IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024

The Ethernet readout of the DUNE DAQ system

Roland Sipos for the DUNE Collaboration

Abstract—In 2023 the Deep Underground Neutrino Experiment
(DUNE) Data Acquisition (DAQ) system transitioned to a new
Ethernet based readout. This required an extension to the mod-
ular readout subsystem: in particular a new I/O device library
was implemented, interfacing with the detector electronics; a
firmware block was provided by the DAQ team to the electronics
experts for the implementation of the data formatting and
transmission; the Trigger Primitive Generation (TPG) software
in the readout system was adapted to the modified data format.
The I/0 device library for controlling, configuring and operatinng
the Network Interface Controllers (NICs) is built upon the Data
Plane Development Kit (DPDK), supporting routing capabilities
based on configurable rules. This feature allows the readout to
split the data arriving on each 100 Gb/s link into individual
data streams (each with a throughput of ~2 Gb/s), that are
passed down to their corresponding processing pipelines for
trigger primitive generation and buffering. Extensive monitoring
capabilities are also provided by the library, which monitors
errors related to data consistency and integrity, and also aids
the performance optimization work of the software stack.

In this contribution we describe the new high-throughput Ether-
net based readout integrated into the DUNE DAQ system, and the
first performance results obtained at the ProtoDUNE hardware
apparatus at the Neutrino Platform at CERN.

Index Terms—Data Acquisition, DPDK, Ethernet, HPC

I. INTRODUCTION

HE Deep Underground Neutrino Experiment (DUNE)[1]]

represents a significant endeavor in particle physics,
aiming to unravel the mysteries of neutrinos and their role
in the universe’s evolution. Central to the experiment is its
Data AcQuisition (DAQ)[2] system, designed to capture and
process vast amounts of data generated by the experiment’s
detectors. In a pivotal move towards the use of COTS hardware
and standard communication protocols, which reduces the
construction effort and cost and increases maintainability, the
DUNE DAQ has transitioned to a fully Ethernet-based readout
system.

This change was endorsed at the Final Design Review[3]] in
2023, acknowledging that the overall system design could
accommodate this modification without substantial impact on
the rest of the DAQ system. Even at the level of the readout
sub-system most of the design[4] could be preserved, with
the exception of the data reception block. Instead of custom
message exchange and aggregator I/O devices, the UDP/IP
protocol over Ethernet was introduced, thus allowing the use
fully commercial off-the shelf (COTS) hardware solutions
and of third party, open-source, software components. The

Paper submitted for review on X April 2024.
Roland Sipos is with CERN, Geneva, Switzerland.

data flow diagram with the readout system’s components and
functionalities is shown in Figure

nt-end : Data processing domain : Buffering and
domain : : storage domain

Data requestiresponse
domain

Data Pre-processing
ception [“Ray pipeline

Data lookup

1

: Data recording
t
Write data (persistancy)

Figure 1: Data flow diagram of the readout subsystem, high-
lighting the different domains and sub-components. This con-
tribution focuses on the data processing domain that receives
data from the front-end electronics based on the Ethernet
protocol. The implementation of the buffering and data request
response domain can be maintained without sizeable modific-
ations, simply by introducing a modified data format.

;‘ Implement Ethernet readout variant |: e ltiata o

In addition to data reception the readout is processing all
incoming data to carry out hit-finding and generate trigger
primitives, is buffering data in DRAM while the trigger takes
its decision, and upon command persists up to 100 seconds of
all raw data in high-performance NVMe drives.

II. FRONT-END DOMAIN

The detector electronics transmits data over 10 Gbps links.
Those are aggregated into 100 Gbps links via network switches
and are fed to the readout unit servers. The overall aggregated
data throughput for each of the 4 DUNE Far Detector modules
is ~15 Tbps. There are different detector types with variable
throughput. In this contribution results refer to the TPC elec-
tronics of the Horizontal Drift and Vertical Drift Far Detector
modules.

The DAQ team provides a firmware block developed at Ruther-
ford Appleton Laboratory (RAL) Technical Division[3] that
may be integrated into the front-end electronics FPGA boards.
This transmitter block is responsible for sending Ethernet
frames following the User Datagram Protocol (UDP) where
the carried payloads are the front-end electronics data frames.
It follows the architecture shown in Figure?]

Every data frame carries also a unified and versioned DAQ
header that contains geographic and physical location inform-
ation about the source of the data stream. It also contains
the timestamp from the timing system of the detector, and a
sequence identifier for data integrity and continuity checks.
Following the header, the frame itself contains data from
64 channels’ 64 time slices, resulting in 7200 Bytes long
payloads. With the extra protocol headers 7243 Bytes long

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024

—_ — = — = —_— — —

| Tx Path

4—,—»{ SFP_0

vdaitiaé —l—» Mux fote upP
last |

| 1EER

| |

| e

data, Axids XGMII |

valid & Mux upP {

last

PCS/PMA

MGT_0

IPbus

PCS/PMA

MGT_1 |4—'—>{ SFP_1 ‘
|] |

N LSS

Figure 2: Architecture of the transmitter block provided for the
front-end electronics. The PCS/PMA area contains modified
Xilinx IP[6] components, and the Tx Path is a custom firmware
block developed by engineers at RAL Technical Division. The
overall block is responsible for equipping the detector data
frames with IPv4 and UDP headers following the communic-
ation protocol.

