all events. Specifically,
only events with hit positions within a 7 cm radius from the
center were retained as training data for β events, while data
outside this range were excluded ,while all background events
filtered through the anti-coincidence will also be utilized in
this algorithm.

The dataset, comprising background and β events, is split
into training and testing sets at a 4:1 ratio. The training set
is used to train the network, while the testing set evaluates
the trained model’s performance. During training, dynamic
learning rate algorithms and Dropout layers are incorporated
to enhance accuracy and prevent overfitting. Adam (adaptive
moment estimation) optimization, known for its effectiveness
in handling sparse gradients with minimal memory usage, is
employed as the optimization algorithm during training.

The background event count rate in the dataset is low,
spanning over hours, ensuring stability in the testing results
over an extended period. Conversely, β events exhibit a higher
count rate, covering a time span of 2 minutes every batch.
For evaluating the retention rate of β events, an additional
dataset from another batch was used for assessment. After
training, the β event data and background event data are
input into the trained network to obtain results. The network
outputs a one-dimensional tensor of length 2, where each value
represents the probability of the input event corresponding to
a particular particle type. By applying a probability threshold,
only particles with consistent labels and probabilities above
the threshold are considered correctly identified as β events.
This process yields the background rejection rate and particle
retention rate. It’s worth noting that for the background test set,
which comprises 1/5 of the total number of events, assuming
a stable background count rate, the corresponding time span
is considered to be 1/5 of the total dataset.

During the training phase, a dynamic learning rate opti-
mization algorithm was utilize [21]. Initially, a relatively large
learning rate was applied to aid the model in converging
towards local or global optima. With increasing iterations,
the learning rate gradually decreased, facilitating accelerated
convergence in the correct direction, rather than oscillating
near the lowest gradient point. The chosen loss function for
the network is the Cross Entropy Loss Function [22], which is
designed based on probability distributions. It mandates that
the model’s output, after being transformed by the softmax
function, represents a probability distribution. This encourages
the model to provide accurate estimates of probabilities for
different classes. Additionally, the Cross Entropy Loss Func-
tion effectively handles the weights of samples from different
classes, aiding in addressing potential class imbalance issues.
During network training, dropout layers [23] were integrated
into the architecture. Dropout is a widely used regularization
technique designed to mitigate overfitting in neural networks.
It operates by randomly deactivating a fraction of neuron
outputs during training, thereby diminishing interdependencies
among neurons and enhancing the model’s capacity for gen-
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eralization.

IV. TEST RESULTS

A. Analysis of Network Outputs

The distinct structures of the detectors are likely to affect
the data features to some extent. Consequently, data from
both detectors were separately trained using an identical
neural network architecture. The training and testing sets were
sourced from distinct datasets obtained of the tests mentioned
in Section II-A and Section II-B. Output distributions of basic
and improved detector are depicted in Fig. 5. It’s noticeable
that the majority of background events are distributed closer to
0, with only a few closer to 1. This suggests that Considering
the much higher β counting rate compared to the back-
ground counting rate provided in TABLEI, these distributions
represent instances where the network incorrectly identifies
background events as β events, and the misclassification is
attributed to the presence of β or β-like events within the
background instances. Conversely, for β events, there is a
higher proportion of instances incorrectly classified as back-
ground, which limits the network’s performance. Additionally,
it’s worth noting that the proportions of these misclassified β
events differ between the two detectors. Using a threshold of
less than 0.5 as the boundary, the proportion of misclassified β
events for the basic detector is 23.25%, while for the improved
detector it is 10.16%. This demonstrates the effectiveness
of targeted improvements, with the latter exhibiting better
performance. Importantly, instances distributed around 0.5 for
both detectors can be neglected, indicating minimal instances
posing challenges for the classification of the two categories.
These distributions characteristics confirm the algorithm’s
efficacy in distinguishing between the two event types. The
overlap between the two distributions is minimal. Hence, an
appropriate threshold can be chosen to retain the majority of
β events while eliminating almost all background events.

(a) Output of β events (b) Output of background events

Fig. 5: Output distribution after loading the network

B. Results of Cond.A

The test results, while maintaining β event retention above
55%, are depicted in TABLE II.

