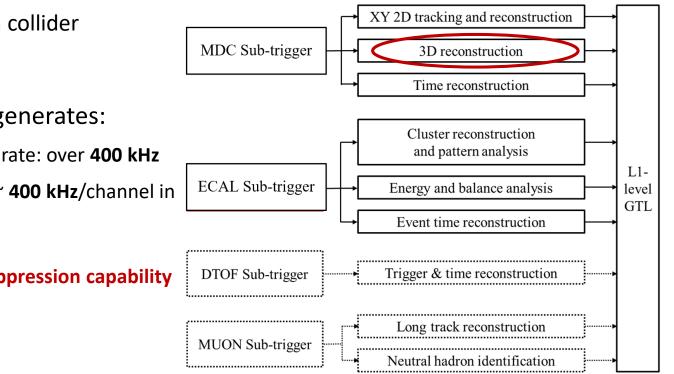


A 3D track reconstruction algorithm for the pre-research of STCF MDC L1 trigger

Super τ-Charm Facility (STCF)
 A new generation of high-luminosity electron-positron collider
 CME: 2-7 GeV
 MDC Sub-tri


 Peak luminosity: >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV

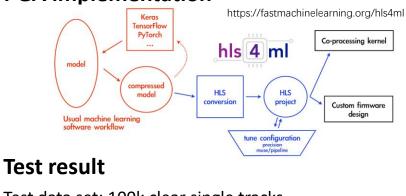
- High physics event rate: over 400 kHz
- High background: ~ 400 kHz/channel in MDC

Good background suppression capability

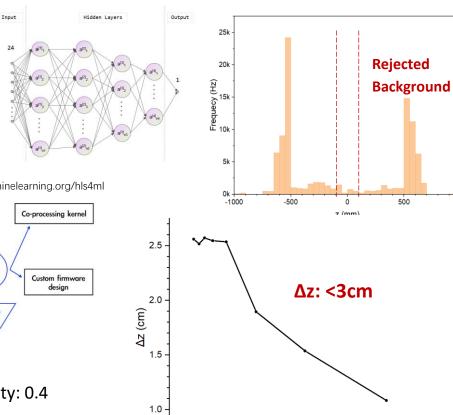
Low latency

Yidi Hao, Changqing Feng^{*}, Wenhao Dong, Zixuan Zhou, Zhujun Fang, Hang Zhou, Shubin Liu State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China

1000


3D track reconstruction algorithm

MLP training


24 input: TS ID & TDC timing of 12 TSs 1 output: z-vertex estimation

Qkeras---train fixed-point models **Pruning**---reduce model's size

FPGA implementation

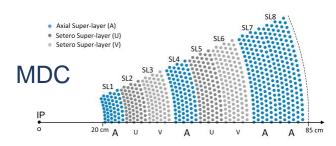
Test data set: 100k clear single tracksMLP structure: 24-48-32-16-8-1CLK: 400MHzFPGA: XCKU060Dead time: 4 clksLatency: 30clks

0.5

0.0

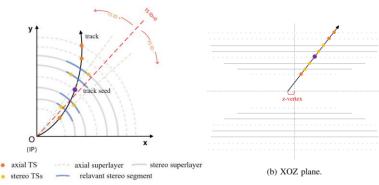
1.0

pt (GeV)


1.5

2.0

2.5


Yidi Hao, Changqing Feng*, Wenhao Dong, Zixuan Zhou, Zhujun Fang, Hang Zhou, Shubin Liu State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China

Preprocessing

Track segment (TS) finding

2D reconstruction (axial layer TSs and p_t) & stereo TSs matching

(a) XOY plane.