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Measuring Performance Under Failures in the
LHCb Data Acquisition Network

Eloı̈se Stein, Flavio Pisani, Tommaso Colombo and Cristel Pelsser

Abstract—For the large hadron collider beauty (LHCb) exper-
iment, achieving high throughput in the data acquisition (DAQ)
network is crucial for supporting scientific applications. However,
failures within DAQ networks can lead to significant performance
degradation.

In this study, we investigate the frequency, duration, and causes
of failures in the LHCb DAQ network over a two-month period to
illustrate how common these events are. This insight is essential
for developing strategies to optimize performance during data
taking periods.

We further study the performance degradation upon failure.
We explore the performance for two potential approaches to
high-performance event building on the DAQ network: synchro-
nized and non-synchronized designs. We use live experiments
to demonstrate that a synchronized design, which carefully
schedules network communications to avoid congestion, can
achieve significantly better performance when the network is used
at full capacity. However, this approach comes at the expense
of reduced fault tolerance compared to the non-synchronized
approach. This study highlights that it is essential for the network
to handle failures more efficiently to sustainably maintain high
data rates.

Index Terms—data acquisition, event building, failure analysis,
network fault tolerance, networks

I. INTRODUCTION

Data acquisition (DAQ) systems play a crucial role in the
collection of scientific data [1]–[3]. Such systems, for instance,
are deployed at experiments along the Large Hadron Collider
(LHC) at the European Council for Nuclear Research (CERN)
to collect fragmented data from various sensors and assemble
them to reconstruct each particle collision event. This process
is known as Event Building.

Event building for very large collider experiments is enabled
by fast computer networks. Each sensor is connected to a
computer which receives its data. To synthesize these data
fragments into a unified representation of each collision,
every computer engages in communication with all others
through the network. The resulting network traffic pattern is a
continuous succession of all-to-all exchanges.

As particle collision events are continuously produced in the
LHC, reconstructing these events is challenging. It requires
a considerable amount of bandwidth, as the data exchanged
between computers is voluminous and needs to be exchanged
rapidly for reconstruction. Each computer receives a little
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below 200 Gbps of data from the sensors using the computer
link at full capacity to send this further to the other computers.
If events are not reconstructed quickly enough, there is a
risk of saturating the computer buffers. If buffers build up,
some data may be dropped, leading to the loss of collision
events. Therefore, it is crucial to ensure that the DAQ system
maintains high throughput while preventing congestion on the
links and buffer saturation.

The all-to-all exchange is a collective communication that is
very demanding in bandwidth as all the computers in the DAQ
system must exchange data with all the others. If all computers
send data to the same destination simultaneously, the links
to this destination become congested. A typical strategy to
address this problem is to spread the communications to each
computer over time, meaning that the exchange is segmented
into distinct phases. By dividing the exchange into phases,
communications need to be scheduled in order to determine
which computer pairs communicate at specific phases. The
objective is to guarantee that, by the conclusion of all phases,
each computer has successfully transmitted its data to every
other computer. This segmentation prevents multiple simul-
taneous communications to or from the same computer in a
phase, thus preventing network congestion.

In this approach, the all-to-all collective exchange is syn-
chronized, meaning that the DAQ application ensures that all
computers complete their data exchange before moving to
the next phase. This synchronized approach achieves high
throughput, particularly in systems with data rates close to
100% of the link capacities [4]. An alternative approach
involves a simpler non-synchronized all-to-all exchange, where
congestion is left to the network to manage. The performance
of this approach significantly deteriorates in large systems
due to the accumulation of congestion [4]. However, these
two approaches have never been compared in the context of
network link failures, which is the subject of this paper.