JUMBO UDP frames are transmitted over a switched network
to the readout units.

Table describes the characteristics and the numbers of the
data streams from these detector components.

Single detector components
for charge readout
Anode Plane Assembly

(APA)

Payload size
and arrival rate

Total throughput

Links and
(incl. IPv4 and UDP headers)

Data Streams

10 links, 4 streams each
Total: 40 streams

7200 Bytes @ 30.5 kHz
x 40 streams

~82.5 Gbit/s ‘

Charge Readout Plane
(CRP) 12 links, 4 streams each

Total: 48 streams

7200 Bytes @ 30.5 kHz
X 48 streams

~98.9 Gbit/s ‘

III. DATA PLANE DEVELOPMENT KIT (DPDK)

During the initial integration of the firmware block (called
Hermes), packet reception and processing tests were carried
out with simple applications using posix sockets. Nevertheless,
when scaling up the number of data streams, data losses
were observed due to performance bottlenecks in the receiving
software. Therefore, an alternative and more efficient data
reception software was developed. The new software stack for
the I/O device control, configuration, monitoring and readout
of the NICs in the readout units is built upon the Data
Plane Development Kit (DPDK)[7]. It enables more efficient
packet processing than the standard interrupt processing that
is available in the kernel.

A key element of DPDK is the Poll Mode Drivers (PMDs)[8]],
that consist of Application Programming Interfaces (APIs)
through device drivers running in user space, allowing to
configure the devices and their hardware queues. In addition
the PMDs have direct access to RX and TX descriptors without
any interrupts and extra copies in the kernel space. The run-
to-completion model was chosen for our workflow: a specific
interface’s RX descriptor ring is polled for a burst of packets,
which are copied to the user application space for further
processing.

Many modern hardware architectures (including x86) now
provide Direct Memory Access (DMA) and interrupt remap-

ping facilities in order to ensure I/O devices are isolated within
their allocated resource boundaries. The Virtual Function I/O
(VFIO) driver is an Input—Output Memory Management Unit
(IOMMU) and device agnostic framework for exposing direct
access to devices in the userspace. The IOMMU protected
environment allows running a safe, non-privileged, userspace
driver that can be used in virtualized DAQ environments. The
vfio-pci|9]] poll-mode capable, fully DPDK compatible driver
to interface the DAQ software applications was chosen. The
readout units’ system configuration is IOMMU enabled, auto-
mated to allocate huge-pages of memory on NUMA locations
where the NICs are connected, such that the interfaces can be
bound with the PMD driver.

DPDK has a wide set of core libraries and features, in-
cluding lock-less multi-producer multi-consumer queues, and
the capability of executing callback functions asynchronously
on assigned packet processing cores. As the generic readout
system has the buffering and data processing functionalities
already implemented and specialized for the different front-
ends, only a bare minimum set of libraries from DPDK
is used, for moving data from the NIC DMA buffers to
DAQ userspace applications and streaming them to specific
data handler modules. This minimal set of libraries are the
following:

o Environment Abstraction Layer (EAL) - Provides the
main entry point for configuring and controlling the
interfaces. It is responsible for gaining access to low-
level NIC resources such as receiver (RX) and transmitter
(TX) queues and descriptors. It also provides access
for resources on the system like allowed CPU cores
for packet processing and Non-Uniform Memory Access
(NUMA) aware DMA buffers. Based on the provided
configuration parameters its main initialization routine
allocates these resources and capable of launching the
application specific processing threads.

o Mbuf library - This library provides the ability to allocate
and free memory buffers (mbufs) that may be used by
the application to store network packets. The underlying
header structures are kept as small as possible and cur-
rently use just two cache lines, with the most frequently
used fields being on either of these. The packet buffer
was designed to embed metadata within a single memory
buffer followed by a fixed size area for the packet data.

e Mempool library - This library implements a memory
pool that is an allocator of a fixed-sized object. It is
identified by name and uses a handler to store and free
objects. The implementation also offers optional features
such as per-core object caching and alignment helpers for
efficient padding to spread them equally on all DRAM
channels.

o Flow API - It provides generic means to configure the
interfaces to match specific traffic and alter its route
according to any number of user-defined rules. Matching
can be performed on packet data and properties. We use
this feature in order to divert packets to specific RX
queues based on the source fields in the IPv4 headers,

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024

essentially load-balancing the traffic on available hard-
ware RX rings and descriptors.

o Xstats API - This API allows the poll-mode driver to
expose all statistics that are available to it, including
statistics that are unique to the device. As calculating stat-
istics of millions of data packets’ integrity and validity in
software would result in substantial processing overhead,
we use this API as an interface to the DAQ’s operational
monitoring infrastructure.