From the experimental results, it’s evident that applying the
algorithm to 4 minutes of β test data and randomly selecting
1/5 of the 6-hour background test data (equivalent to 1.2 hours)
without additional filtering achieves a 98.34% screening rate
while retaining over 55% of the β test data. This highlights the
notable difference in screening effectiveness between the two

TABLE II: Results of Cond.A

Test Events number

Data Original Residual Rejection rate

β dataset11 85,231 46,997 44.859%

background2 25,791 428 98.341%

1 2 hour of β test data.
2 The equivalent time is 0.6 hours.

scenarios, validating the algorithm’s efficacy in meeting the
background screening needs for low-background β detection.
Moreover, the application of the algorithm to another set of β
test data under identical conditions preliminarily indicates its
robustness in preserving β event rates.

The distribution of trajectory start points for β and back-
ground events was analyzed before and after filtering, as illus-
trated in Fig. 6 (missing channels are mapping onto channels
with significant noise in electronic channels, so the data from
those channels is discarded) . It is evident that the algorithm
effectively screened events from various entry points. The
reconstructed background start points distribution reveals two
prominent circular patterns. The inner circle corresponds to
the 7 cm diameter membrane window, while the outer circle
represents the 9 cm diameter annular metal cover. The cover’s
thickness is smaller than that of the detector casing, resulting
in a slightly higher background count outside the circle. This
observation underscores the precision of the reconstructed
entry positions.

(a) β before filtering (b) β after filtering

(c) background before filtering (d) background before filtering

Fig. 6: Start points heatmap for beta and background events

The aforementioned results underscore the efficacy of the
one-dimensional CNN method in background rejection. How-
ever, there’s a keen interest in understanding the features of the
rejected background and those retained. Consequently, post-
application of the algorithm to the entire dataset, the distri-
butions of several common physical features were analyzed,
including energy loss, drift time, and trajectory lengths. No-
tably, for computational convenience, the Euclidean distance
of vectors representing hit counts in the x and y channels was
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employed to quantify trajectory lengths per event. Addition-
ally, corresponding distributions within the initial β dataset
were statistically analyzed for reference, as shown in Fig. 7,
For the sake of comparability, density plots are employed to
illustrate the distribution graphs.

(a) energy loss before filtering (b) energy loss after filtering

(c) trajectory lengths before fil-
tering

(d) trajectory lengths after filter-
ing

(e) drift time before filtering (f) drift time after filtering

Fig. 7: Comparison of background physical feature distribu-
tions before and after filtering with the β dataset

The test results reveal a substantial shift in the distribution of
background event-related features before and after screening.
Remarkably, the neural network autonomously adjusts these
physical feature distributions to align more closely with those
of β events, effectively screening them out. From a physical
standpoint, the remaining events resemble a dataset from
β source detection. This underscores the superiority of the
neural network algorithm over previous methods of back-
ground rejection in lead-free shielded detection [7]: it doesn’t
indiscriminately discard events beyond a certain threshold
based on a single feature. Instead, it employs a more nuanced
comparison, resulting in the residual dataset closely mirroring
the characteristics of the β dataset and achieving higher
retention rates of β data, thus enhancing detection efficiency.

C. Results of Cond.B

The results after loading are as shown in TABLE III.
The rejection rate of Cond.B is comparable to that of the
basic detector, yet owing to the reduced number of raw
background events of Cond.B within the same timeframe, a
lower background count rate can be achieved, The reduction is

attributed to the significant decrease in the presence of β events
mixed in the background examples used for training after the
TPC improvement. This further validates the effectiveness of
the detector’s structural improvements.

