

End-to-end codesign of Hessian-aware Quantized neural networks for FPGAs

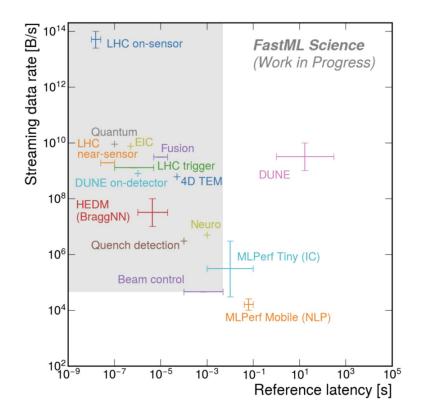
Javier Campos, Zhen Dong, Javier Duarte, Amir Gholami, Michael W. Mahoney, Jovan Mitrevski, Nhan Tran, Vladimir Loncar 24th IEEE Real-Time Conference 24 April 2024

Scientific Challenges

- Multiple scientific applications using ML/DL
- Timing and throughput constraints are heavily dependent on scientific domain, experiment, and computational resources
- Scientific applications: HEP

Quantum Computing Nuclear Material Science

 Industry applications: IoT Manufacturing

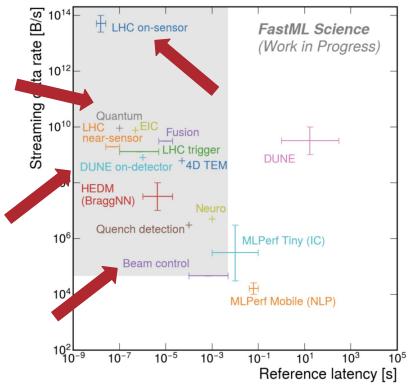


Scientific Challenges: @FNAL

- Multiple scientific applications using ML/DL
- Timing and throughput constraints are heavily dependent on scientific domain, experiment, and computational resources
- Scientific applications: HEP

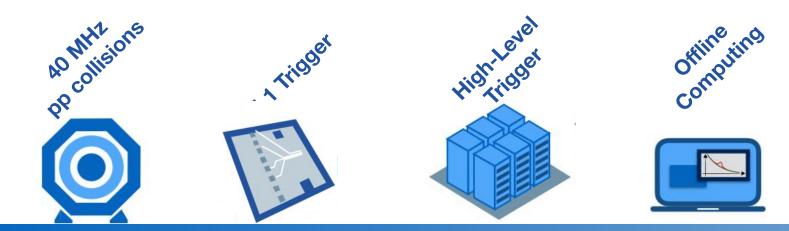
Quantum Computing Nuclear Material Science

 Industry applications: IoT Manufacturing



🚰 Fermilab

LHC Experiment Data Flow

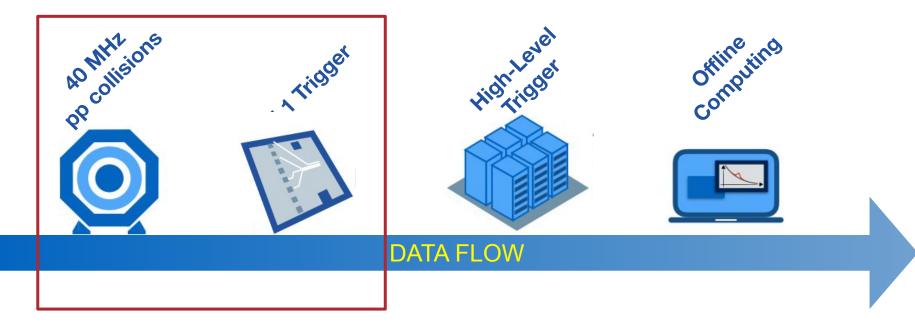


L1 trigger:

4

- 40 MHz in / 100 KHz out
- Process 100s TB/s
- Trigger decision to be made in ≈ 10 µs
- Coarse local reconstruction
- FPGAs / Hardware implemented