A dpdklibs repository was developed within the DUNE-DAQ
software project that includes C++ wrappers, helper functions,
and classes to interface test applications and DAQ modules
with the features and APIs described above. The currently
used DPDK version is 22.11 that matches the one provided by
the used operating system (Alma Linux 9) application stream
repository.

IV. SOFTWARE IMPLEMENTATION

Several simple applications were implemented to exercise the
different APIs and test the individual features necessary in
the DAQ. The DPDK based receiver implementation consists
of a new dynamically loadable module implemented within
the DUNE DAQ Application Framework. The module imple-
ments the standard DAQ module interfaces for configuring,
controlling, and monitoring the underlying resources, in this
case the network interfaces. The main purpose of this DAQ
module is to process the aggregated stream of UDP frames
and demultiplex the payloads to their destination modules
for further processing and buffering in the generic readout
modules. The data flow diagram and different components are
shown in Figure [3] The main functional steps are described in
the following subsections.

num seq_id err
num (s err

min seq_id jump
max seq_id jump

NUMA Aware
element size: 7200B
queue 5i/1: 100000

"rx ring size": 4096

DMA

over -
NIC Reader Module

occupancy

PCle

I ring ‘mbufs

descriptors

[rxring T} {] mbufs |

x10..12 x10..12

{ [spsc queue[] Data Stream Handler Module

[rxring [}] mbuis

num-packets
num_bytes
x_burst_size

dropped

rx_burst: 2048 Optional: insert via callback
packets

num_mbuf: 16384 instead of temporary buffer

missed errors
mbuf_cache: 0

max_burst
dropped_packets

Figure 3: Overview of the DAQ modules within a readout
application, with the buffering and processing components.
The used configuration parameters (arrows) of these elements
are also highlighted with the operational monitoring metrics
(dotted lines). Data can be exchanged across DAQ Modules
either via queues (as shown in the upper right part ot the
diagram) or via a callback mechanism (as shown in the bottom
right).

A. Initialization

The overall connection topology between the front-end and
the readout modules are established through a detector readout

map. This map describes the multiplexing topology between
the NIC Reader module and a number of Data Stream Handler
modules. The application framework supports intra-process
message passing of the data between modules within the same
application process via the /OManager component. It cre-
ates communication channels with buffering queues between
sender and receiver modules. To eliminate this extra buffering
and copy stage, the readout libraries introduced an optional
path for data exchange using a static data move callback
registry. Using this registry, the stream handler modules can
advertise a payload move function during their initialization.
This function can be invoked from other modules within the
same application with the right connection identifier inferred
from the readout map.

B. Configuration

A single NIC Reader module is capable to handle multiple
interfaces, and it is configured with a set of Interface Wrapper
configurations. Through EAL selected interfaces are initialized
and configured with the provided parameters for the wrapper.
The necessary steps to ensure that the interface is configured
properly are the following:

1) A hardware resource map is established based on the
initialized topology to identify the total number of
expected IP sources and their corresponding destination
streams.

2) Pools of memory buffers are allocated with the total
number of expected RX/TX queues for the interface.

3) The requested interface is acquired based on the con-
figured PCle and MAC addresses, followed by a check
for its availability to ensure that it is not occupied by
other processes.

4) A reset is carried out on the interface to bring it to an
initial and stopped state without any TX and RX queues
setup.

5) Upon request the interface is configured with multi-
queue Receive-Side Scaling (RSS) and corresponding
offloading.

6) The interface configuration is issued with requesting a
number of RX and TX queues. The total number of RX
queues are the expected number of IP sources. A single
TX queue is requested to provide a transmission chan-
nel for gratuitous Address Resolution Protocol (ARP)
messages.

7) Each requested queue gets configured by binding the
previously allocated memory pools for them.

8) Flow Steering and extended statistics are configured.

The Flow Steering configuration consists of pattern matching
rules based on the source IP addresses in the [Pv4 headers. The
rules are defined to route every frame with the same source IP
to a dedicated RX ring, resulting in load balancing of available
NIC hardware resources. With a successful configuration of
the interface, packet processing functions can be launched to
do work using the configured RX and TX queues. Also in the
configuration a CPU identifier set defines which virtual cores

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024

will spawn the processing threads. The enabled RX queues
are assigned to a CPU set in a round-robin fashion, resulting
in each requested CPU responsible for processing a number
of assigned RX queues. In the final step of the configuration,
communication channels are established towards the destina-
tion modules either via IOManager or acquiring the callbacks
of the downstream modules using the data move registry.

C. Packet processing

Worker threads are spawned on each CPU from the set
defined in the configuration. They are polling the assigned
descriptors for acquiring a burst of network packets, which
are reinterpreted and copied out from the DMA buffers. This
is where the main polling of the RX rings is implemented and
opportunistic sleep is also added for being able to control the
polling frequency in relation to the configured maximum burst
size and RX queue depths. A burst call to an RX descriptor
through the PMD driver retrieves a maximum number of input
packets from a single RX queue of an interface. These packets
are stored in the mbufs allocated in the memory pools of the
RX queues. As the processing cores are handling multiple RX
queues the function has a nested loop over assigned queue
burst calls and the processing of received packets one by one.

