
1

Hybrid Scrubber of SEM and Picoblaze for FPGA
on COMET Read-out Electronics

Eitaro Hamada, Youichi Igarashi, and Kazuki Ueno

Abstract—When operating FPGAs in a radiation environment,
SEUs induced in the configuration memory can alter the func-
tionality of the firmware. This alteration can disrupt the correct
operation of an FPGA. Even with a typical SEU mitigation design
incorporated into the FPGA, unrecoverable errors can still occur,
which can only be corrected by re-downloading FPGA firmware.
The majority of unrecoverable errors are caused by multi-bit
upsets. In this study, we developed Hybrid Scrubber Design
that can correct these multi-bit upsets. The Hybrid Scrubber
Design consists of the AMD Soft Error Mitigation (SEM) and
the AMD microprocessor (Picoblaze). When a single-bit upset
occurs, the SEM within the FPGA corrects it in a short time.
The FPGA communicates with an external computer only when
a multi-bit upset occurs, and then the Picoblaze corrects it. We
incorporated the Hybrid Scrubber Design into the FPGA on the
readout electronics for the COMET experiment. We conducted
neutron irradiation tests and measured unrecoverable error
rate. Compared to incorporating the SEM, which is a typical
SEU mitigation design, the Hybrid Scrubber Design reduced
unrecoverable error rate by 80 percent.

Index Terms—COMET, SEU, FPGA, Hybrid, Neutron, Muon

I. INTRODUCTION

SRAM-BASED Field Programmable Gate Arrays (FPGAs)
have often been adopted for front-end electronics in high-

energy experiments due to advantages such as programmabil-
ity, low-price, and high-performance. Many FPGAs in front-
end electronics operate in radiation environments. The most
critical issue of these FPGAs is single-event effects (SEEs),
specifically single-event upsets (SEUs) within the configura-
tion memory. SEUs may alter the functionality of the firmware
and disrupt the correct operation of the FPGA. AMD Inc.
provides the Soft Error Mitigation (SEM) IP core for detecting
and correcting SEU errors [1]. In this study, we define the
SEU mitigation module of the SEM as the ‘SEM Design’.
Many experiments adopt the SEM Design because it can be
easily implemented in FPGAs. However, when a multi-bit
upset (MBU) in the configuration frame occurs, the SEM
can detect the issue but may not be able to correct it. In
such cases, the SEM process can be halted, leading to soft
errors that cannot be corrected. There are other causes of
soft errors similar to this. For example, when SEUs occur

This Manuscript was submitted on June 1, 2024.;
Eitaro Hamada, Youichi Igarashi are with Institute of Particle and Nuclear

Studies, High Energy Accelerator Research Organization(KEK), 1-1 Oho,
Tsukuba, Ibaraki 305-0801, Japan (e-mail: ehamada@post.kek.jp).

Kazuki Ueno are with the Department of Physics, Osaka University, Osaka
565-0871, Japan

This work was supported by World Premier International Research Cen-
terInitiative (WPI), MEXT, Japan.

in critical circuits such as clock generators or the SEM, the
FPGA can stop, and these errors cannot be corrected. Another
potential error is SEUs occurring in flip-flops or block RAM,
which are not protected by the SEM. We define these soft
errors as unrecoverable errors. Unrecoverable errors cannot be
repaired without re-downloading the FPGA firmware, which
generally takes several tens of seconds of dead time. While
there are multiple causes of unrecoverable errors, most of them
are due to MBUs. In this study, we developed a new SEU
mitigation design capable of correcting not only single-bit
upsets (SBUs) but also MBUs. Because it can correct MBUs,
which are a major cause of unrecoverable errors, it is expected
to reduce the dead time associated with firmware downloads.
This design comprises the SEM and the Picoblaze (AMD
soft microprocessor) [2]. The SEM corrects SBUs. The FPGA
communicates with an external Personal Computer (PC) to
receive the addresses of upset bits in the configuration memory
only when the SEM encounters an MBU that it cannot correct.
Subsequently, the Picoblaze restores the MBU to its original
state. In this study, we define this design as the ‘Hybrid
Scrubber Design’.