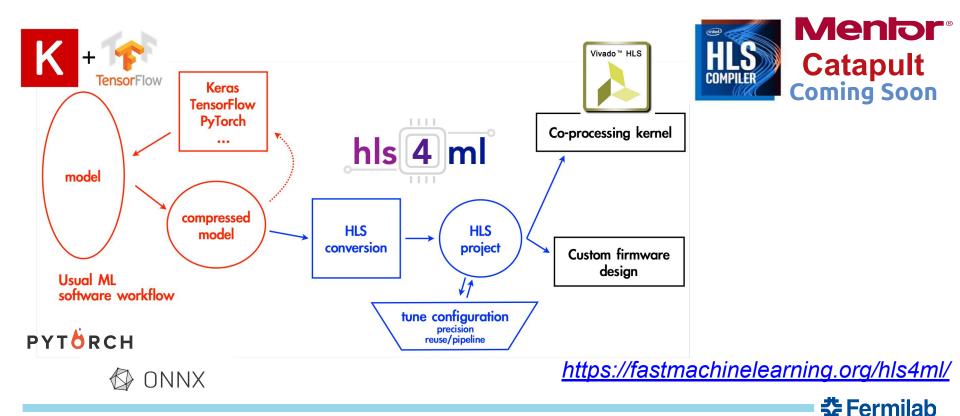
LHC Experiment Data Flow



ML in trigger and sensor applications must be implemented in FPGAs or custom ASICs! Must be robust to noise and radiation and meet high throughput low latency requirements.

5 4/24/24 Vladimir Loncar | End-to-end codesign of Hessian-aware Quantized neural networks for FPGAs

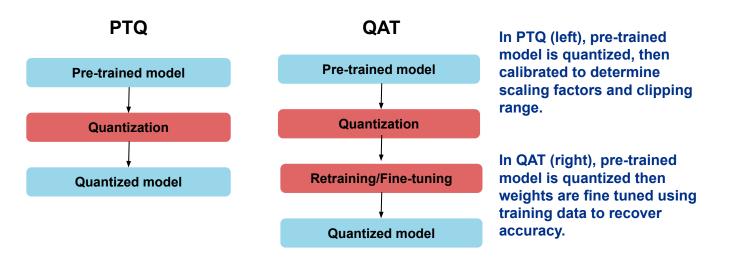
high level synthesis for machine learning



Quantized Neural Networks

- Quantization is one of the most effective techniques to reduce latency, hardware area, and energy consumption in NNs
 Weights are represented in lower precision, most commonly as fixed-point
- Typically comes in two flavors: PTQ & QAT

7

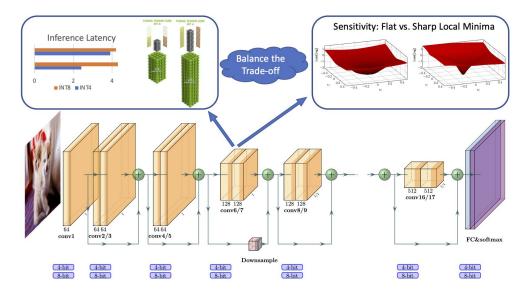


Hessian-AWare Quantization (HAWQ)

- Accuracy degradation is significant for ultra-low precision
- Mixed-precision quantization addresses this

Sensitive layers are kept at higher precision than less sensitive layers

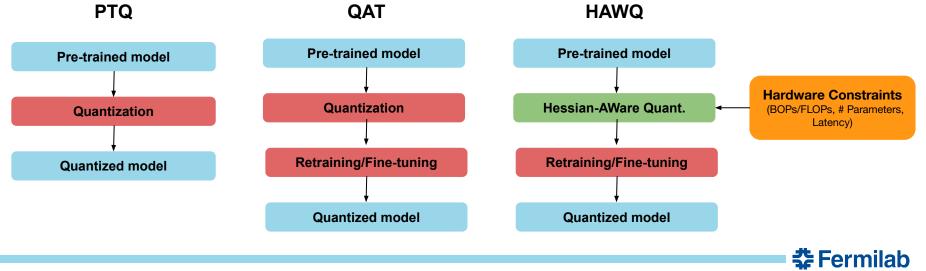
• **Problem**: search space is exponential to number of layers in the model



