High performance CdTe based imaging-spectrometers for spacescience and societal applications

24th IEEE Real Time Conference ICISE, Quy Nhon, Vietnam April 22, 2024

O. Limousin, on behalf of ALB3DO lab

0

Research Director at CEA, Astrophysics Division, France

۲

Thanks for your invitation in Vietnam ...

Special thanks to

- Patrick Le Du
- Martin Grossmann Handschin
- Masaharu Nomachi
- David Abbott
- Real Time 2024 organizers

sin

Cez

Who are we?

CdTe detectors design, modelisation and simulations

Data Analysis methods And reconstruction

ASIC, Design, tests

Experimentation

System

Hybridization

cea

a HEICO Company

Space Qualification

April 22, 2024

In Hard X-rays

cez

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

April 22, 2024

Imaging spectroscopy for astrophysics

Imaging spectroscopy for astrophysics

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

April 22, 2024

<u>cea</u>

Trends is as usual ... smaller is better

Most progress in sensitivity in HXR will come from direct focusing/imaging, and good observing conditions

Anyhow ... all HXR instruments need detectors with:

- High spatial resolution
- High efficiency
- High speed
- High stability
- High reliability
- High dynamic

- Low noise
- Low threshold
- Low mass
- Low volume
- Low Power

A Worldwide challenge for CdTe and CZT detectors

Limousin+14

Fine pitch

Harisson+13

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

April 22, 2024

A Worldwide challenge for CdTe and CZT detectors

Very Fine pitch

A Worldwide challenge for CdTe and CZT detectors

cea

3D approach / CdTe Schottky: main properties

Imaging a PSF with

1 cm² monolithic CdTe
16 x 16 pixels
625 μm pitch, 100 μm interpixel gap
Guard is 20 μm width
1mm thick for hard X-Ray domain is fine

Measuring the energy accurately

Al Schottky contacts Low leakage current (< 1pA at 0°C / 300V) Detector stray capacitance is very low (<50 fF) Complete charge collection

3D approach / IDeF-X HD ASIC main properties

Full custom ASIC (family) developed at CEA

CMOS AMS 0.35 µm, Area: 5.8 x 2.5 mm²

32 channels

Individual tunable threshold

Tunable shaper and gain

Base line holder

Absolute on-chip thermal sensor

800 µW/channel

Multi ASIC digital interface

High impedance output buffers

Radiation hard (> 100 krad, Latch up free)

Low noise down to 33 el. rms floor

3D approach / Vertical Interconnexion concept

Cez

3D approach / Caliste HD: hybridization technology

April 22, 2024

3D approach / Caliste concept

Caliste-HD, 1 and 2mm thick CdTe crystals, 256 pixels, 625µm pitch

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

April 22, 2024

cea

3D approach / Caliste-HD spectral response

- -4°C / 400V
- **256 pixels** 562 eV FWHM at 13.9 keV
- 666 eV FWHM at 59.5 keV
- 1.2 keV low threshold
- 1 MeV dynamic range

Caliste SiP 3D Modules family so far

Parameters	Caliste-64	Caliste-256	Caliste-HD	Caliste-SO	Caliste-O
Years of development	2005-2007	2008-2009	2010-2011	2011-2013	2014-2017
Pixel array	8 × 8	16 × 16	16 × 16	4 × 3	16 × 16
Pixel pitch	900 µm	580 µm	625 μm	2150/4550 μm	800 µm
Guard ring width	900 µm	100 µm	20 µm	500 μm	500 µm
Front-end	IDeF-X V1.1	IDeF-X V2	IDeF-X HD	IDeF-X HD	IDeF-X HD
electronics	(16 channels)	(32 channels)	(32 channels)	(32 channels)	(32 channels)
Number of ASIC	4	8	8	1	8
Interface	7 × 7 PGA	7 × 7 PGA	4 × 4 PGA	2 × 10 SOP	7 × 7 PGA
Power consumption	200 mW	800 mW	200 mW	20 mW	200 mW
Energy range (keV)	2 to 250	1.5 to 250	1.5 to 1000	1.5 to 1000	1.5 to 1000
Energy resolution (FWHM at 60 keV)	900 eV	860 eV	670 eV	1000 eV	1000 eV
Dimensions w/o CdTe (mm³)	10×10×18.6	10×10×20.7	10×10×16.5	11×12×15.65	15×15×16.5
CdTe or CZT Dimensions (mm ³)	10×10×(0.5 – 2)	10×10×(0.5 – 2)	10×10×(0.5 – 2)	10×10×1	15×15×(0.5-2)
Radiation Hardness					
TID (krad)	>300	>300	>300	>300	>300
SEU (MeV.cm ² .mg ⁻¹)	~9	~9	~9	~9	~9
SEL (MeV.cm ² .mg ⁻¹)	12	56	>110	>110	>110

cea

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

April 22, 2024

Application in Space for Solar Eruptive events observations

<u>cea</u>

STIX Science goals

STIX: Spectrometer Telescope Imaging X-rays

► By detecting X-rays from 4 to 150 keV, STIX determines the intensity, the location, the timing, the spectra of accelerated electrons near the Sun.

Energy range	4-150 keV		
Angular resolution	7" to 180"		
Spectral resolution	~1 keV @ 6 keV		
Time resolution	down to 0.1 s		
FOV	2° x 2°		

Y

April 22, 2024 | PAGE 19

Application in Space for Solar Eruptive events observations

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

Cez

April 22, 2024 | PAGE 20

Imaging technique: Fourier Imaging Spectroscopy

- 4 bands to measure the amplitude and the phase of the visibility
- 8 pixels for redundancy
- 12 pixels with 4 small pixels for high count rate capability

Performance in flight on board Solar Orbiter

<u>cea</u>

STIX successfully operating 24/7 since 2021

50,000+ Flares since then

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

April 22, 2024

<u>cea</u>

STIX Operation mode

- Quick-Looks are sent down automatically
 - Select Event period of time \succ
 - Energy range \triangleright
 - Time resolution \triangleright
 - Data type (Full or spectrograms) \geq
 - Send the data request (Weekly) \triangleright
- Internal memory of STIX holds up to ~6 months of data
- Be patient ... (6 weeks approx.)
 - Take your data \triangleright
 - Play with it! \geq

Performance in flight on board Solar Orbiter

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

<u>cea</u>

What should we do next for space science: SPARK Cesa

cea

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

Caliste-MC2 concept

- Reach the Fano limit for ultimate energy resolution
- Smaller pixels (Pay attention to spilt events ~100-200 µm minimum)
- Larger area
- Higher counting rate capability
- More advanced packaging
- More advanced embedded functions
- 3D integration
- Modular approach, (64 to 96)² fine pitch CdTe
- Flip chipped to a mosaic of 2D-ASIC D²R_x
- Stacked to a
 - Fully parallel high speed A/D converter OwB-1
 - Filter stage
 - I/O's

April 22, 2024

Detector performance demonstration

Spid-X Gamma camera for nuclear monitoring

ALB3DO

O. Limousin | CEA - Astrohysics Division | 24th Real Time Conference, Quy Nhon, Vietnam