The shorter the time it takes to correct an upset after an SEU
occurs, the higher the reliability of the FPGA, as the upset can
be restored to its original state before system errors occur [3].
One of the advantages of the Hybrid Scrubber Design is that
the correction process for SBUs is the same as that of the
SEM Design. Because most SEUs in the FPGA are SBUs, the
Hybrid Scrubber Design does not increase the time required
to correct them compared to the SEM Design. The details of
the correction time are explained in Section VI.

Various methods have been developed to correct MBUs
in a configuration frame. Methods such as blind scrubbing
and readback scrubbing have been explored [4], [5]. These
methods require reference memory that stores the original con-
figuration data (golden memory). Because a golden memory
is susceptible to potential damage from neutron or gamma-
ray radiation, these methods may not be applicable to high-
energy experiments. Triple-module redundancy and double-
module redundancy are also used as methods to correct MBUs.
These methods need to duplicate identical modules within an
FPGA [6]. Unless an FPGA has sufficient resources, adopting
these methods can be difficult. However, our Hybrid Scrubber
Design does not require golden memory. The resources of both
the SEM and the Picoblaze are very small. For example, they
account for less than one percent of the total resources for
Artix-7 XC7A200T-2FBG676C.

We incorporated the Hybrid Scrubber Design into the FPGA
for the readout electronics of the COMET (The COherent



2

Fig. 1. Photograph and Description of ROESTI.

Muon to Electron Transition) experiment. This is discussed
in Section II. To understand the structure of our Hybrid
Scrubber Design, it is necessary to understand the SEM and
the Picoblaze. Their structures are explained in Sections III
and IV, followed by an explanation of the structure of the
Hybrid Scrubber Design.

II. COMET EXPERIMENT AND ROESTI

The COMET experiment at J-PARC aims to search for the
muon to electron (µ–e conversion) conversion process in a
muonic atom. This process violates charged lepton flavor and
is highly suppressed in the Standard Model (SM) including
neutrino oscillation, with a predicted branching ratio of less
than O(10−54). However, theoretical models beyond the SM
predict a branching ratio of O(10−15) for COMET Phase-
I [7] and O(10−17) for COMET Phase-II. Therefore, the
discovery of µ–e conversion would provide clear evidence for
new physics. To suppress background and achieve the goal
sensitivity, we adopt a straw tube tracker for the electron
detector [8]. We have developed a readout electronics board
called ROESTI, which precisely reads the signal from the
detector [9]. The ROESTI consists of 16-channel signal input
connector, ASD [10], DRS4 [11], ADC (AD9637, Analog
Devices), FPGA (XC7A200T-2FBG676C, AMD Inc.), trigger
connector, and Small Form-Factor Pluggable (SFP) connector.
Figure 1 shows a photograph and a description of the ROESTI.
The ASD amplifies and shapes the detector signal. The DRS4
and the ADC digitize analog signals with high-speed and high-
accuracy.

To prevent degradation of the detector signal, the ROESTI
must be located near the detector. According to simulations,
the total neutron fluence in a 150-day physics measurement
is estimated to be 1× 1012 neutrons/cm2, 1 MeV equivalent,
with a safety factor of 5–10 in the regions where the ROESTIs
are installed in the COMET Phase-I [12].

Before incorporating the Hybrid Scrubber Design, the
FPGA in the ROESTI adopted the SEM Design. Fig. 2 shows
a diagram of the FPGA design of the ROESTI at that time,
which displays only parts related to the SEU mitigation.
The Data I/F module receives digitized data from the ADC.
Subsequently, waveform data is created and then sent to the
Network I/F. The Network I/F incorporates SiTCP, a hardware-
based TCP and UDP processor for Gigabit Ethernet [13]. The
SiTCP sends the waveform data to an external PC over TCP/IP.

Fig. 2. Diagram of conventional design for ROESTI.

Fig. 3. Structure of AMD 7-series configuration memory.