Hessian-AWare Quantization (HAWQ)

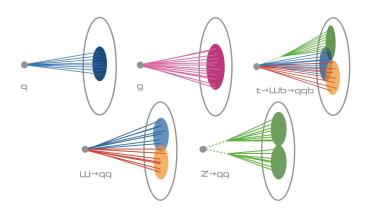
- HAWQ: An advanced quantization library written for PyTorch
- Optimize hardware constraints (latency, bitwise operations, size limit, etc) with precision
- Features:

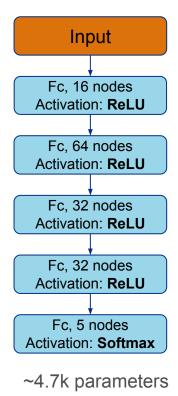
Enables low-precision (down to binary) Mixed-precision quantization Integer-only computational graph



Case Study: Jet substructure @LHC

- Jets are collimated showers of particles that result from the decay and hadronization of quarks and gluons
- Jets contain 100s particles whose properties and correlations may be exploited to identify physics signals





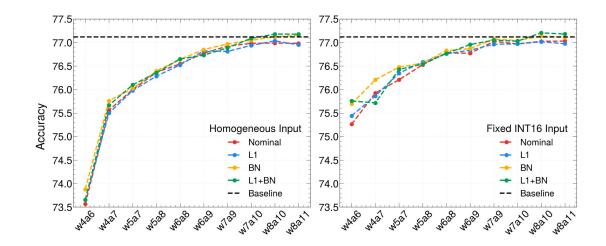
Uniform Bitwidth Quantization

- Utilizing a uniform bitwidth setting across all parameters
- Performance degradation observed when transition below INT8 weights
- Minimal to negligible influence observed from L1 Regularization and Batch Normalization on performance

Precision		Baseline [%]	L_1 [%]	BN [%]	L ₁ +BN [%]	
Weights	Inputs					
INT12	INT12	76.916	72.105	77.180	76.458	
INT8	INT8	76.605	76.448	76.899	76.879	
INT6	INT6	73.55	73.666	74.468	74.415	
INT4	INT4	62.513	63.167	63.548	63.431	
FP-32	FP-32	76.461	76.826	76.853	76.813	

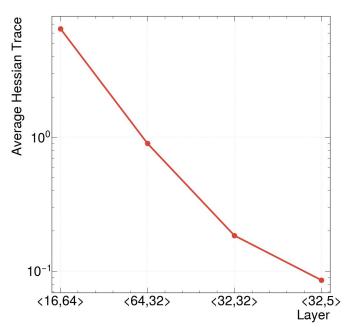
Progression Towards Mixed-Precision

 Utilizing a uniform bitwidth setting across all parameters With different activation bitwidths



Layer Sensitivity and Hessian Analysis

- Certain layers are more sensitive to quantization than others
- Mixed precision strategy: aggressively quantize less sensitive layers to lower bitwidths
- NNs generalize better with locally flat minima-determined by the Hessian
- Use Hessian as sensitivity metric for quantization Layers ranked by Hessian trace



Layer Sensitivity and Hessian Analysis

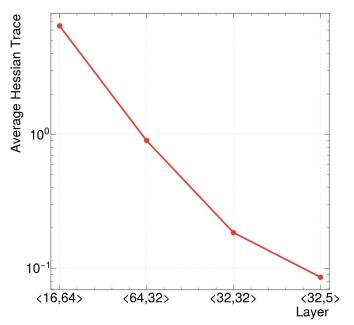
- Certain layers are more sensitive to quantization than others
- Mixed precision strategy: aggressively quantize less sensitive layers to lower bitwidths
- NNs generalize better with locally flat minima-determined by the Hessian
- Use Hessian as sensitivity metric for quantization Layers ranked by Hessian trace

$$\Omega = \sum_{i=1}^{L} \Omega_i = \sum_{i=1}^{L} \overline{Tr}(H_i) * \left\| Q(W_i) - W_i \right\|_2^2$$