As highlighted in the literature [5], link failures in high-
throughput networks, such as those used for collective commu-
nications between computers in DAQ systems, are common.
To further support this notion, we propose to study link
failures in the DAQ network of the large hadron collider
beauty (LHCb) experiment. We present empirical evidence by
analyzing statistics of network failures observed over a two
months period during which the LHC was fully active and
data were exchanged in the DAQ network. Specifically, we
present statistics on the duration, frequency, and underlying
causes of network link failures to prove that failures are
frequent and can last a long time. These statistics motivate our
problem. Furthermore, link failures can significantly degrade
performance, as bandwidth utilization in the DAQ network
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is close to the maximum capacity. A single failure leads to
congestion and degrades the throughput from approximately
46 Tbps to 30 Tbps in total.

Finally, we derive some design recommendations from our
comparison of the achieved throughput by the synchronized
and non-synchronized all-to-all applications in the case of
network failures.

II. BACKGROUND

In high-energy physics experiments, large particle acceler-
ators are used to accelerate and collide particles at very high
energies. One of the largest ones is the Large Hadron Collider
(LHC) at the European Council for Nuclear Research (CERN),
with a circumference of about 27 kilometers. Particle acceler-
ators speed up tiny particles to extremely high speeds, close
to the speed of light. The Large Hadron Collider accelerates
particles to energies of up to 6.8 TeV. When these fast particles
collide, the resulting collision generates a large amount of
energy which can reach levels as high as 13.6 TeV1. The
equipment that measures the various properties of the particles
produced by collisions is called a detector, often comprising a
multitude of sensors. These sensors are intelligently arranged
to measure the particles properties, such as their kinetic energy
and identification.

Data acquisition (DAQ) systems in large physics experi-
ments play a significant role in:

1) Acquiring all data produced by the sensors.
2) Potentially making quick decisions on the relevance of

the data and whether to retain it if storage capacity is
limited.

3) Exchanging the data fragments between servers using a
high-throughput network to create snapshots of events :
Event Building.

4) Storing the data in a storage system for later analysis.
In this paper, we focus on the task 3 that merges the frag-
mented data from each sensor into a unified dataset, often
referred to as Event Building. The Event Building process
aims to consolidate all the data fragments into collisions, also
known as ”events”. This operation typically occurs across
a high-throughput network of interconnected servers. In the
DAQ system of the large hadron collider beauty (LHCb)
experiment, such network is known as the Event Builder
network and is illustrated in Figure 1.

The studied Event Builder network makes use of a fat-
tree topology, more specifically k-ary-L-tree [6]. It relies
on InfiniBand and consists of 28 40-ports InfiniBand High
Data Rate (HDR) switches, depicted by the blue circles in
Figure 1. The fat-tree topology can be described as traditional
tree structures where the link capacity increases as we move
closer to the root. At any level of the fat-tree, the capacity
of a link must be equal to the sum of the capacities of the
links at the preceding level [7]. One of the main properties of
a fat-tree is that it ensures pairwise communication without
congestion, making them rearrangeably non-blocking [8]. In
more details, for any bijection f between the set of end-nodes

1https://www.home.cern/science/accelerators

(nodes located at the lowest layer in the fat-tree), each end-
node i can communicate simultaneously with end-node f(i)
using all available bandwidth without congestion, ensuring that
no links are used more than once in the same direction which,
with our application, would create congestion. This property
provides path diversity, enabling high fault tolerance [9].

The fat-tree topology of the Event Builder network com-
prises two layers: spine switches at the top layer and leaf
switches at the bottom layer. A spine switch is connected
to every leaf switch via a 200 Gbps optical fiber. Each leaf
switch is directly connected to approximately 20 servers using
copper cables with a capacity of 200 Gbps and 20 links of
200 Gbps to spine switches, allowing the Event Builder to
interconnect 360 servers. In practice only 326 servers are
present in the Event Builder network because there is currently
no need for 360 servers as the generated data can be handled
by 326 servers. Furthermore, due to various networking and
system overheads, all links are utilized at approximately 70%,
resulting in a network throughput of approximately 46 Tbps
in the production network.