The SEU counts are sent from the SEM to the Module Control
and stored in a register. The value of that register can be sent to
the external PC over UDP/IP through the Network I/F. Control
signals necessary for controlling the SEM can also be sent over
UDP/IP.

III. STRUCTURE OF SEM

The configuration memory is organized as an array of
frames [14]. Each frame in the AMD 7-series FPGA is
assigned a unique frame address and configured with 3232 bits
(equal to 101 words of 32 bits each), as shown in Fig. 3. Each
word and bit is assigned a word address or a bit address. Each
frame is protected by an Error Correction Code (ECC), and
the entire array of frames is protected by a Readback Cyclic-
Redundancy Check (CRC).

Each frame consists of 101 words; one of which is allocated
as an ECC word that assists in the detection and correction
of errors within the configuration frame. When the frame is
read, an ECC syndrome is calculated from the configuration
memory data that includes the ECC word. In this calculation,



3

Fig. 4. Diagram of SEM.

Fig. 5. Flowchart of error detection and correction processes by SEM. The
yellow squares indicate where the error detection and correction processes
stop. The dashed squares indicate where the SEM outputs Error Report.

a Single-Error Correction, Double-Error Detection (SECDED)
Hamming code is used.

When reading each frame, the CRC code is also calculated.
After passing through the frame with the final frame address,
the precomputed 32-bit CRC checksum, which serves as a ref-
erence value, is compared with the obtained CRC checksum.
If they differ, an error is detected, although the address of the
frame in which the error occurs is unknown.

Fig. 4 shows a block diagram of the SEM. The status signals
of the Frame ECC and the Readback CRC are output through
the FRAME ECCE2 primitive and sent to the SEM controller.
The status signals include ECCERROR and CRCERROR,
which are asserted when an ECC or CRC error is detected,
respectively. In addition, the status signals include the address
indicating where the error occurred. The ICAPE2 is an FPGA
primitive that provides read and write access to registers within
configuration memory. When an ECC or CRC error occurs,
the SEM controller outputs the Error Report, which includes
the frame address of the frame where the error occurred. If
the error can be corrected, the SEM controller sends control
signals to the ICAPE2 to execute the partial reconfiguration
and correct the error.

Fig. 5 shows a flowchart of the error detection and correc-
tion processes by using the SEM. Table I lists the number
of upset bits in one frame, detected errors, and final state.
After initialization or reset, the error detection and correction
processes begin from the frame with an address of 0. Each

TABLE I
THE NUMBER OF UPSET BITS AND DETECTED ERRORS BY SEM

the number of upset bits detected error final state

SBU ECC Error (corrected
& not stop)

MBU (even) ECC Error ECC Err Halt
MBU (odd) Type 1 ECC Error ECC Err Halt
MBU (odd) Type 2 ECC Error + CRC Error CRC Err Halt

frame is read, and the presence of an ECC error is checked.
Once the frame with the last address is read, the presence of a
CRC error is checked. If no errors are detected, then the error
detection and correction processes return to the beginning.
When a frame with an SBU is read, an ECC error is detected.
The ECCERROR signal on the FRAME ECCE2 is asserted,
and the frame, word, and bit addresses are sent to the SEM
controller. After receiving them, the SEM controller sends a
control signal to the ICAPE2 to correct the SBU, and the ECC
error is corrected. When a frame with an MBU is read, the
error detection and correction processes vary depending on
whether the number of upset bits is even or odd. If a frame
with an even MBU is read, an ECC error is detected. The
ECCERROR signal on the FRAME ECCE2 is asserted, and
the frame address is sent to the SEM controller. The SECDED
code cannot correct this error. The SEM state transitions to
’ECC Err Halt’ and the error detection and correction pro-
cesses stop. When a frame with an odd MBU is read, an ECC
error is detected. The subsequent processes can be categorized
into two types, Type 1 and Type 2. The calculation of the
ECC syndrome determines which type is selected [15]. In the
case of Type 1, the error correction and detection processes
are the same as when an even MBU occurs. The SEM state
transitions to ’ECC Err Halt’, and the error detection and
correction processes stop. In the case of Type 2, the situation
is similar to the error detection and correction processes of
an SBU. However, in the ’ECC Err Correction Attempt’ state,
the SEM attempts to correct the ECC error and fails. Here, the
frame address of the frame where the error occurred is sent
from FRAME ECCE2 to the SEM controller. Simultaneously,
the wrong word address and bit address are sent to the SEM
controller. Because the SEM controller sends a control signal
to flip that bit, it leads to an increase of one bit error. After the
last frame is read, a CRC error occurs and the CRCERROR
signal on the FRAME ECCE2 is asserted. The SEM state
transitions to ’CRC Err Halt’ and the error detection and
correction processes stop.

