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Abstract— This study explores the application of machine 

learning, specifically a one-dimensional Convolutional Neural 

Network (1D-CNN), to discriminate signals from cosmic rays and 

background radiation using only a single plastic scintillation 

detector. A comprehensive dataset, combining signals from cosmic 

ray and gamma events, was collected for this machine learning 

approach. The 1D-CNN model, constructed using the Keras library 

with TensorFlow as the backend, was optimized using the Stochastic 

Gradient Descent (SGD) optimizer and sparse categorical cross-

entropy as the loss function. The proposed model achieved 

promising results, demonstrating its ability to reliably distinguish 

between signals from cosmic-ray and gamma events. 

 
Index Terms— Plastic scintillator, cosmic rays, Pulse Shape 

Discrimination, machine learning (ML), 1D-CNN.   

I. INTRODUCTION 

osmic rays at ground level result from interactions between 

primary cosmic rays from outer space and atmospheric 

molecules, primarily oxygen and nitrogen. The dominant 

cosmic rays at ground level are highly energetic muons, with 

smaller amounts of protons, neutrons, electrons, positrons, 

neutrinos, etc. Together, these constitute approximately 8% of 

the total natural background radiation sources [1]. 

Traditionally, to measure the cosmic ray component within the 

radiation background, coincidence techniques have been 

employed, utilizing a combination of several detectors to 

discriminate the events of interest from the background 

[2][3][4]. In our previous work [5][6][7], we investigated the 

cosmic-ray angular distribution and muon lifetime using 

coincidence techniques with plastic scintillation detectors and 

waveform processing.  

In recent years, machine learning techniques have found 

numerous applications in radiation studies [8][9], 

demonstrating its efficiency in various fields of radiation 

research. In this study, we propose the use of a one-dimensional 

Convolutional Neural Network (1D-CNN) to identify cosmic 

rays amidst background measurements using a single plastic 

scintillation detector. 

II. EXPERIMENTAL SET UP 

A. Plastic scintillation detector 

The plastic scintillation detector, shown in Fig. 1, consisted 

of plastic scintillator plates each 80 cm long, 40 cm wide, and 

3 cm thick, mounted to a 40 cm long light guide and optically 

connected to a Hamamatsu R329-02 photomultiplier tube 

(PMT) [8], operated by a negative high-voltage supply. 

 

 
Fig. 1.  Plastic scintillation detector. 

B.  Experimental Setup for 60Co and Cosmic-Ray 

Measurements 

 

 
 
Fig. 2. Experimental setup. 

(a). Schematic diagram of gamma and cosmic ray measurements. 

Waveforms are recorded by the DRS-4 digitizer. 

(b) A picture of the experimental setup. 

A schematic overview of the experimental setup for gamma 

and cosmic ray measurements is illustrated in Fig. 2a. For 

gamma measurements, a 60Co radioisotope source is positioned 

above the plastic scintillation detector-1. The electronic signal 

from detector-1 is amplified by a fast amplifier and recorded by 

the DRS-4 digitizer [9] in the form of waveforms. For cosmic 

ray measurements, an additional plastic scintillation detector-2 

Preliminary Results of Cosmic-Ray Recognition 

for a Plastic Scintillation Detector Using 

Machine Learning 
Vo Hong Hai, member, IEEE, Nguyen Minh Dang, Nguyen Tri Toan Phuc 

C 

80 cm 

 
40 cm 

PMT Plastic scintillator Light guide 

3 cm 

Light guide 

 

Plastic scintillation det.-1 PMT 

Light guide 

 
PMT Plastic scintillation det.-2 

 

Cosmic ray 

Co60 

DRS-4 Fast Ampl. Fast Ampl. 

Computer 

a 

Plastic scintillation detector-1 

Plastic scintillation detector-2 

Fast amplifier 

DRS-4 board 

Computer 

b 



IEEE TRANSACTIONS ON NUCLEAR SCIENCE 

 

2 

is positioned below detector-1, in parallel. Using coincidence 

techniques with both detectors, waveforms recorded by the 

DRS-4 digitizer capture the cosmic ray component. Fig. 2b is a 

picture of the real experimental setup. 

C. Signal Response and Energy Spectrum 

Waveform for 60Co gamma events Waveforms for comic ray events 

  

  

  

  

  

Note, horizontal scale is in nsec, and vertical scale is in Volt.   

 
Fig. 3. Waveforms recorded by the DRS-4 in the plastic scintillation 

detector-1. 

Left: Waveforms for gamma events (60Co). 

Right: Waveforms for cosmic rays (coincidence technique). 

 

The signal response for gamma and cosmic rays in plastic 

scintillation detector-1 is depicted in Fig. 3. The left panel of 

Fig. 3 shows waveforms recorded from gamma events using a 
60Co source, while the right panel illustrates waveforms 

recorded from cosmic-ray events detected using the 

coincidence technique. These waveforms exhibit distinct 

characteristics that are crucial for the machine learning model 

to discriminate between the two types of events. 

To characterize the deposited energy spectrum, digital charge 

integration (DCI) was applied with a time window of 200 

nanoseconds. This technique integrates the charge collected 

over the specified time window, providing a quantitative 

measure of the energy deposited by each event. Fig. 4 displays 

the DCI spectra for gamma and cosmic rays in detector-1. The 

black curve represents the energy spectrum for gamma events 

from the 60Co source, while the blue curve represents the 

cosmic-ray spectrum. 

A notable feature in the cosmic-ray spectrum within plastic 

scintillator material is the well-recognized muon peak. With a 

3 cm thick plastic scintillator, the muon peak is estimated to be 

at 6 MeV (the energy loss rate for a minimum ionizing particle 

in plastic material is estimated to be about 2 MeV/cm [11]). 