The routing of communication flows between servers
through the network is piloted by OpenSM. OpenSM [10] is the
Subnet Manager (SM) on which InfiniBand relies to compute
routes and propagate them into the Linear-Forwarding Tables
(LFT) of the switches. The routing algorithms used for the
Event Builder network is Ftree, as it is optimized for fat-
tree topologies [10]. In the event of link failures, the default
behavior of OpenSM is to use the Min-Hop routing algorithm,
as Ftree can only be used on pure fat-trees, i.e. fat-trees with no
bandwidth reduction. Min-hop uses shortest paths and balances
the routes on the ports of the switches, discarding the failed
ports.

In the Event Builder network, the servers receive a partial
spacial view of the activity in the beam from a subset of the
sensors. Then, the servers send the data from different time
intervals to different servers. Each server reconstructs from the
received data fragments a complete view of the beam for its
allocated times and is tasked with handling an equal share of
the total number of events. There characteristics result in a
continuous succession of all-to-all exchanges, a popular col-
lective operation. To provide details, a data fragment denoted
as D(si, t) from an event occurring at time t, is collected by
sensors, and then transmitted to a designated server, denoted
as si, i ∈ [0, S], with S being the set of servers IDs in the
DAQ application. To assemble the data fragments, they need
to be assigned to a specific server, sj , that receives all the
pieces of data for time t through the DAQ application A.

A : (S × T )|S| → S : A(D(s0, t), D(s1, t), ..., D(sS , t)) = sj

Collective all-to-all communications are widely used in
scientific applications, including other CERN experiments [2],
[3], as well as in the implementation of algorithms such as the
fast fourier transform (FFT) [11]–[13] and large-scale high-
performance computing (HPC) applications in general [14].
More recently, collective exchanges have also been integrated
into machine learning applications [15]–[17]. There are other
variants of collective exchanges, such as AllGather and AllRe-
duce, most of which are standardized in MPI [18].
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Fig. 1: The Event Builder Network of the LHCb experiment.

The nature of the all-to-all exchange poses significant
challenges from a network perspective. It demands substantial
bandwidth to prevent congestion. A straight forward topology
is a full-mesh network where each server is directly connected
with all the other servers, necessitating a bandwidth propor-
tional to n2, where n represents the number of servers involved
in the collective exchange. This is however very costly and a
waste of resources as not all links are needed all the time.
This is why, a typical strategy is to route the exchange in a
fat-tree topology and divide the exchange into phases.

The collective exchange is typically divided into multiple
phases to distribute the necessary bandwidth over time and
avoid congestion in the network. The minimum number of
phases necessary to realize the all-to-all exchange is n. During
each phase, every server communicates exclusively with one
other server that is not involved in any other communication.
The objective is for all servers to have communicated with
each other by the end of all phases.

Fig. 2: The Linear-shift scheduling with 8 servers.

Various scheduling algorithms exist to map communications
onto phases, including Linear-shift patterns [19], Bandwidth-
optimal [20], and XOR. The purpose of these algorithms is to
determine the destination ID based on the source ID and the
phase ID. The considered network makes use of the linear-
shift pattern. In this algorithm, each destination server ID is
computed using the formula: d = (s + p) mod n, where s
represents the source server ID, p represents the phase ID,
and n denotes the total number of servers involved in the
collective exchange. The main advantage of the linear shift
algorithm is that, on a fat-tree topology, when combined with
the Ftree routing algorithm proposed by Infiniband, it ensures
no congestion on the network in the absence of network

failures [10], [19]. To illustrate the operation of the linear-shift
pattern, consider an example involving 8 servers that engage
in an all-to-all data exchange (Figure 2). This figure depicts
the communications at each phase. For instance, at phase 0,
every server talks with itself. At phase one, each server i sends
its data to the server of id i + 1 modulo n. At the end of
all phases, every server has exchanged data with every other
server. The minimum number of phases necessary to realize a
full all-to-all exchange is the same as the number of servers.