If ’Enhanced Repair’ mode is selected in the SEM, an
additional CRC-based algorithm is applied at the frame level.
By incorporating this algorithm, adjacent double-bit upsets
can also be corrected. As mentioned in Section II, before
incorporating the Hybrid Scrubber Design, the FPGA in the
ROESTI adopted the SEM Design using the Enhanced Repair
mode. On the other hand, the Hybrid Scrubber Design does
not use that. The reasons for this decision are explained in
Section VI.



4

Fig. 6. Diagram of Picoblaze.

Fig. 7. Block diagram of Hybrid Scrubber Design.

IV. STRUCTURE OF PICOBLAZE

The Picoblaze is a soft microprocessor provided by AMD
Inc. Several programs are available for the Picoblaze, including
the ’ICAP Controller,’ which enables reading and writing to
the FPGA’s configuration memory while it is in operation.
Fig. 6 shows a block diagram of the Picoblaze and its
peripheral circuits. Similar to the SEM, the status signals are
sent from the FRAME ECCE2 to the Picoblaze. The Picoblaze
consists of a processor, program RAM, and a data buffer. The
program RAM stores the contents of the ’ICAP Controller’
program. By sending READ or WRITE commands along with
the frame address to the Picoblaze, the Picoblaze generates
control signals to the ICAPE2, enabling the processing of
reads and writes on one frame of the configuration memory.

V. STRUCTURE OF HYBRID SCRUBBER

Fig. 7 shows the block diagram of the Hybrid Scrubber
Design. The Hybrid Scrubber Controller is the module that
controls the entire system. To build a more robust system,
we triplicated the modules for the SEM controller and the
Picoblaze. As explained in Sections III and IV, both the
SEM and the Picoblaze communicate with the ICAPE2 and
FRAME ECCE2. Because only one ICAPE2 can be integrated
into a single device, these signals are connected to either the

Fig. 8. Block diagram of ROESTI firmware with Hybrid Scrubber Design.

Fig. 9. Flowchart of ECC error correction by Hybrid Scrubber Design.

SEM or the Picoblaze through the multiplexer and the demul-
tiplexer. The same structure is applied to the FRAME ECCE2.
Under normal circumstances, the SEM is connected to both
the ICAPE2 and the FRAME ECCE2, operating as shown in
the flowchart in Fig. 5. The Picoblaze is connected to the
ICAPE2 and FRAME ECCE2 only when an error that the
SEM cannot correct occurs, and it performs the correction. The
select signal for the multiplexers and the demultiplexers are
determined to enable this condition. We implemented a Hybrid
Scrubber Design on the FPGA of the ROSETI as shown in
Fig. 8. Compared to the conventional FPGA in Fig. 2, the
SEM is replaced by the Hybrid Scrubber. The Hybrid Scrubber
exchanges signals with the Network I/F to communicate with
a PC. In Section III, we mentioned that when an MBU
occurs, the SEM transitions to the ’ECC Error Halt’ or ’CRC
Error Halt’ state and stops. When these situations arise, error
correction processing by the Picoblaze and the PC starts.