Hessian Trace

L2 norm of quantization perturbation

Compute and sort each layer by Ω and select the bitwidth with the minimal Ω



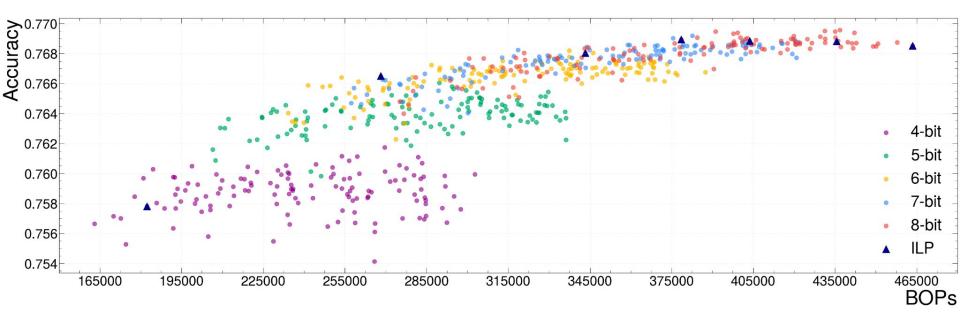
Hardware Constraints Optimization

Bit Operations (BOPs) are computed to estimate model complexity
Number of operations per inference

$$BOPs \approx mn((1-f_p)b_ab_w + b_a + b_w + \log_2(n))$$

• Other constraints: Measured or est. latency, model size (number of parameters or memory size)

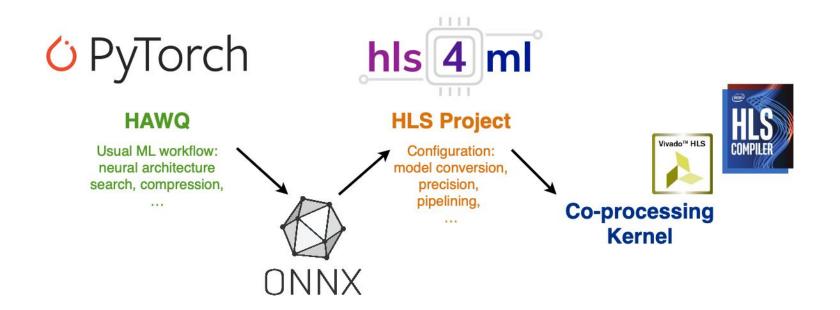
Mixed Precision Pareto Front

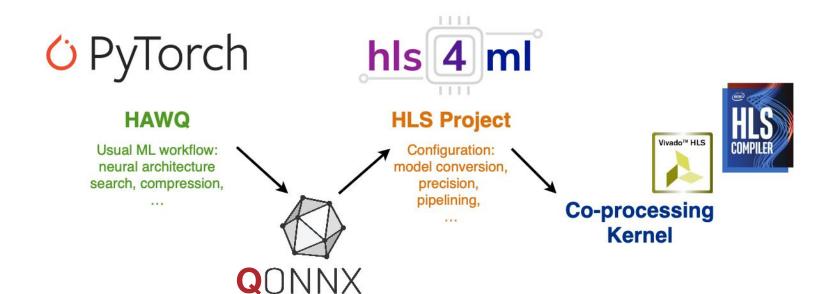


Data color coded based on the first bitwidth of the first fully-connected layer. It's importance in quantization coincides with the observed clusters, with higher performing points using larger bitwidths for input layer