The pseudo-code of the processing function is seen on Al-
gorithm [1}

Algorithm 1 Packet processor function

iface < confI faceld
coreid < confCpuCore
mbsize < confMaxBurstSize
queues < rxzCoreMap|coreid]
mbufs > Assigned buffers available in scope
while !stopSignal.load() do
for q : queues do > Loop and RX burst queues
gMbuf* < mbufs[q.Id]
nbRx < raBurst(iface, q.Id, gMbuf, mbize)
if nbRx! = 0 then
for buf : ¢gMbuf do > Loop on burst results
if isValidFrame(buf) then
payload < getUdpPayload(buf)
handlePayload(payload)
end if
end for
end if
reFreeBulk(¢Mbuf,nbRx)
end for
if noFullBurst then
nanosleep(con fSleepU s)
end if
end while

> Configured parameters

> Free processed

> Opportunistic sleep

In the pseudo-code the rxBurst function initiates the DMA
transfer between the NIC and the target memory buffers
provided in the parameters list. The isValidFrame represents
a short sequence of data frame integrity checks for expected
packet sizes and protocol headers (e.g.: packet is a UDP frame

with correct size). The getUdpPayload function returns the
memory location of the actual user payload in the Ethernet
frame without the IPv4 and UDP headers. The handePayload
function is where the interpretation of the data happens, and
the uniform DAQ header is inspected. Based on the found
stream identifier, the pointer to the buffer is routed to a
function that carries out the copy into a target readout typed
structure. The last step is sending the readout object to its
destination stream handler DAQ module, either using the
application framework or invoking the callback on the module.
The rxFreeBulk function is releasing the processed packet
buffers for reuse. The opportunistic sleep feature monitors the
frequency of full burst occurrences and allows a fine-grain
control on CPU core polling and therefore its utilization.

D. Other notable functionalities

If the processing of packets are taking too long, data might be
overwritten in the hardware rings. In the DPDK nomenclature
this is referred to as missed packets, and extended statistics on
possible errors and back-pressure are periodically polled out
from the NIC in a dedicated thread, and sent to the operational
monitoring infrastructure through the appropriate DAQ module
interfaces.

The other notable functionality is the gratuitous ARP sender
thread. The NIC reader modules periodically send ARP mes-
sages per configured interface in order to keep the ARP table
updated in the network switches.

E. Trigger Primitive Generation

In the DUNE far detectors all data are processed online, for
selection of the interesting events to be stored long-term.
The readout sub-system is carrying out the first stage of the
processing, by analysing the wave-forms of each individual
electronics channel and identifying activity not compatible
with electronic noise: this is the so called Trigger Primitive
Generation (TPG)[[10], since the information about each activ-
ity is formatted into a Trigger Primitive data structure which is
forwarded to the software based data selection sub-system. The
TPG is highly-parallelized and relies on Single Instructions
Multiple Data (SiMD) principles using the Advanced Vector
Extensions (AVX) to the x86 instruction set. These algorithms
are executed in the post-processing component (see Figure (1)
that is processing the frames in the latency buffers. It is the
most computing intensive and data locality sensitive part of
the readout system. The TPG implementation was adapted to
the new Ethernet based data format and fully integrated within
the system.

V. PERFORMANCE EVALUATION AND OPTIMIZATION

This section describes the performance evaluation and optimiz-
ation that were carried out on the individual components of the
readout first and on the overall integrated system afterwards.

A. Key Performance Indicators (KPIs)

The overall readout system comes with specialized require-
ments for the readout units’ hardware specification due to its

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024

high-throughput needs. It combines several processing and I/O
intensive components. Table [l summarizes these elements and
highlights criteria for the target servers to be capable to support
the readout components requirements.

Table I: Overview of readout components’ hardware resources
with their utilization sensitivity

Devices and Persistent
Component . CPU Memory
interconnects storage
. NICs and .. .
Data reception PCle lanes sensitive sensitive
Memory and . . .
Latency Buffer . marginal | sensitive marginal
its channels
. CPU and . .
Data processing . sensitive sensitive
cache lines
Supernova Burst Persistent
marginal sensitive sensitive
Data Store storage

Readout applications consist of several hardware elements and
software workloads running in parallel, that are both memory
and CPU intensive. The KPI for a single readout unit is the
achievable maximum total throughput handled without errors.
This translates to the number of 100 Gbps input aggregated
data streams handled with all necessary readout components
operating in parallel. The underground facility where the
readout servers will be located has a strict power budget, hence
over-dimensioning the server specifications is not a feasible
solution. Along the scaling-up KPI we also aim to identify the
bare minimum resource requirements of the functionalities.