A. Correcting ECC Error

Fig. 9 shows a flowchart of the ECC error correction
process. The ’ECC Error Halt’ in this flowchart corresponds
to the ’ECC Error Halt’ in the flowchart of the SEM as



5

Fig. 10. Flowchart of CRC error correction by Hybrid Scrubber Design.

shown in Fig. 5. When the SEM state transitions to ’ECC
Error Halt’, the correction process of the SEM stops. Simul-
taneously, the Error Report is sent to the Hybrid Scrubber
Controller. This includes the frame address of the frame
in which the error occurred. The SEU Scrubber Controller
switches the select signal, connecting the Picoblaze to ICAPE2
and FRAME ECCE2. The Picoblaze reads the configuration
memory data of the frame in which the ECC error occurs. This
data and the frame address are sent to the PC via the Network
I/F over TCP/IP. Although the Network I/F also transmits
waveform data, it is configured to prioritize the transmission of
configuration memory data and the frame address. The storage
device embedded in the PC contains the original complete
configuration memory data. After receiving the configuration
memory data and frame address, the original configuration
memory data of the received frame address is fetched from
the storage device by the PC. The original data is compared
with the received data in the PC, searching for upset bits.
The frame, word, and bit addresses of all the upset bits are
then sent back to the FPGA over TCP/IP. When the Hybrid
Scrubber Controller receives them, it sends control signals to
the Picoblaze. The Picoblaze reverses the value of all the upset
bits, allowing the ECC error to be corrected. Finally, the SEM
controller is reset, and the select signal is switched to connect
ICAPE2 and FRAME ECCE2 to the SEM. After the reset, the
SEM restarts from the ’Read Frame’ state as shown in Fig. 5
and returns to its normal state.

B. Correcting CRC Error

As shown in Table I, when odd MBUs of Type 2 occur,
a CRC error is detected. In this case, after reading the frame
where the error occurred, the SEM transitions to the ’ECC Err

Fig. 11. Example of case where MBU and SBU occur almost simultaneously.

Correction Attempt’ state, and an increase of one-bit errors is
observed as mentioned in Section III. In the case of SBUs,
the SEM can successfully correct the upset bit and correct the
ECC error. In either case, the frame address in which an ECC
error occurs is stored in a ring buffer. This is because it is
not possible to determine the frame address of the frame with
MBUs in the case of the CRC error. Fig. 10 shows a flowchart
of the CRC error correction process. The ’CRC Error Halt’
in this flowchart corresponds to the ’CRC Error Halt’ in the
flowchart of the SEM as show in Fig. 5.

When the SEM state transitions to the ’CRC ERR Halt’,
multiple addresses are fetched from the most recently saved
frame addresses in the ring buffer and the correction process
for those frames begins. The reason for correcting multiple
frames is to handle situations such as the example shown
in Fig. 11, where an SEU occurs in another frame almost
simultaneously with the occurrence of an MBU. In this
example, when a CRC error is detected, the last address
stored in the ring buffer is the address of the frame where an
SBU occurred, and the address of the frame where an MBU
occurred is stored second. By fetching multiple addresses and
correcting the frames for those addresses, it is possible to
correct the frame where an MBU occurred. The number of
frames fetched matches the value stored in the SET NUM
register. The default value of this register is four. The process
flow for a CRC error correction of one frame is the same
as an ECC error correction. This procedure is repeated for
the number of frame addresses retrieved from the ring buffer.
Similar to the ECC correct, after the reset, the SEM restarts
from the ’Read Frame’ state as shown in Fig. 5 and returns
to its normal state.

C. Errors with Multi-Frames

MBUs occurring across multiple frames are also possible.
The Hybrid Scrubber Design can correct these errors. As an
example, we assume that a double-bit error occurred in a frame
with the frame address of N, and a triple-bit error occurred
in the frame with the frame address of N+1, causing a CRC
error. When the frame with the frame address of N is read, it is
corrected as mentioned in Section V-A. After reset, the frame
reading process of the SEM restarts from the frame address
of 0. When the frame with the frame address of N+1 is read,
it is corrected as mentioned in Section V-B.