This peak corresponds to the energy deposition by muon, which 

is a primary component of cosmic rays at ground level. The 

presence of this peak is critical as it validates the effectiveness 

of our setup in accurately detecting high-energy muons using a 

single plastic scintillation detector. 

The ability to distinguish between gamma and cosmic-ray 

events is further underscored by the distinct energy 

distributions observed in the DCI spectra. Gamma events, 

which typically involve lower energy depositions, produce a 

broad spectrum at lower energies. In contrast, cosmic-ray 

events, dominated by high-energy muons, exhibit a sharper 

peak at higher energies. 

 
Fig. 4.  DCI spectra of 60Co (black) and cosmic rays (blue) for plastic 

scintillation detector-1. The cosmic-ray spectrum shows a muon peak at 

approximately 6 MeV. 

III. THE MACHINE LEARNING APPROACH 

In this work, for the machine learning method, a one-

dimensional Convolutional Neural Network (1D-CNN) model 

is employed. Each waveform sample serves as a unique input, 

and the model utilizes Rectified Linear Unit (ReLU) activation 

functions in hidden layers. The Softmax activation function in 

the output layer provides the classification accuracy for each 

event. 

Dataset Collection: 

Our training dataset comprises data from cosmic rays 

(obtained via coincidence measurement) and gamma rays (from 

the 60Co source) for detector-1. This dataset includes 78,000 

cosmic-ray events and 78,000 gamma events. Cosmic-ray and 

gamma events are distinctly identified using coincidence 

measurements and 60Co, respectively, as shown in Fig. 4. 

Network Construction: 

The construction of our neural network was facilitated by the 

Keras library with TensorFlow as the backend [5][6]. This 

specific combination allowed for a robust design process, 

ensuring an efficient implementation of the 1D-CNN model. 

Model Compilation: 

Our model was compiled with the Stochastic Gradient 

Descent (SGD) optimizer, sparse categorical cross-entropy as 
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the loss function, and accuracy as the metric. This configuration 

was crucial in optimizing the model's ability to distinguish 

between gamma background and cosmic ray events. The 

training phase incorporated learning rate decay determined by 

the following equation: learning rate = 0.1 × 2(-epoch/60). 

Training Configuration: 

The training phase utilized 80% of the dataset for training 

and 20% for validation. After 1,000 epochs, our model 

demonstrated the ability to distinguish between these events, 

achieving a validation loss of 0.33 and a validation accuracy of 

0.87. 

Configuration Overview: 

Fig. 5 gives a visual representation of our ML configuration 

technique. This illustrates the key components and specific 

design of our 1D-CNN model. 

 
Fig. 5.  Machine learning configuration technique. This figure illustrates the 

key components and design of the 1D-CNN model used in the study.  

IV. RESULTS AND DISCUSSIONS 

 
Fig. 6.  Radiation background measured in detector-1 (black). Cosmic ray 

recognition (blue) in detector-1 using the 1D-CNN model. 

 

A detailed analysis of the radiation background 

measurements for plastic scintillation detector-1 is presented in 

Fig. 6. The 1D-CNN analysis demonstrated its ability to 

accurately identify cosmic-ray muons (represented in blue), 

showing a strong correlation with cosmic-ray measurements 

obtained using the coincidence technique involving two 

detectors. This section will describe the performance metrics 

and comparative analysis with traditional methods. 

The initial radiation background measurement, depicted in 

black in Fig. 6a, provides a baseline for distinguishing cosmic-

ray events. By applying the 1D-CNN model, we could extract 

the cosmic-ray component from this background with a notable 

accuracy of 1.4% in total. This indicates that our model can 

reliably identify and isolate cosmic-ray events even within 

complex and noisy background data. 

The precision of the 1D-CNN model is further demonstrated 

by its ability to recognize the characteristic muon peak, as 

observed in the energy spectrum of cosmic rays, shown in Fig. 

6b. This peak is significant as it validates the model's 

effectiveness in identifying high-energy muons, which are the 

primary constituents of cosmic rays at ground level. The 

presence of this peak confirms the model's accuracy in radiation 

signal classification. 

Furthermore, the validation metrics achieved during the 

training phase, including a validation loss of 0.33 and a 

validation accuracy of 0.87 after 1,000 epochs, highlight the 

efficiency of our model. These results suggest that the 1D-CNN 

can generalize well to new, unseen data, maintaining high 

accuracy in differentiating between gamma and cosmic-ray 

events. 

In comparison to traditional coincidence techniques that 

require multiple detectors to identify cosmic-ray events, our 

approach simplifies the experimental setup by using a single 

plastic scintillation detector. This not only reduces the 

complexity and cost of the setup but also enhances the 

portability and ease of deployment in various research and field 

applications. 

The integration of machine learning, particularly the 1D-

CNN, into cosmic-ray detection represents a significant 

advancement in the field. Traditional methods, while effective, 

often involve intricate hardware configurations and manual data 

analysis. The automation and precision offered by machine 

learning algorithms streamline the detection process, allowing 

for real-time analysis and higher throughput of data processing. 

V. CONCLUSIONS 

This study describes a one-dimensional Convolutional Neural 

Network for differentiating cosmic rays from background 

measurements within a single plastic scintillation detector. 

Results from the 1D-CNN analysis illustrated the successful 

recognition of cosmic-ray muons in the plastic scintillation 

detector, aligning with measurements obtained through the 

coincidence technique using two detectors. Our study 

emphasizes the potential of machine learning techniques in 

enhancing the precision and reliability of radiation 

measurements. 
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