B. Integration readout unit specification

We integrated and tested the readout data reception block on a
pair of x86 architecture based mid-range performance servers
including Intel and AMD processors. The configurations of
these servers are shown in Tables [l and

Table II: Specifications of the Intel integration server

Intel® Xeon® Gold 6346 @ 3.10 GHz (3.60 GHz turbo),
16-core 2S (dual socket) Code name: Ice Lake

CPU 1.5MiB L1d, 1 MiB L1i
40MiB L2
72MiB L3
DRAM DDR4 512 GB, 3200 MT/s
NIC Intel E810-CQDA2
OS, DPDK Alma Linux 9.3, Linux kernel 5.4, DPDK 22.11

Table III: Specifications of the AMD integration server

AMD® EPYC® 7313 @ 3.00 GHz (3.70 GHz turbo),
16-core 2S (dual socket) Code name: Zen3 Milan

CPU 1MiB L1d, 1 MiB L1i
16 MiB L2
256 MiB L3
DRAM DDR4 512 GB, 3200 MT/s
NIC Intel E810-CQDA2
OS, DPDK Alma Linux 9.3, Linux kernel 5.4, DPDK 22.11

For the tests and results presented a baseline resource alloc-
ation strategy is used, where a single CPU socket and its
interconnects handle all the readout requirements for a single

100 Gbps input data stream. This is also called a symmetric
topology. Asymmetric topology is referred to when different
sockets are responsible for certain functionalities: a single
socket for data reception and buffering, another socket for data
processing and the continuous persistence of data on high-
speed storage. Certain architectures (e.g.: AMD Zen3) are
latency optimized for dedicated I/O performance of devices
on a single PCle root complex, for which the asymmetric
topology is expected to be a more efficient configuration.
The baseline topology suits other CPU architectures with
features like Direct Cache Access (DCA)[11] that enables
the NIC to load and store data directly on the processor’s
LLC, as conventional Direct Memory Access (DMA) may
result with latency bottlenecks between the NIC and CPU.
One commercial implementation of DCA is Intel’s Data Direct
I/0[12]], which showed clear and substantial benefits for the
analysed workflow.

C. Hardware locality and tuning

Based on the previous experience with high speed I/O devices
the servers are configured in performance oriented mode. For
BIOS settings recommendations based on the DPDK perform-
ance benchmarks(13] and vendor specific tuning guides are
used. System-wide power and performance profiles are set to
performance mode but deep- and standard sleep states (P/C-
states) are operating system driven instead of BIOS specified
control. Simultaneous multi-threading features (e.g.: Hyper-
threading) are enabled as some readout workloads may benefit
from this feature for CPU pipeline utilization and reduced
context-switching.

In the operating system low-latency networking tuning profiles
for the data request and response low throughput output path
are enabled. Power gated sleep states are disabled, perform-
ance governor and bias is set to lowest latency mode on the
CPU cores executing readout functionalities. Kernel command
line parameters ensure to reduce scheduling-clock interrupts
and Read-Copy-Update (RCU) callbacks on the data reception
sensitive cores. Kernel isolation techniques are also in-place to
eliminate any possible kernel interrupts from critical resources.
Despite the fact that the DAQ is not using a real-time operating
system, acceptable and deterministic latency can be achieved
with careful resource access and allocation policies for the
readout subsystem’s quasi real-time elements.

The high-speed NICs and NVMe drives are connected to ded-
icated PCle root complexes without sharing bus resources with
other devices. These are also mapped to the closest NUMA
node and Last Level Cache (LLC) domains, identifying a set
of CPU cores to be assigned to certain functionalities.

D. Monitoring and profiling tools

Standard Linux observability tools are used to gather high-
level overview on resource utilization of certain components.
On top of these also in-depth processor (e.g.: instructions per
second, cache misses), and memory (e.g.: channel utilization)
counters are collected with vendor specific monitoring tools

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024

like the Intel Performance Counter Monitor (PCM)[[14]. These
are interfaced with the DAQ’s operational monitoring infra-
structure and host-specific metrics are stored, can be visualized
on monitoring dashboards, and can be extracted to produce
performance reports. The data reception module also publishes
the NIC hardware counters provided by the DPDK extended
statistics API. Application hot-spots and micro-architecture
pipeline utilization are profiled with the Intel VTune|/15] and
AMD uProf[/16] tools to carry out analysis, finding problematic
parts in the code, and to devise mitigation strategies.

E. Application optimizations

EAL’s runtime environment has strict requirements on hard-
ware locality and requested resources on the system. Memory
huge pages are allocated on the used NIC’s NUMA node
and the closest CPU cores to process the DMA buffers are
assigned. The latency buffer implementation supports multiple
memory allocation policies and for fixed size and rate payloads
we use the numact! library provided NUMA aware cache
aligned allocator. This makes it possible to have control
on buffer placement on desired nodes and take advantage
of sub-NUMA clustering on L3 domain features of certain
server configurations. Every readout process has command
line arguments with their name and its data reception and the
processing pipelines threads have unique identifiers assigned.
After launching the readout process the parent and internal
threads are visible for a custom interrupt balance modifier that
modifies the CPU affinity of each PID based on pinning con-
figuration. This approach makes runtime tuning and relocation
of threads and also possibility to introduce kernel controlled
resource mapping via Control Groups (CGroups)[17].