The reset latency is crucial. This is because a long latency
may prevent the proper correction of CRC errors. We assume



6

TABLE II
PERFORMANCE OF HYBRID SCRUBBER DESIGN

number of
upset bit

detected
error

detection
+time

+correction
time
(ms)

detection
+time

+correction
time

+reset time
(ms)

SBU ECC Err 0.9 to 28.2
even MBU
&odd MBU

(Type 1)
ECC Err 5 to 33.3 88 to 116.3

odd MBU
(Type 2)

ECC Err
+CRC Err 20 to 75.6 103 to 158.6

that a double-bit upset and a triple-bit upset occur, similar to
the previous example. If the reset following the ECC error
correction caused by the double-bit error is prolonged, it may
lead to the occurrence of many SBUs during that time. Frame
addresses of these SBUs are stored in the ring buffer. If the
number of these frame addresses exceeds the value stored in
the SET NUM register, the correction process for the frame
with a triple-bit upset is not performed. If the SEM is set
to ’Enhanced Repair’ mode, the reset latency is 9.9 seconds.
Such lengthy latency may lead to these issues. If the SEM is
not set to this mode, the reset latency is 83 milliseconds, and
such issues are not expected to occur. Therefore, we do not
set the ’Enhanced Repair’ mode in the SEM of the Hybrid
Scrubber Design.

VI. PERFORMANCE TEST

We measured the time taken for the error correction process
in the Hybrid Scrubber Design. In this test, the PC and the
ROESTI communicated directly via optical communication.
The PC was an HP ProBook 6570b, Intel Core i7 – 3570M
(2.90 GHz, two Cores, four threads) running CentOS Linux
release 7.9. When the PC received configuration memory data
and a frame address of a frame that may have encountered
an error over TCP/IP, it responded with the addresses of
all bits that were upset within that frame. The SET NUM
register was set to four by default. Therefore, when a CRC
error occurred, the configuration memory data and frame
addresses of four frames were sent to the PC. We sent a
control signal to the SEM via slow control and generated a
pseudo error. When the error was detected, the counter in
the FPGA started at 0 and incremented by one with each
system clock cycle. The count stopped incrementing once the
error was corrected. The time from the error detection to the
completion of the correction (correction time) was calculated
using the counter value and the clock cycle. In the case of
either an even MBU or an odd MBU of Type 1, an ECC error
occurs. The correction time for this case was from five to six
milliseconds. In the case of an odd MBU of Type 2, ECC
and CRC errors occur. The correction time for this case was
from 20.0 to 21.0 milliseconds. The correction process for
four frame addresses was executed, resulting in a correction
time approximately four times that of an even MBU. The
time from error occurrence to detection (detection time) was
calculated based on the SEM system clock of 66.7 MHz and

Fig. 12. Setup for neutron irradiation test.

Fig. 13. Photograph of ROESTI in neutron irradiation test.

the SEM datasheet [1]. The detection time for ECC errors
is less than 27.3 milliseconds. The detection time for CRC
errors is less than 54.6 milliseconds. In the case of both
ECC and CRC errors, the absolute minimum error detection
latency is effectively zero. In the case of SBUs, the detection
time is less than 27.3 milliseconds, and the correction time is
0.9 milliseconds. The time from error occurrence to correction
is the sum of detection time and correction time, as listed in
Table II. When an ECC or CRC error is caused by an MBU,
resetting the SEM restores it to a normal state. The reset time
is 83.1 milliseconds. The times, including this reset time, are
also listed in Table II.

Most SEUs are SBUs. The correction process for these
SBUs is the same as the correction process in the SEM Design,
therefore the correction time remains unchanged. The time
required to correct MBUs is only several times longer than
that required to correct SBUs. This time does not reduce
the reliability of the FPGA, because the frequency of MBU
occurrence is very low.

VII. NEUTRON IRRADIATION TEST

The primary cause of unrecoverable errors is MBUs. As
the Hybrid Scrubber Design is capable of correcting these
MBUs, it is anticipated to significantly reduce the frequency
of unrecoverable errors compared to the SEM Design. To
verify this and demonstrate the effectiveness of the Hybrid
Scrubber Design, the neutron irradiation test was performed by
using the tandem electrostatic accelerator at Kobe University.
This accelerator can generate a neutron beam with an energy
peak of 2 MeV by 9Be(d, n)10B reaction with a 3 MeV
deuteron beam. Fig. 12 shows the setup for the experiment.



