
RESEARCH POSTER PRESENTATION TEMPLATE © 2019

www.PosterPresentations.com

A Fully Reconfigurable Pipelined Architecture for 

FPGA-based Parallel PRBS Test Pattern Generators

Chengyang Zhu, Kezhu Song, Dongwei Zou, Zhuo Chen

State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China

ABSTRACT

DESIGN VERIFICATION

The design is synthesized and tested on an Intel Agilex-7 AGIB027R31B1E1VAA 

FPGA device. The resource utilization is listed below.

Serial links are widely used for data transfer in Data Acquisition (DAQ) Systems

of High Energy Physics (HEP) experiments. Pseudo-Random Binary Sequences

(PRBS) has seen wide application in high-speed serial wireline communication

systems as test patterns for link characterization and testing. A flexible

architecture for FPGA-based PRBS generators is proposed, with a focus on high

throughput and full reconfigurability. In order to meet the demands of increasing

data rates, the proposed architecture employs a parallel datapath with high

scalability. The architecture is designed to be fully parametric and reconfigurable,

which allows dynamic reconfiguration of all parameters of the PRBS generator

on the fly, including polynomial, seed and output width. Reconfiguration of the

parameters is achieved by simply writing to corresponding registers, without the

need to re-synthesize or re-configure the FPGA device. A built-in bootstrap logic

is used to convert parameter register values to internal states that are fed to the

datapath to generate the output bit sequence. The datapath is pipelined to

facilitate optimized timing performance on FPGA devices. The proposed design

can be utilized to characterize serial link performance under a great variety of

different test patterns rather than several selected ones, providing broader

insights. The architecture is implemented in CHISEL and verified on an Intel

Agilex-7 FPGA and a 106.25-Gbps serial link, where results show promising

performance and scalability.

There are three major parts in the proposed architecture: the core, the sequence

generator and the bootstrap unit. The architectural block diagram is shown in

Fig. 4.

➢ The core is composed of a set of registers that maintain the state of the PRBS

and the next-state generation logic to update the registers per cycle.

➢ The sequence generator takes as input the core state registers and generate

the parallel output sequence for each cycle.

➢ The bootstrap unit is used solely for reconfiguration. It is activated after a

reconfiguration request is asserted by the user and serves the purpose of

generating intermediate control signals for the core and the sequence

generator logic. With the bootstrap unit, the user only needs to provide the

desired parameters like polynomial and width and does not need to compute

the transformation matrix themselves. The bootstrap unit is also responsible

for preloading the core pipeline stages before a normal cyclic operation is

ready.

INTRODUCTION

PRBS is widely used as test patterns for serial link testing due to its structural

simplicity and similar statistical characteristics to a truly random sequence. As

shown in Fig. 1, a typical test setup comprises a PRBS generator that generates

the test sequence to transmit, a PRBS checker that checks the received

sequence, and a pair of SerDes transmitter and receiver with passive channel

that make up the serial link.

Fig. 1. Application diagram of PRBS in link error testing.

(b)(a)

Fig. 2. Structural diagram of serial(a) and parallel(b) PRBS generators.

Fig. 4. Block diagram of proposed architecture.

Fig. 5. Structural diagram of a self-synchronizing PRBS checker
Fig. 3. Waveforms of PRBS15 with different polynomials.

The structure of PRBS generators,

as shown in Fig. 2, is also known

as a Linear Feedback Shift

Register (LFSR). The input taps

of the feedback path is

determined by the polynomial of

the corresponding finite field.

Parallelization is necessary to

achieve higher throughput and

meet the requirement of

increasing data rates.

The polynomial is a key

parameter of a PRBS. Different

polynomials yield different

sequences, as shown in Fig. 3,

which might differ drastically in

terms of statistical characteristics

including baseline wander and

clock content.

A common practice when choosing polynomial is to choose the ones with the

least non-zero terms to minimize tap count and reduce resource utilization.

However, there is no guarantee that such polynomials come with the optimal

statistical characteristics. To improve test coverage, it is desirable that the

polynomial can be dynamically reconfigured at run time. Also, it is beneficial to

have reconfigurable parallelism width to accommodate different link rates.

In this contribution, the proposed architecture is designed with the following

considerations:

➢ Fully parametric and reconfigurable. All parameters of the PRBS can be 

modified at run time, including order, width, polynomial and seed.

➢ Pipelined datapath for optimal timing performance.

➢ Scalable parallel design supporting large widths for high-throughput system.

➢ Built-in bootstrap unit eliminates the need for any external pre-compute 

process.

PROPOSED ARCHITECTURE

The key to achieving dynamic reconfigurability is by implementing dynamic XOR

gates, which are essentially wide XOR gates with input masks. Such dynamic

XOR gates are the basic building blocks of both the core and the sequence

generator logic.

In order to address the timing issue that arises with large input widths of gates,

the XOR gates are reorganized into pipelined tree-structure that exploits the

strengths of FPGA logic elements. The structural diagram is shown in Fig. 5.

(a) (b)

Fig. 5. (a) Dynamic XOR gate (b) Efficient pipelined tree-structure for implementing wide XOR gates.

Email: cyzhu@mail.ustc.edu.cn

A self-synchronizing PRBS checker

can be built upon an existing PRBS

generator by adding a error

comparator, a synchronization Finite

State Machine (FSM), and an extra

multiplexed state register update

path, as shown in Fig. 5.

TABLE I. Resource and timing of 

proposed architecture (maxWidth=256)

TABLE II. Resource and timing of 

proposed architecture (maxOrder=32)

The checker is able to recover the seed from received PRBS sequence (possibly

with errors), eliminating the laborious process of manually synchronizing the

PRBS generator at TX side and the PRBS checker at RX side.