(a) β before filtering (b) β after filtering

(c) background before filtering (d) background before filtering

Fig. 8: Start heatmap points for beta and background events

(a) energy loss before filtering (b) energy loss after filtering

(c) trajectory lengths before fil-
tering

(d) trajectory lengths after filter-
ing

(e) drift time before filtering (f) drift time after filtering

Fig. 9: Comparison of background physical feature distribu-
tions before and after filtering with the β dataset

Based on the observed higher density of trajectory starting
points within a circular membrane window of 7 cm radius
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TABLE III: Results of Cond.B

Test Events number

Data Original Residual Rejection rate

β dataset1 87,340 48,244 44.763%

background2 19,161 302 98.427%

1 2 hour of β test data.
2 The equivalent time is 0.8 hours.

in the background data from basic detector, along with the
comparison between the residual background physical features
and those of β events, the following conclusions can be drawn:
a significant portion of the background events likely stem from
β particles or similar radiation, either traversing through the
membrane window from the external environment or emitted
from within and passing through the membrane window. The
presence of β-like events mixed within the background events
makes it challenging to distinguish between the two. This
difficulty is evident in Fig. 5, where a considerable number
of β events, when loaded into the network, are misclassified
as background. Hence, improving the detection system to sup-
press this portion of background events can not only reduces
the initial background count but also enhances the quality
of the training set. The distributions of common physical
quantities shown in Fig. 9, align closely with those discussed
in SectionIV-B, affirming the algorithm’s applicability to the
improved detector.

V. DISCUSSION

The algorithm devised in this paper is founded upon
multi-parameter identification techniques [7].Through testing
and result analysis, it has been demonstrated that the neu-
ral network-based background rejection algorithm developed
herein achieves effective background elimination while utiliz-
ing lead-free shielding. This method offers notable advantages
over traditional lead-shielded instruments, notably in reducing
the weight and size of the detection system, thereby broad-
ening its potential applications. In contrast to previous meth-
ods relying on manual selection algorithms based on multi-
parameter identification, the neural network employed here
extracts a more comprehensive set of features and considers a
broader range of subtle factors in event rejection, rather than
simply applying a single threshold for event filtering.

It’s essential to acknowledge the limitations of this paper,
which mainly include the following aspects:

• The dataset lacks comprehensiveness. The β data used in
this paper were generated by radioactive sources placed at
positions relatively distant from the membrane window.
In real-world scenarios, when samples are placed in
the marginal area below the membrane window, certain
features such as the angle of incidence may differ from
the current dataset.

• The stability of the algorithm remains to be verified
and improved. Due to constraints in time and testing
scenarios, the current results are inadequate to conclu-
sively demonstrate the algorithm’s stability across various
environments. Therefore, the robustness of the algorithm

in diverse practical application scenarios requires further
investigation and enhancement.

• Further improvement is needed in the quality of the
dataset. As mentioned in Section IV-A, it’s apparent
that the background dataset consistently includes data
resembling β particles from the environment. This could
potentially impact the network’s performance.

• The model’s utilization of the entire waveform for input
significantly increases its scale, posing challenges for de-
ployment on an FPGA, particularly for direct deployment
onto the front-end acquisition board.

Based on the aforementioned limitations, the following
future work needs to be undertaken:

• Enhancing the comprehensiveness of the dataset: Col-
lecting β test data from larger-area sources or utilizing
simulated data obtained from physics simulations for
training purposes.

• Conducting prolonged background tests in diverse en-
vironmental conditions to enhance the quality of back-
ground data, or refining the neural network architec-
ture, for instance, by adopting a self-supervised learning
framework to mitigate the influence of background data
on network performance.

• Utilizing an anode board made of low-background mate-
rial further reduces the background signals generated by
the detector itself.

• Reducing the input size of the network, for instance
by performing feature extraction on waveform data, can
facilitate practical deployment.

VI. CONCLUSION

This paper introduces a one-dimensional CNN-based parti-
cle identification algorithm designed for background rejection
in lead-free shielded TPC detectors. Through comprehensive
testing and analysis, the algorithm has proven superior to
manual selection algorithms based on multi-parameter identi-
fication employed in previous studies. Consequently, it enables
the utilization of more lightweight and adaptable instruments
across a broader spectrum of detection scenarios. Currently,
with a β event retention rate of about 55%, we have achieved
a background rejection rate over 98% .

Future research efforts should concentrate on improving the
dataset’s quality, exploring advanced network architectures,
and conducting extensive long-term testing. These endeavors
will further enhance the network’s performance and robust-
ness.
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