General Backgrounds of NICA－MPD ECAL

\square NICA Multi Purpose Detector（MPD）

$>$ A 4π spectrometer for heavy－ion collision detection at high luminosity
$>\mathrm{Au}+\mathrm{Au}$ interactions at 6 kHz ，with multiplicity：>1000 charged particles for central collisions at $\sqrt{S_{N N}}=11 \mathrm{GeV}$
\square The previous FEE for Electromagnetic Calorimeter（ECal）
＞Shashlik－type calorimeter：bremsstrahlung photons collected through optical wavelength shifter（WLS）fibers，couped with SiPM detectors
＞FEE：SiPM readout board（shaping and anti－alias filter），together with a 64－ channel 14－bit， $62.5 \mathrm{MS} / \mathrm{s}$ commercial ADC board

$1 / 6$ of the half－sector of the ECal（Zone 8）and single tower structure（Cited from：Y．Li et al 2022 JINST 17 T04005）
＞Performance：$\sigma_{t} \sim 1 n s, \frac{\Delta E}{E}=6 \%$

－Timing requirement

＞～10 ns：background and pile－up cancellation to zero
＞～1 ns：suppress secondary background events down to negligible level
＞Sub－ns：work in the ToF mode for auxiliary time measurements
－ECal TDR：reach the level of 150 ps

Welcome to Poster \＃36
＠Poster B Section ！！
Introduction
and motivation

Readout Design Architecture

Pre－amp	a RF transistor current follower with a differential op－amp
ADC	12bit 200MS／s pipeline SAR ADC

SPICE simulation for pre－ amp in working scenario

Preliminary Test Results

－Pre－amp：BW～250 MHz
$>$ Single－channel time resolution better than 20 ps
－ADC：～160 MS／s（max．）
$>E N O B=9.34 \mathrm{bit}, \mathrm{SFDR}=73.8 \mathrm{dBc}$

System Performance

\square PROOF OF CONCEPT

＞For 200MS／s sampling rate：proper configuration（3～4 sampling points on the rising edge）can achieve time resolution～20 ps（＠output $\geqslant 250 \mathrm{mV}$ ）

