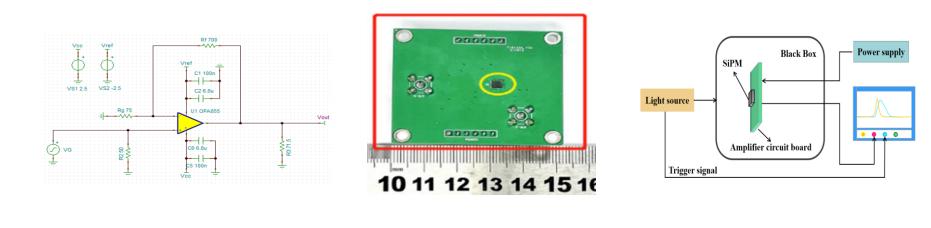
Study on the Timing Performance of the SiPM


Peng Hu, Min Yan, Sen Qian

qians@ihep.ac.cn

On Behalf of the PMT Labratory

The Institute of High Energy Physics, CAS

Study on the Timing Performance of the SiPM

Parameters	SensL J-30035	NDL 11-3030C-S	Hamamatsu S13360- 1325CS
Optimized Voltage (V)	28.5	41.0	58.0
Rise Time (ns)	0.5	1.5	1.5
Time Resolution Limit (ps)	22.2	21.8	193.6

Simulation

Validation

Measurement

Result

A fast-timing amplifier circuit
The fast-timing amplifier circuit
based on operational amplifier
based on the simulation design
OPA855 was simulated to realized
has been implemented and tested,
single photoelectron calibration
which features a gain > 10, noise
and excellent time resolution at
~ 0.8 mV and power ~ 40 mW
the same time

The timing performance of three different types of SiPMs have been measured based on this fast-timing amplifier and highperformance oscilloscope

 Excellent time resolution of ~ 20 ps can be obtained for NDL and
SensL SiPMs, and the rise time can be as good as 0.5 ns for SensL SiPMs, having great potential in timing measurement