7

TABLE III
RESULT OF NEUTRON IRRADIATION TEST

SEM Design Hybrid Scrubber
Design

counts of SEUs 1.0× 104 1.3× 104

counts of
corrected adjacent
double-bit errors

0 260

counts of
corrected MBUs

w/o adjacent
double-bit errors

0 20

counts of
unrecoverable errors

due to MBUs
19 0

counts of
unrecoverable errors
due to other errors

4 7

The ROESTI received a test signal from the function generator
and sent the waveform data of that signal to the PC, once
every second. The PC was an HP ProBook 6570b, equipped
with an Intel Core i7-3570M processor (2.90 GHz, two Cores,
four threads) running CentOS Linux release 7.9, as during the
performance test. We downloaded two types of designs, the
Hybrid Scrubber Design and the SEM Design, to the FPGA
on the ROESTI and conducted the tests. In the case of the
SEM Design, we set ’Enhanced Repair’ mode for the SEM
to enable the correction of adjacent double-bit upsets. The
FPGA on the ROESTI was placed perpendicular to the neutron
source as shown in Fig. 13. The FPGA on the ROESTI was
exposed to a total neutron fluence of 4.0× 1011 neutrons/cm2

in the case of the SEM Design and a total neutron fluence of
5.3 × 1011 neutrons/cm2 in the case of the Hybrid Scrubber
Design.

During this irradiation test, we measured the counts of
SEUs, corrected MBUs and unrecoverable errors. Table III
shows the results. In the case of the SEM Design, 1.0 ×
104 SEUs occurred, including errors in all bits. 19 unrecover-
able errors due to MBUs were observed, and 4 unrecoverable
errors due to other errors were observed. In the case of the
Hybrid Scrubber Design, 1.3 × 104 SEUs occurred, includ-
ing errors in all bits. 260 adjacent double-bit upsets were
observed, and 20 MBUs without adjacent double-bit upsets
were also observed. All MBUs were corrected. The counts
of MBU accounted for only 0.5 percent of the SEU count.
Among the SEUs that occurred, 99.5 percent were SBUs. This
indicates that even in the case of the Hybrid Scrubber Design,
most SEUs are corrected by the internal SEM of the FPGA,
eliminating the need for communication with the external PC.

Fig. 14 shows the results of the unrecoverable error rate.
In the case of the SEM Design, the unrecoverable error
rate due to MBUs was (4.7 ± 1.1) × 10−11 cm2/neutrons,
and the unrecoverable error rate due to other errors was
(1.0± 0.5)× 10−11 cm2/neutrons. Adding them together, the
unrecoverable error rate was (5.7±1.6)×10−11 cm2/neutrons.
Among these, 80 percent were due to MBUs. In the case
of the Hybrid Scrubber Design, the unrecoverable error rate
was (1.3 ± 0.5) × 10−11 cm2/neutrons, which indicates an
80 percent decrease compared to the case of the SEM Design.

Fig. 14. Result of unrecoverable error rate.

This is attributed to the elimination of unrecoverable errors due
to MBUs. This result demonstrates an 80 percent reduction in
dead time caused by FPGA firmware re-downloading.

VIII. CONCLUSION

We developed a Hybrid Scrubber using the SEM and the
Picoblaze, capable of correcting not only SBUs but also
MBUs. The majority of unrecoverable errors caused by SEUs
are attributable to MBUs, which can be eliminated by the
Hybrid Scrubber Design. We measured the time required to
correct MBUs. We confirmed that the correction time for
MBUs does not reduce the reliability of the FPGA. Neutron
irradiation tests were conducted and the unrecoverable error
rate were measured. Compared to the SEM Design, in which
unrecoverable errors occur due to MBUs, the unrecoverable
error rate of the Hybrid Scrubber Design decreased by 80
percent. As a result, there was an 80 percent reduction in
dead time caused by firmware re-downloads, indicating the
effectiveness of the Hybrid Scrubber.