Using callbacks for data exchange between DAQ modules,
the payloads are directly written into the latency buffers.
Based on results from standalone test applications the observed
improvement is substantial in terms of reduced memory copies
and CPU processing compared to the use of intermediate
buffering. The callback feature excludes the receiver threads
that come with CPU cycles spent in polling the buffers
and copying every frame one more time. This leads to non
negligible freed up resources as seen on Figure |4| This feature
became the default communication model between the data
receiver and handler modules and made it possible to use
servers with limited resources for detector readout.

Receiver threads

Move callbacks

Figure 4: CPU utilization difference between using intermedi-
ate buffering and the data move callback functionality. On this
dual socket Intel® Xeon® Gold 5118 (Skylake) using callback
mode freed up 12 virtual cores, each at ~60% utilization.

F. NIC configuration optimizations

Purely using system tuning and adding the callback feature
still resulted with packets occasionally being missed and
dropped. During the investigation of the underlying issue
the parameters for NIC’s hardware resources and the DMA
processor function’s configuration were modified. Monitoring
metrics of the data receiver module indicated that the interface
polling function’s (Section rxBurst method results with
the maximum configured number of packets at high frequency.
Due to our traffic characteristics the main goal is to poll as
many packets as we can in one burst, but without saturating
the used resources. We optimized the following configuration
parameters:

o RX burst size - We increased the maximum number of
packets and descriptors to poll for DMA from a previ-
ously set couple hundred to a couple thousand.

¢ Opportunistic sleep - We decreased the sleep duration to
10 microseconds that increases the polling frequency with
the trade-off of higher CPU utilization in case of rare
occurrences of empty bursts.

o« DMA buffer - Increased the number of DPDK buffer
segments (mbuf) to be allocated that essentially made the
DMA buffer depth deeper.

e RX descriptors - The number of used hardware
descriptors was changed to available hardware limits.

By tuning our processing stack to fix its overall behavior
through the global loop policy, the optimized configuration
increases the number of used hardware descriptors, allocates
more DMA buffer segments, and raises the burst’s maximum
size. As seen on Figurdd] the burst calls are more efficient with
the new configuration.

RX Bursts Max Size

RX Bursts

Optimized

Figure 5: With the optimized NIC hardware and packet pro-
cessing loop configuration the occurrences of receive bursts
resulting with maximum packet counts are drastically reduced.
The plots show the number of packets in each burst call from
a single interface’s 40 RX queues.

VI. RESULTS

The combination of hardware configuration and optimizations
described in the previous section allowed for the elimination

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024

of the occurrences of missed and dropped packets. Figurd6]
shows the acumulated errors statistics for few hours of running
of the ProtoDUNE (4 APAs) detector at CERN. In this section
the resources utilization of the readout systems components is
described, using different types of readout servers.

put Errors

Figure 6: A few hours of a data taking run without errors,
consisting 4 APAs of the ProtoDUNE detector at CERN read
out by 4 readout unit. The shown metric is an aggregated
counter of different error conditions, which also contains the
number of dropped and missed packets that may occur due to
packet processing performance issues.

A. Integration results

For handling 100 Gb input with a single application, its
processing threads and buffers are assigned to certain CPU
groups and NUMA nodes. During the integration of these
components the utilization of certain system resources was
measured and their assignments fine-tuned for each server.
1) Data reception resources: The data reception has ~10
GB/s memory throughput with 2-4 physical cores needed to
process the DMA buffers. CPU utilization varies based on the
number of cores, frequency, and LLC size. The DMA buffer
size in memory huge-pages is 10 GB.

2) TPG resources: The most CPU intensive component’s
resource utilization heavily depends on the used algorithm and
produced TP rate. The assigned CPU core count varies based
on the CPU model due to the available AVX engines, clock
frequency, and cache line sizes. Using 10 cores (5 physical and
their hyper-core pairs) of the integration servers, the utilization
per core is ~60%, running the simpler algorithm.

3) SNB recording resources: The recording threads are as-
signed to 4 cores, each at 100% utilization when the recording
is active. It requires only 10 GB/s memory bandwidth, which
is achieved using direct I/O from the latency buffers into the
NVMe drives.

B. Scale-up demonstration

As a subsequent step, the network I/O capacity on a readout
server was doubled, with the aim of running two readout
applications, one per socket, each handling one CRP detector
component. Table [[V| shows the characteristics of the readout
server.