To execute the linear-shift scheduling correctly, phases
need to be synchronized. This implies that when a server
completes its exchange with another server in phase p0, it
must wait until all other servers finish their exchanges before
communicating with the server scheduled for phase p1. To
synchronize the exchange, Infiniband provides the Tournament
Barrier algorithms [21].

In the Tournament Barrier algorithm, once a server com-
pletes its exchange, it sends a notification and then proceeds
to wait. A binary tree structure is implemented among the
servers. At each layer and for every pair of servers in the tree,
a winner is designated and takes responsibility for notifying
the winner at the higher level of the tree. Once all notifications
have been sent to the global winner, it then propagates
the notification to allow the servers to proceed to the next
phase, and subsequently, the notification is propagated to the
layers below in the same way. The LHCb makes use of the
Tournament algorithm as it demonstrates the best performance
[4].

The primary performance metric for DAQ networks is
throughput. As the data must be assembled in real-time, this
process demands significant bandwidth, requiring rapid data
exchange between servers to reconstruct the events promptly.
Any delay in the reconstruction can saturate server buffers
with data leading to the potential loss of very valuable data.
Consequently, the primary performance metric to evaluate the
performance of DAQ networks is throughput.

III. A STUDY OF LINK FAILURE OCCURRENCES

Network failures in large-scale networks are frequent [22],
as evidenced by the study conducted by Gill et al. [5]. Gill
et al. present statistical insights into failures from a year-
long measurement of failures in a real large-scale network.
The study illustrates the long duration of certain link failures,
often attributed to repair difficulties such as the lack of spare
network equipment or limited physical accessibility to the
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affected link. Furthermore, failures occurred on a daily basis
throughout the measurement period.

The literature shows that failures in large-scale networks
are frequent and can persist for an extended duration due
to the difficulty to repair. In this section, our contribution is
to gather and analyze failure statistics in the Event Builder
network of the LHCb experiment to understand the duration,
frequency, and nature of network failures in this network. Our
statistics cover a two months period during which the LHC
was operational, and physics data was transmitted within the
Event Builder network.

A. Monitoring of failures

The failures are monitored using OpenSearch, an open-
source tool derived from Elasticsearch and maintained by a
community of contributors 2. OpenSearch comprises various
components, including Dashboards for data visualization and
analysis, along with other tools for managing and query-
ing data. Thanks to OpenSearch, we can retrieve logs from
OpenSM, the subnet manager of the Event Builder network.
We are particularly interested in logs indicating changes in
switch port state. For instance, when a link goes down, the
switch port connecting that link goes from the ACTIVE to
DOWN state. Conversely, when the link is repaired, it goes
from DOWN to INIT (and then ACTIVE). To obtain this data,
we create a query in OpenSearch targeting these specific logs,
executing it automatically every day for a month. The output is
a CSV file containing all the necessary information for failure
analysis: timestamp, involved switch and port, and the change
in port state. Subsequently, we parse these files using a Python
program to generate failures data, which we can analyze.

B. Failures statistics

In this section, we provide an analysis of the failures that
occurred during two months of full network activity. We show
the duration, frequency, and causes of these failures. Our
objective is to underscore that failures in the Event Builder
network are common. It is thus of critical importance that the
network gracefully adjusts to failures to sustain high data rates.