In this study, we implemented the Hybrid Scrubber Design
on the FPGA of the ROESTI for the COMET experiment. In
this case, Ethernet was utilized for communication with the
PC. However, the Hybrid Scrubber Design can operate with
other communication methods. Therefore, by appropriately
designing the communication method, the Hybrid Scrubber
Design can be applied in other experiments. The Hybrid
Scrubber Design targets the AMD 7-series FPGA, as the
Picoblaze utilizes programs designed for this series of FPGAs.
By modifying the content of the program, we anticipate that
the Hybrid Scrubber Design can be applied in other FPGA
series, such as the AMD Ultrascale family.

ACKNOWLEDGMENT

The authors would like to express their sincere thanks to
the staffs of The Tandem Accelerator Laboratory of Kobe
University.



8

REFERENCES

[1] Soft Error Mitigation Controller v4.1 LogiCORE IP Product Guide,
AMD PG036

[2] ”PicoBlaze 8-bit Embedded Microcontroller User Guide for Extended
Spartan®-3 and Virtex®-5 FPGAs Introducing PicoBlaze for Spartan-6,
Virtex-6 and 7 Series FPGAs”, UG 129 June 22, 2011.,

[3] Hossein Asadi and M. B. Tahoori, ”Analytical Techniques for Soft
Error Rate Modeling and Mitigation of FPGA-Based Designs”, IEEE
Transactions on Very Large Scale Integration Systems, vol. 15, no. 12,
pp. 1320-1331, 2007.

[4] A. Ahmed, ”New FPGA blind scrubbing technique,” 2016 IEEE
Aerospace Conference, Big Sky, MT, USA, 2016, pp. 1-9,

[5] H. Michel, et al., ”Read back scrubbing for SRAM FPGAs in a data
processing unit for space instruments,” 2015 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), Montreal, QC, Canada, 2015,
pp. 1-8,

[6] K. Kyriakoulakos and D. Pnevmatikatos, ”A novel SRAM-based FPGA
architecture for efficient TMR fault tolerance support,” 2009 Inter-
national Conference on Field Programmable Logic and Applications,
Prague, Czech Republic, 2009, pp. 193-198,

[7] Y. Kuno and Y. Okada, ”Muon decay and physics beyond the standard
model”, Rev. Mod. Phys., vol. 73, pp. 151-202, Jan. 2001.

[8] H. Nishiguchi, et al., ”Development of an extremely thin-wall straw
tracker operational in vacuum - The COMET straw tracker system”,
Nucl. Instrum. Meth. A, vol. 845, pp. 269-272, Feb. 2017.

[9] K. Ueno, et al., ”Design and performance evaluation of front-end
electronics for COMET straw tracker”, Nucl. Instrum. Meth. A, vol.
936, pp. 297-299, Aug. 2019.

[10] S. Shimazaki, et al., ”Front-end electronics of the Belle II drift chamber”,
Nucl. Instrum. Meth. A, vol. 735, pp. 193-197, Jan. 2014.

[11] S. Ritt, R. Dinapoli and U. Hartmann, ”Application of the DRS chip for
fast waveform digitizing”, Nucl. Instrum. Meth. A, vol. 623, pp. 486-488,
Nov. 2010.

[12] Y. Nakazawa et al., ”Radiation hardness study for the COMET phase-
I electronics”, Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom.
Detect. Assoc. Equip., vol. 955, Mar. 2020.

[13] T. Uchida, ”Hardware-Based TCP Processor for Gigabit Ethernet”, IEEE
Trans. Nucl. Sci., vol. 55, no.3, pp. 1631–1637, Jun. 2008.

[14] 7 Series FPGAs Configuration User Guide”, Jun. 2015.
[15] A. Stoddard, A. Gruwell, P. Zabriskie and M. J. Wirthlin, ”A Hybrid

Approach to FPGA Configuration Scrubbing,” in IEEE Transactions on
Nuclear Science, vol. 64, no. 1, pp. 497-503, Jan. 2017