The number of components and their threads with the CPU
mask and resource utilization footprint is summarized in

TabldV]

Table IV: Characteristics of the scale-up demonstrator server

Intel® Xeon® Gold 6448H @ 2.40 GHz (4.10 GHz turbo),
32-core 2S (dual socket) Code name: Sapphire Rapid

CPU 3MiB L1d, 2MiB L1i
128 MiB L2
120MiB L3
DRAM DDR5 1.0 TB, 4800 MT/s
NIC 2 x Intel E810-CQDA2 (1 per socket)
Drives 6 x 7.68 TB U.3 NVMe drives
Samsung 980 Pro (3 per socket)
OS, DPDK Alma Linux 9.3, Linux kernel 5.4, DPDK 22.11

Table V: Overview of the number of threads of each com-
ponents and the assigned CPU cores to be used to handle 2
CRP detector elements. CPU cores are assigned with their
corresponding Hyper-thread (HT) core included. The last
column indicates the maximum CPU utilization percentage
of the assigned CPU cores during the test. The latency
buffers’ capacity is configured to pre-allocate memory for ~10
seconds’ worth of data, which is ~196 GB in total.

Component Number of CPU' cores Maxifn'um. CPU core
threads assigned utilization (%)
(P;’:;:; ;f’::f:s‘;’:rs) 8 4 phys. and 4 HT ~48.2
Da‘“(%;’ée)“i“g 9% 10 phys. and 10 HT ~5538
S“f’l‘;?c‘g::ifg‘;“t 96 8 phys. and 8 HT ~52.6

The system wide resources utilization of CPU and memory
bandwidth are shown in Figurd7] It shows how the symmet-
ric topology results in an equal balancing between the two
sockets: this is expected since each socket has an identical
workload. On each socket the overall readout workload uses
~19% of CPU resources and ~37 GB/s memory bandwidth.
When the Supernova Burst recording is enabled for over 100
seconds, the CPU utilization peaks at ~32% and the memory
bandwidth utilization increases with the expected 10 GB/s,
resulting with ~47 GB/s.

C. Future work

There are several remaining tests and configurations that are
under evaluation in order to establish the optimal readout sub-
system implementation for the DUNE experiment, considering
many factors such as power efficiency, flexibility, modularity
for fault tolerance, and cost.

1) Scale-up to 400 Gbps: The tests with the demonstrator
server whowed that there is substantial headroom available
in terms of processing capabilities. Therefore, reading out
four detector components with a single readout unit is being
considered. This requires two 200 Gbps capable network
interfaces in order to demonstrate the data reception and
trigger primitive generation of 400 Gbps input data streams
with a single server.

2) Bare minimum requirements: The readout servers will be
located in a deep underground facility with a strict power
budget, therefore it is important to find the right balance
between available resources and their power requirements.
Power draw measurements are ongoing in order to find the

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2024

Figure 7: Overall resources utilization on the scale-up demon-
strator server’s two CPU sockets. The upper row corresponds
to the first socket and the lower row to the second socket.
The first column shows the CPU utilization of the node and
the second column the memory bandwidth utilization. Data is
received from the two detector components (~200 Gbps) and
buffered for 10 seconds on their corresponding NUMA node.
Trigger Primitive Generation finds the hits in the data frames,
forms and sends aggregated sets downstream. The peaks in the
plots are highlighting the activation of the Supernova Burst
recording, which continuously persists the full data stream to
the NVMe drives.

optimal CPU and memory requirements and the right concen-
tration strategy of how many detector components will be read
out by a single readout unit.

3) Asymmetric topology: The integration with an AMD server
highlighted that scaling up the system for this platform re-
quires allocating readout components differently due to spe-
cific hardware features and constraints. Work is ongoing to
compare the resource utilization behavior of different place-
ment strategies and to decide on the proposed topology.

VII. CONCLUSIONS

The Ethernet readout is successfully integrated into the DUNE
DAQ system and is used in standard operations for the
ProtoDUNE detector prototypes at the Neutrino Platform at
CERN. The full readout feature set and requirements were
validated and demonstrated using multiple generations of CPU
servers.

The introduction of Ethernet as the detector readout techno-
logy allowed to focus the effort on software and tuning of
servers and NICs, instead of custom hardware and protocols
development and testing. Thanks to the overall readout sub-
system optimization it was possible to demonstrate that ~5-
years old servers are capable of successfully implementing the
full readout functionality for one detector unit (100 Gbps) and
that a more recent server can be used to readout two detector
units (200 Gbps).

Scalability studies and further performance evaluation with
different hardware components and topologies are ongoing in
order to finalize the readout units’ technical specification, in
order to launch the DAQ procurement for the first far detector
next year.

(1]
(2]

(3]

(4]

(5]

(6]

(9]

[10]

REFERENCES

Dune homepage. [Online]. Available: [/
dunescience.org.

A. Abed Abud, C. Batchelor, K. Biery et al., “Trigger
and data acquisition (tdaq) system design, DUNE DAQ
Project, Tech. Rep., Jan. 2023. [Online]. Available:
https://edms . cern.ch/document/2812882 (visited on
25/07/2023).

R. Sipos, ‘Dune daq readout final design review,” Tech.
Rep. [Online]. Available: https://edms.cern.ch/ui/file/
2826457/1/DUNE-DAQ-FDR-Readout.pdf.