1) Duration: To properly evaluate the duration of failures,
we considered the presence of flapping links. Flapping links
are common in networks in general [23], and can cause
considerable perturbations to networks due to multiple route
re-configurations. A flapping link is defined as a link that
oscillates repetitively between an up state and a down state
within a short period of time. While the exact duration of
a ”short period of time” lacks a precise definition in the
literature, i.e. there is no overall defined threshold, it generally
ranges from a few seconds to a few minutes. To define a
threshold for our network, we classified the observed flapping
links and their flapping periods over the two-month measure-
ment period to determine the most probable duration between
flaps. In the Event Builder network, we observe that when
a link starts flapping, 90% of the failures observed during
the flapping period of the links have a time interval of less

2https://opensearch.org/

than 10 minutes. This means that when the first failure occurs
on the link during its flapping period, the next one probably
occurs less than 10 minutes later. Based on this insight, we
consider a flapping link period as a single failure by ignoring
the time interval between two failures that are inferior to 10
minutes. This means that when two or more failures occur
on a link and their time interval is less than 10 minutes,
these failures are considered as one, and the failure period
starts at the time the first failure occurred until the last one
is recovered. By applying the flapping links correction, we
discovered that nearly 70% of the failures result from flapping
links. Over the 2605 observed failures, 1778 are attributed to
flaps. After applying the correction, these flaps were reduced to
287 failures, representing 287 periods during which the links
were flapping.

Fig. 3: Cumulative distribution of failure duration. The blue line represents
the cumulative distribution of failure duration without the flapping links
correction. The orange dotted line represents the cumulative distribution of
failure duration with the flapping links correction. Flapping links correction
is applied by counting failures of a flapping link as one long failure rather
than several small failures spaced over a short period.

Figure 3 illustrates the cumulative distribution of link failure
duration observed throughout March and April 2024 on the
Event Builder network. The duration of a link failure refers to
the period during which a link transitions from an operational
state to a non-operational state until it returns to the operational
state. The blue line shows the results for all observed failures,
excluding periods during which performance tests were con-
ducted on the Event Builder network. These tests involved
manually disabling links to evaluate how the network reacts
to failures and would thus bias our experiments. Given that the
duration of these failures is predetermined and programmed,
they are not relevant to the study. The dotted orange line
represents the cumulative distribution of link failure duration
when applying the flapping links correction.

In the results without the flapping links correction (the blue
line), we observe that instances of very short failures are not
frequent, 33% of the observed failures have a duration of
less than 10 seconds. However, the data reveals that 88% of
observed failures are short-lived, lasting less than a minute,
while 97% conclude within 10 minutes. Consequently, the
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majority of failures are brief, with the longest failures lasting
around 3 days.

Compared to the duration of failures without the flapping
links correction, failures duration are prolonged when the
correction is applied (the orange dotted line), with 24% of
the failures lasting less than 1 minute and 60% lasting less
than 10 minutes. This highlights the severity of flapping links
as a network issue, as they often lead to prolonged failures.
Furthermore, the impact on the network is even worse because
each flap requires computing new routes and updating routing
tables. These actions consume time [24], approximately 1.5
seconds in our network. Consequently, these failures can de-
grade network performance and cause long-lived performance
degradation.

2) Frequency: Figure 4 illustrates the distribution of fail-
ures over the two-month period of March and April 2024. Only
the days and links where failures occurred are represented in
Figure 4. Each link was assigned an ID based on the order of
the switch ID and the port ID, which were sorted in ascending
order. In total, 150 links in the Event Builder network failed at
least once during the month of March and April 2024. The test
days for the Event Builder network occurred on 03-08, 03-10,
03-11 and 03-12, which explains the occurrence of failures
for various links on these days. During these tests, various
links were manually disabled, which explain why a lot of links
experienced a few failures on these days. These are the events
removed from Figure 3. Furthermore, two links experienced
repeated failures throughout the entire period. These links
represent a single flapping link in two directions. The link
frequently experienced flapping, with failures occurring nearly
every day and recording more than 200 failures on a single
day (04-16). As detailed in Section V, the consequences of
such failures can significantly impact network performance,
resulting in substantial loss of throughput. Unfortunately, this
link could not be repaired during the measurement period due
to the unavailability of spare equipment and the location of
the link.