Fermilab

16 4/24/24 Vladimir Loncar | End-to-end codesign of Hessian-aware Quantized neural networks for FPGAs

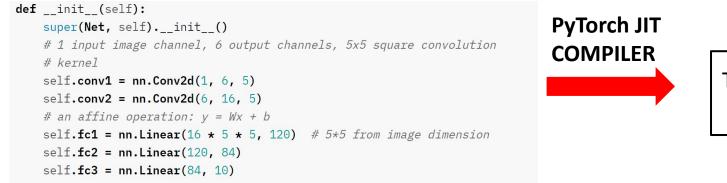


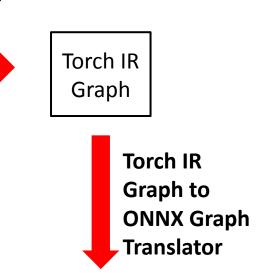


Fermilab

Quantized ONNX extends ONNX open-source format for representing ML algorithms.

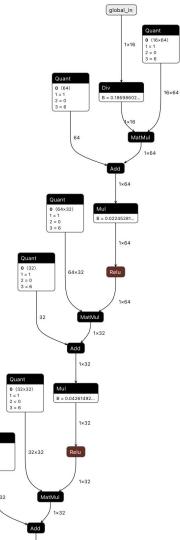
- Low-bitwidth representation
- Mixed and arbitrary precision
- Intermediate representation abstraction



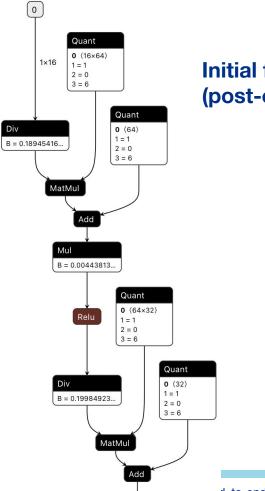


HAWQ to QONNX

 QONNX introduces new operators to represent uniform quantization and abstracts implementation details

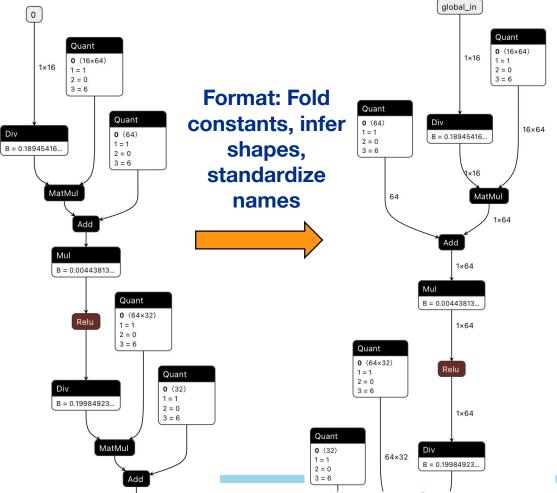


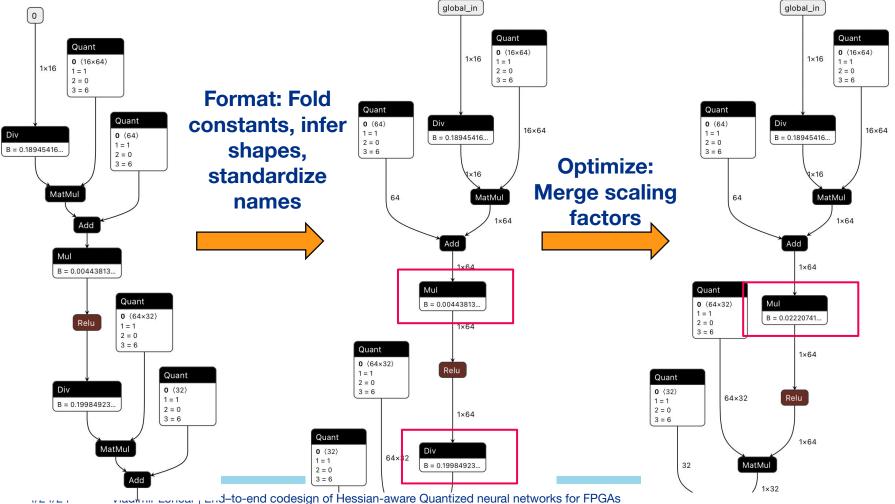
Quant 0 (32)