Design of a request/response buffering application for
i/o intensive workloads. [Online]. Available: https://
iopscience.iop.org/article/10.1088/1742-6596/2438/
1/012025| (visited on 05/05/2024).

Rutherford appleton laboratory. [Online]. Available:
https : // www . ukri . org / who - we - are / stfc / facilities /
rutherford-appleton-laboratory/| (visited on 05/05/2024).
10g/25g high speed ethernet subsystem product guide.
[Online]. Available: https://www.xilinx.com/content/
dam / xilinx / support / documents / ip_documentation /
xxv_ethernet/v4_1/pg210-25g-ethernet.pdf (visited on
05/05/2024).

Dpdk homepage. [Online]. Available: https://dpdk.org!
Pmd driver. [Online]. Available: https://doc.dpdk.
org/guides/prog_guide/poll_mode_drv.html (visited on
05/05/2024).

Vfio driver. [Online]. Available: https://docs.kernel.org/
driver-api/vfio.html.

Hit finding algorithms for the dune experiment using
single instructions multiple data parallel processing.
[Online]. Available: https://indico.tlabs.ac.za/event/
112 / contributions / 2813 / attachments / 1186 / 1610 /
Adam_Abed_Abud_TPG_TIPP_230906.pdf (visited on
05/05/2024).

Understanding i/o direct cache access performance for
end host networking. [Online]. Available: https://dl.acm.
org/doi/10.1145/3508042 (visited on 05/05/2024).
Intel data direct i/o technology. [Online]. Available:
https://www.intel.com/content/ www/us/en/i0/data-
direct-i-o-technology.html (visited on 05/05/2024).
Dpdk performance reports. [Online]. Available: https:
//core.dpdk.org/perf-reports/ (visited on 05/05/2024).
Intel performance counter monitor. [Online]. Available:
https://github.com/intel/pcm (visited on 05/05/2024).
Intel vtune profiler. [Online]. Available: https://www.
intel.com/content/www/us/en/developer/tools/oneapi/
vtune-profiler.html (visited on 05/05/2024).

Amd uprof. [Online]. Available: https://www.amd.com/
de/developer/uprof.html (visited on 05/05/2024).
Redhat - control groups. [Online]. Available: https :
/ / access . redhat . com / documentation / en - us / red
hat_enterprise_linux / 7 / html / resource_management_
guide/chap-introduction_to_control_groups| (visited on
05/05/2024).

https :

https://dunescience.org
https://dunescience.org
https://edms.cern.ch/document/2812882
https://edms.cern.ch/ui/file/2826457/1/DUNE-DAQ-FDR-Readout.pdf
https://edms.cern.ch/ui/file/2826457/1/DUNE-DAQ-FDR-Readout.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012025
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012025
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012025
https://www.ukri.org/who-we-are/stfc/facilities/rutherford-appleton-laboratory/
https://www.ukri.org/who-we-are/stfc/facilities/rutherford-appleton-laboratory/
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/xxv_ethernet/v4_1/pg210-25g-ethernet.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/xxv_ethernet/v4_1/pg210-25g-ethernet.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/xxv_ethernet/v4_1/pg210-25g-ethernet.pdf
https://dpdk.org
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://docs.kernel.org/driver-api/vfio.html
https://docs.kernel.org/driver-api/vfio.html
https://indico.tlabs.ac.za/event/112/contributions/2813/attachments/1186/1610/Adam_Abed_Abud_TPG_TIPP_230906.pdf
https://indico.tlabs.ac.za/event/112/contributions/2813/attachments/1186/1610/Adam_Abed_Abud_TPG_TIPP_230906.pdf
https://indico.tlabs.ac.za/event/112/contributions/2813/attachments/1186/1610/Adam_Abed_Abud_TPG_TIPP_230906.pdf
https://dl.acm.org/doi/10.1145/3508042
https://dl.acm.org/doi/10.1145/3508042
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://core.dpdk.org/perf-reports/
https://core.dpdk.org/perf-reports/
https://github.com/intel/pcm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.amd.com/de/developer/uprof.html
https://www.amd.com/de/developer/uprof.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/resource_management_guide/chap-introduction_to_control_groups
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/resource_management_guide/chap-introduction_to_control_groups
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/resource_management_guide/chap-introduction_to_control_groups
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/resource_management_guide/chap-introduction_to_control_groups

	Introduction
	Front-end domain
	Data Plane Development Kit (DPDK)
	Software implementation
	Initialization
	Configuration
	Packet processing
	Other notable functionalities
	Trigger Primitive Generation

	Performance evaluation and optimization
	Key Performance Indicators (KPIs)
	Integration readout unit specification
	Hardware locality and tuning
	Monitoring and profiling tools
	Application optimizations
	NIC configuration optimizations

	Results
	Integration results
	Data reception resources
	TPG resources
	SNB recording resources

	Scale-up demonstration
	Future work
	Scale-up to 400 Gbps
	Bare minimum requirements
	Asymmetric topology

	Conclusions