3) Nature: During the month of March and April, we
observed a total of 2605 failures, out of which 549 were
attributed to tests conducted on the Event Builder network,
while 2056 were real network failures. Among the 2056 real
failures, 1778 are due to flapping links. Flapping links are
caused by cable deterioration over time. Excluding the flaps,
there remain 278 isolated failures, which are generally due
to hardware issues such as dirty optical fibers or software
problems. Additionally, maintenance activities were conducted
on the Event Builder network servers, resulting in a total of
332 failures of servers. However, failures of servers are not
relevant to our study, as they involve complete disconnections
of servers from the network. There is no means of recovering
from a server failure with the current infrastructure. In such
cases, the available bandwidth remains sufficient for the all-
to-all exchange as the number of sources is reduced.

IV. MATERIALS AND METHODS

Now that we have seen that link failures are common, we
investigate the network performance in nominal state and upon

failures. Our objective is to devise efficient communication
strategies in the two situations. The all-to-all synchronized
application currently in production and utilized by the Data
Acquisition (DAQ) system has been developed internally for
the LHCb experiment [4]. We evaluate the performance of
synchronized all-to-all compared to the non-synchronized one
to verify that synchronization always remains the optimal solu-
tion. For this purpose, we develop a new all-to-all application
without synchronization that supports the same throughput as
the synchronized one currently in production.

Both the non-synchronized and synchronized all-to-all
applications are developed using the Message Passing
Interface (MPI). MPI is a tool for high-performance scientific
computing that provides libraries to enable multiple processes
to communicate with each other and to synchronize. MPI
relies on Single Program Multiple Data (SPMD) principle [18],
which allows the user to write a single program to be executed
by a set of processes, each with a distinct role. The user’s
challenge lies in defining how these processes communicate
with each other based on their roles. As the synchronized all-
to-all application used by the LHCb DAQ system relies on
MPI, we chose to develop the non-synchronized application
using MPI to ensure the two applications are comparable and
to take advantage of the simplicity of using MPI.

In the non-synchronized all-to-all application, we simu-
late the Event Building process similarly to the synchro-
nized one, which involves reconstructing collision events
generated by the Large Hadron Collider. Each server in the
Event Builder network has one process of the MPI application
allocated. The principle of the non-synchronized all-to-all
application is that one process serves as the controller while
all others act as workers. The controller assigns each worker a
collision event to reconstruct. Each worker has data on every
event and sends it to the worker responsible for reconstructing
that event. Figure 5 illustrates our non-synchronized appli-
cation with one controller and two workers. The controller
assigns worker 0 to reconstruct the event with ID 0 and worker
1 to reconstruct the event with ID 1. Subsequently, worker 0
and worker 1 exchange requests for data on the corresponding
event. Upon sending the data and reconstructing the event, the
workers send an acknowledgment to the controller, prompting
the assignment of subsequent events to be reconstructed.

In this approach, there is no scheduling; when workers
are assigned an event by the controller, they send a request
to receive data for this event to all workers in the order of
their ID. However, the data request is non-blocking, which
means that all sources may send their data concurrently. The
only blocking condition for a worker is that it is required to
receive all data from other workers on the event it needs to
reconstruct before making a request to the controller to assign
another event.

To compare the synchronized and non-synchronized all-to-
all in the event of failures, we manually deactivated the links
between the leaf and spine switches, illustrated in Figure 1.
We did not test disabling the links between leaf switches and
servers, as these do not affect the bandwidth of the all-to-all
exchange for the remaining nodes.

The links that were deactivated were chosen randomly and



IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024 6

Fig. 4: Distribution of network link failures over a two-month period. The x-axis represents the days in March and April 2024 when failures occurred. The
y-axis represents the IDs of the links that failed during this period. The link IDs are assigned based on the switch IDs and the port IDs which are sorted in
ascending order.

Fig. 5: Description of the MPI all-to-all application without synchronization.

included 1, 3, and 5 simultaneous failures. We chose this
number of failures because the literature has shown that groups
of failures containing more than 5 failures are unlikely, with
only 10% of groups containing more than 4 failures [22]. Our
network shows the same behavior, with a median of only
1 simultaneous failure. The maximum number of coexisting
failures is 5.

