AN ASSESSMENT OF EXTERNAL DOSE FROM NATURAL RADIOACTIVITY IN BUILDING MATERIALS BY USING SIMULATION MONTE CARLO

Poster A – ID 32

Speaker: Tran Thi Bao Ngoc

✤ MATERIALS

Building materials: cement (C1 - C4), brick (B1 - B4), sand (S1 - S5), rock (R)

METHODS Image: A state of the stat

Z contraction of the second se

Figure 1. A room model built by MCNP6 code

Room: $5 \times 4 \times 2.8$ m, wall thickness 20 cm. Water phantom: $1.68 \times 0.4 \times 0.2$ m. MODE P, NPS = 2E10, Tally F6. **Figure 2.** 3D simulation room model in RESRAD-BUILD (use ICRP 38 library) The receptor stands at the center

of the room at a height of 1m. 1

***** CALCULATION

$$D_{tot} (mSv / y) = D_{Ra} + D_{Th} + D_{K} (1)$$

 $D_{x} (Gy/s) = D(MeV/g) \times A (Bq/kg) \times N_{\eta d} \times M_{wall} (kg) \times 1.6 \times 10^{-10} (Gy.g/MeV) (2)$

RESULTS

D: the absorbed dose in water phantom calculated by MCNP6

A: the activity concentration of ²²⁶Ra, ²³²Th, and ⁴⁰K for the variety of building materials.

N_{ηd}: average number of gamma emitted per disintegration, for ⁴⁰K, ²³⁸U and ²³²Th are 0.107, 2.41 and 4.13, respectively.

 \mathbf{M}_{wall} the mass of building material covering the room walls

code and RESRAD-BUILD

2