21

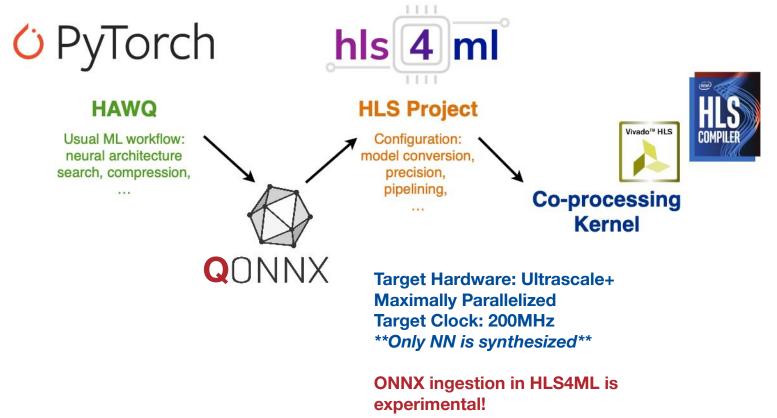
Initial format (post-export)



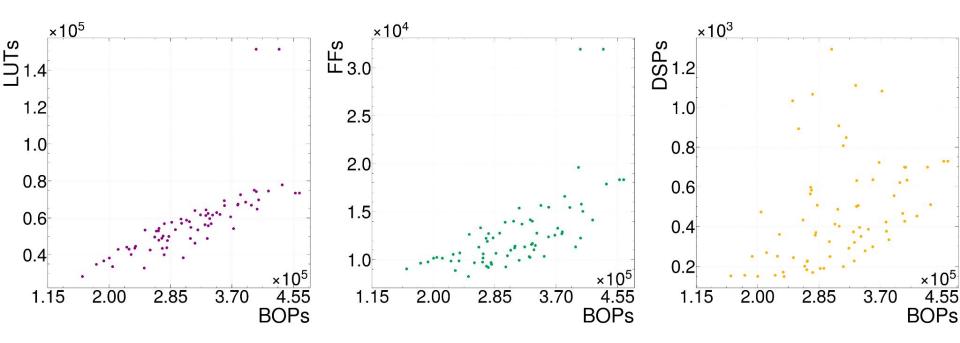


23

VIGAHIII LOIIOGI



Firmware Results on Pareto Front



Firmware Results

- Hessian-aware solution significantly reduces all resource metrics Using 95.7%, 42.2%, and 36.3% fewer DSPs, LUTs, and FFs respectively
- Solution 'QB' from AutoQkeras minimizes total bits in model Using binary and ternary operators at the cost of accuracy
- Unlike AutoQkeras, Hessian-aware quantization is done only once, then fine tuned after quantization

Model	Acc. [%]	Latency [ns]	Resources			Sparsity [%]	BOPs
			LUTs	FFs	DSPs		
Basline	76.85	65	60,272	15,116	3,602	0	4,652,832
INT8	76.45	95	54,888	14,210	671	30	281,277
Hessian	75.78	90	34,842	9,622	154	33	182,260
QB	72.79	60	16,144	4,172	5	23	122,680

Summary

- Hessian-aware solutions to mixed precision quantization schemes provide reliable solutions
- Exporting HAWQ to QONNX intermediate Representation is now possible Standard ONNX is also supported! Other ONNX accelerators can be targeted as well
- Models successfully translated from HAWQ to a firmware implementation Bit operations serve as an early predictor of resource usage in LUTs, DSPs are less reliable

Questions