For each failure scenario, the tests were repeated randomly
10 times. To illustrate the performance degradation during
failures, we count the number of events reconstructed by each
server over 10 seconds in the all-to-all application. Multiplying
this rate by 16 MB, the amount of bytes sent for each event,
we obtain the global throughput of the Event Builder network.

V. PERFORMANCE EVALUATION

In this section, we present the measurements of the through-
put obtained on the Data Acquisition (DAQ) system of the
LHCb experiment using both the synchronized and non-
synchronized all-to-all applications. We evaluate these two
approaches at full capacity with increasing load and under
failures.

A. Scalability of synchronized and non-synchronized all-to-all
We first we re-evaluate the scalability of the synchronized

and non-synchronized all-to-all exchange of [4] due to signif-
icant changes in the DAQ application since this publication,
potentially leading to new results.

We evaluate the scalability of the current network design by
measuring the global event building throughput when enabling
an increasing number of servers in Figure 6. To increase the
number of servers, racks of servers are consecutively added to
the system. Each rack contains one leaf switch and 16 to 20
servers.

In our evaluation, synchronization proves to be more advan-
tageous, as the system grows in size, the difference increases.
When the DAQ system is used at full capacity, we observe a
throughput gain of about 15 Tbps over the non-synchronized
all-to-all. By contrast, in the prior test, the throughput gain
was approximately 5 Tbps at full capacity of the Event Builder
network with 326 servers.

Fig. 6: Scalability of the synchronized and non-synchronized all-to-all appli-
cations. The error bars represent the minimum, mean and maximum values.

The difference in performance between synchronized and
non-synchronized all-to-all arises from the assurance provided
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by synchronization that the scheduling of communications
during each phase is always respected. With synchronization,
every server waits until all others have transmitted and re-
ceived their data before proceeding to the next communication.
This approach effectively prevents network congestion, as
proper scheduling and sufficient bandwidth ensures that there
will be no congestion on the network links, thus improving
throughput. Conversely, in the non-synchronized all-to-all,
there is no scheduling as the exchange is not synchronized,
which creates network congestion and reduces the achieved
throughput. Therefore, the synchronized all-to-all provides bet-
ter performance, particularly in systems used at full capacity.
Although there is cost in synchronization time, this cost can
be offset by the performance gained by avoiding congestion
on the network.

B. Throughput achieved by the synchronized and non-
synchronized all-to-all in case of failures

The synchronized approach performs better than the non-
synchronized approach without failures and when the system
is used at full capacity. In this section, we evaluate the
performance of these two approaches in the event of failures,
considering that link failure events are common, as demon-
strated in Section III.
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Fig. 7: Synchronized and non-synchronized all-to-all exchange throughput per
server as a function of the number of failures. Failure scenarios are randomly
generated 10 times for each number of failures. The number of simultaneous
failures in the Event Builder network is 1, 3 or 5. The boxplots represent
the minimum, 25th percentile, median, 75th percentile, and maximum values.
Outliers are also depicted.

The throughput of the synchronized exchange can sig-
nificantly decrease in the event of failures. Figure 7 shows
the results of the evaluation of the synchronized and non-
synchronized approaches in the event of failures. The failure
scenarios have been replicated 10 times for each number
of simultaneous failures and randomly generated. In total,
there are 30 experiments. In particular, we demonstrate that
throughput can significantly decrease in the event of failures,
from a median of 142.71 without failures to 89.6 for the
synchronized exchange, even with just one failure across the
entire network of 360 optical links. The variations in results
for synchronized and non-synchronized exchanges are due to

some links carrying more flows than others. When they are
down, more traffic is impacted by their failure. For instance,
the minimum achieved throughput per server for a single
failure with synchronized exchange is 82 Gbps, while the
maximum value is 120 Gbps. For the 82 Gbps result, the
disabled port of one switch served as the output port for 26
destinations, whereas for the 120 Gbps result, the disabled
port on another switch was utilized as the output port for 9
destinations. Consequently, disabling the port used to reach 26
destinations, which support more communication flows, had a
much greater impact on traffic compared to the port used for
9 destinations, resulting in a decreased throughput in case of
failures.

