Cosmology I

Géraldine SERVANT
 DESY/U.Hamburg

2022 European school of HEP, Israel

 03-12-2022
CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

UH

Universität Hamburg

Programme of these lectures

Lecture 1: standard cosmology crash course
-FRW metric, Friedmann equation,
-particle decoupling, $g_{-}^{*}(T)$,
-BBN
-hydrogen recombination, photon decoupling, can be found in
-qualitative back of the envelope thermal freese-out for a cold relic
-hot relics

Lecture 2: Axion cosmology
-axion-like-particles (ALPs)
-axion dark matter
-relaxion

Lecture 3: Miscellaneous hot topics
actual research material, but available on ArXiv
-baryogenesis,
-EW phase transtion, -primordial gravitational waves

Lecture 1, 03-12-2022

1h20 cosmology crash course:

Important facts you should know about our cosmological history

References

Textbooks:
-Kolb and Turner, The early universe
-Gorbunov and Rubakov, Introduction to the theory of the early universe
-Bailing and Love, Cosmology in gauge field theory and string theory
-Dodelson, Modern cosmology
-Weinberg, Gravitation and cosmology
-Weinberg, Cosmology

+ many lecture notes available on the arXiv
recommended : Daniel Baumann's lecture notes

SDSS Galaxy Map

Our universe today

Most important feature: its large-scale homogeneity (no preferred point) and isotropy (no preferred direction)

Observable patch of the universe: ~ 5000 Mpc

- homogeneous @ large scales (>100 Mpc)
- very inhomogeneous @ small scales (<100 Mpc)

Structures formed by gravitational instability from small initial fluctuations during inflation which set the seeds of future structures. These primordial fluctuations are also imprinted in the Cosmic Microwave Background.

The Cosmic Microwave Background (CMB)

a major success of the standard cosmological model

COBE/WMAP/Planck satellites measured CMB temperature fluctuations at the level of $\delta \mathrm{T} / \mathrm{T}=5 \times 10^{-5}$ and their angular correlations obtaining an oscillatory pattern.

These oscillations are visualized in l-space by expanding in spherical harmonics,

$$
\delta T=\sum_{\ell, m} a_{\ell m} Y_{\ell m}(\theta, \varphi)
$$

and plotting $\quad C_{\ell}=\frac{1}{2 \ell+1} \sum_{m}\left|a_{\ell m}\right|^{2} \quad$ as a function of I

CMB power spectrum

set of peaks -> set of angular scales at which we observe a particularly strong correlation in temperatures.

They are generated through the acoustic oscillations.

The energy budget of the universe today

Key events in the thermal history of the universe

Event	time t	redshift z	temperature T	
Inflation	$10^{-34} \mathrm{~s}(?)$	-	-	
Baryogenesis	$?$	$?$?	
EW phase transition	20 ps	10^{15}	100 GeV	
QCD phase transition	$20 \mu \mathrm{~s}$	10^{12}	150 MeV	
Dark matter freeze-out	?	?	?	$X+\bar{X} \leftrightarrow \ell+\bar{\ell}$
Neutrino decoupling	1 s	6×10^{9}	1 MeV	$\nu_{e}+\bar{\nu}_{e} \leftrightarrow e^{+}+e^{-}, e^{-}+\bar{\nu}_{e} \leftrightarrow e^{-}+\bar{\nu}_{e}$
Electron-positron annihilation	6 s	2×10^{9}	500 keV	$e^{+}+e^{-} \leftrightarrow \gamma+\gamma$
Big Bang nucleosynthesis	3 min	4×10^{8}	$100 \mathrm{keV}$	$\begin{gathered} n+\nu_{e} \leftrightarrow p^{+}+e^{-}, \quad n+e^{+} \leftrightarrow p^{+}+\bar{\nu}_{e} \\ n \leftrightarrow p^{+}+\bar{\nu}_{e}+e^{-} \\ n+p^{+} \leftrightarrow \mathrm{D}+\gamma \quad \mathrm{D}+p^{+} \leftrightarrow{ }^{3} \mathrm{He}+\gamma \end{gathered}$
Matter-radiation equality	60 kyr	3400	0.75 eV	$\mathrm{D}+{ }^{3} \mathrm{He} \leftrightarrow{ }^{4} \mathrm{He}+p^{+}$
Recombination	260-380 kyr	1100-1400	$0.26-0.33 \mathrm{eV}$	$e^{-}+p^{+} \leftrightarrow \mathrm{H}+\gamma$
Photon decoupling	380 kyr	1000-1200	$0.23-0.28 \mathrm{eV}$	Thomson $e^{-}+\gamma \leftrightarrow e^{-}+\gamma$
Reionization	100-400 Myr	11-30	$2.6-7.0 \mathrm{meV}$	
Dark energy-matter equality	9 Gyr	0.4	0.33 meV	
Present	13.8 Gyr	0	0.24 meV	

L}=-\frac{1}{4}\mp@subsup{F}{N\nu}{}\mp@subsup{F}{}{N
L}=-\frac{1}{4}\mp@subsup{F}{N\nu}{}\mp@subsup{F}{}{N
+i平D\psi+h.c
+i平D\psi+h.c
+ }\mp@subsup{x}{:}{\prime}\mp@subsup{y}{15}{\prime}\mp@subsup{y}{j}{\prime}\mp@subsup{\phi}{+}{\prime
+ }\mp@subsup{x}{:}{\prime}\mp@subsup{y}{15}{\prime}\mp@subsup{y}{j}{\prime}\mp@subsup{\phi}{+}{\prime
+ |p
+ |p

The Standard Model of Particle Physics fails to explain:

Matter-antimatter
Dark Matter
Dark Energy

Inflation
Quantum Gravity

All related to physics of the early universe

THEORETICAL COSMOLOGY

Aim: Understanding structure, evolution \& origin of the universe

Relies on two "Standard Models"

- of particle physics
- of cosmology (Hubble diagram, BBN, CMB)

Friedmann Robertson Walker (FRW) metric

Mathematical description of homogeneous and isotropic universe

How do particles evolve in FRW spacetime?