Synchronized exchange shows lower performance than
non-synchronized exchange in the event of failure. In the
synchronized all-to-all, the cost of synchronization can be
offset by the performance gained from avoiding congestion
on the network. However, this method lacks adaptability in
the event of network link failures because its performance is
dependent on avoiding congestion. When congestion becomes
unavoidable due to link failures, performance suffers accord-
ingly. Contrarily, the non-synchronized approach shows better
adaptability in case of failures. The lack of synchronization
points allows it to make efficient use of the remaining network
capacity.

C. Design recommendation

In our measurements, we demonstrated that the non-
synchronized version of the all-to-all exchange performs better
than the synchronized version in the event of failures. As
discussed in Section III, some failures can be long-lived
failures due to flapping links. For instance, during two months
of measurements, a single optical link failed 861 times,
resulting in a total downtime of approximately 6.105 seconds,
which represents approximately seven days and one hour. In
Section V-B, we show that the median throughput of the
synchronized exchange for a single failure is 89.6 Gbps per
server, whereas the non-synchronized application achieves a
median throughput of 95.2 Gbps per server. Consequently,
the total application throughput during a failure is 29.2 Tbps
for the synchronized application compared to 31 Tbps for
the non-synchronized application. We obtain these numbers
by multiplying the median throughput for a server by the
total number of servers, which is 326. This means that every
time one link fails, the synchronized exchange loses 1.8 Tbps
compared to the non-synchronized exchange, which represents
a total loss of approximately 1.106 Tb over the months of
March and April, given the link’s total downtime of 6.105

seconds. Therefore, removing synchronization in the event of
even a single link failure could prevent the loss of hundreds of
thousands of Tb of valuable data for particle physics research.

VI. RELATED WORK

Our evaluation was conducted on a real DAQ network that
is actively in use, giving our findings practical relevance. In
a related paper [5], the authors investigated failures in a real
large-scale network, presenting the impact of various types of
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link failures. However, while they acknowledged long-lived
failures, they did not specifically explore the impact of flapping
links, connections that repeatedly go unstable.

Pisani et al. [4] highlighted that the all-to-all exchange
without synchronization shows decreased performance in the
absence of link failures and face scalability challenges. Our
study reinforces this observation by introducing novel mea-
surements. Additionally, we also compare the synchronized
and non-synchronized all-to-all, in the event of link failures,
to show that the non-synchronized approach reacts better in
the event of failures.

Finally, [25] delved into how Infiniband routing algorithms
perform in the event of failures. This study presents the
throughput obtained for various Infiniband algorithms for
a simulated fat-tree network and shows that Ftree handles
failures more effectively, resulting in better throughput. In
this paper, we introduce a new factor affecting throughput
during failures: synchronization. We demonstrate that without
synchronization, we can achieve improved performance in
terms of throughput during failures.

VII. CONCLUSION

In this paper, we present statistics about failures collected
over two months. Our results revealed that failures occur
frequently, with 2605 failure events recorded during the data
taking period. Most of these failures were due to flapping links,
which are characterized by fluctuations between operational
and non operational states, leading to extended periods of
downtime. This highlights the existence of long-lived failures
within the network, which cause a significant loss of through-
put. Then, we evaluate two alternative approaches to event
building on the LHCb DAQ system, showing a synchronized
approach that can reach high throughput in normal condi-
tions. However, upon link failures, the synchronized approach
faces significant performance reduction. In these scenarios,
eliminating synchronization is a quick solution to reduce the
performance degradation.
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