From the geodesic equation $\quad \Rightarrow \quad p \propto \frac{1}{a}$.
Redshifting of photons
$\lambda=h / p \quad$ photon wavelength λ scales as $\mathrm{a}(\mathrm{t})$
Light emitted at time t 1 with wavelength λ_{1} will be observed
at time to with wavelength

$$
\lambda_{0}=\frac{a\left(t_{0}\right)}{a\left(t_{1}\right)} \lambda_{1}
$$

Since $a\left(t_{0}\right)>a\left(t_{1}\right)$, the wavelength of the light increases, $\lambda_{0}>\lambda_{1}$.
Redshift parameter $\quad z \equiv \frac{\lambda_{0}-\lambda_{1}}{\lambda_{1}}$.

$$
1+z=\frac{1}{a\left(t_{1}\right)}
$$

convention:

$$
a\left(t_{0}\right) \equiv 1
$$

Friedmann equation

Einstein-Hilbert action

$$
\mathcal{S}=\int \mathrm{d}^{4} x \sqrt{-g} R
$$

R: Ricci scalar
g : metric determinant
Energy-momentum tensor of perfect fluid

$$
T_{\mu \nu}=(\rho+P) U_{\mu} U_{\nu}-P g_{\mu \nu} \quad \text { fluid at rest: } U^{\mu}=(1,0,0,0)
$$

Einstein Equation

$$
\begin{array}{ll}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G T_{\mu \nu} & \begin{array}{l}
\text { p: total energy density } \\
\text { P: pressure }
\end{array} \\
\text { ation } & H^{2}=\frac{8 \pi G}{3} \rho-\frac{k}{a^{2}} .
\end{array} \quad H \equiv \frac{\dot{a}}{a}
$$

Friedmann Equation $H^{2}=\frac{8 \pi G}{3} \rho-\frac{k}{a^{2}}$.

Notation: $\quad 8 \pi G=\frac{1}{M_{p l}^{2}}$
 for $k=0$

A flat universe $(\mathrm{k}=0)$ corresponds to the following critical density today

$$
\rho_{\text {crit }, 0}=\frac{3 H_{0}^{2}}{8 \pi G}
$$

We use the critical density to define dimensionless density parameters

$$
\Omega_{a, 0} \equiv \frac{\rho_{a, 0}}{\rho_{\text {crit }, 0}}, \quad a=r, m, \Lambda, \ldots
$$

Most cosmological fluids can be parameterised in terms of a constant equation of state:

$$
w=P / \rho .
$$

This includes cold dark matter ($w=0$), radiation ($w=1 / 3$) and vacuum energy ($\mathrm{w}=-1$).
In that case $\quad \rho \propto a^{-3(1+w)}= \begin{cases}a^{-3} & \text { matter } \\ a^{-4} & \text { radiation } \\ a^{0} & \text { vacuum }\end{cases}$
(follows from the continuity equation $\dot{\rho}=-3(\rho+p) \frac{\dot{a}}{a}$.)

Friedmann equation can then be written as

$$
H^{2}(a)=H_{0}^{2}\left[\Omega_{r, 0}\left(\frac{a_{0}}{a}\right)^{4}+\Omega_{m, 0}\left(\frac{a_{0}}{a}\right)^{3}+\Omega_{k, 0}\left(\frac{a_{0}}{a}\right)^{2}+\Omega_{\Lambda, 0}\right]
$$

Age of universe: $\mathrm{t} \sim \mathrm{H}$

Age of universe at electroweak epoch

$$
\begin{aligned}
& H \sim \frac{\sqrt{\rho}}{M_{\rho l}} \sim \frac{(100 \mathrm{GeV})^{2}}{10^{19} \mathrm{GeV}} \\
& H_{\sim} \sim 10^{-15} \mathrm{GeV} \\
& t \sim 10^{15} \mathrm{Gev}^{-1} \sim 10^{15} \times 10^{-24 \mathrm{~s}} s \sim 10^{-9} \mathrm{~s}
\end{aligned}
$$

Particle decoupling

To understand the universe history, we compare the rate of particle interactions

Whenever

Particles decouple whenever

relativistic species

$$
n=\frac{\zeta(3)}{\pi^{2}} g T^{3} \begin{cases}1 & \text { bosons } \\ \frac{3}{4} & \text { fermions }\end{cases}
$$

non-relativistic species

$$
n=g\left(\frac{m T}{2 \pi}\right)^{3 / 2} e^{-m / T}
$$

At high temperature T relativistic: $\mathrm{V} \sim 1, \mathrm{n} \sim \mathrm{T}^{\wedge} 3$

$$
H=\sqrt{\frac{\rho}{3 M_{p}^{2}}}
$$

In a radiation-dominated universe

$$
H \sim \frac{T^{2}}{M_{p l}}
$$

Decoupling of electroweak interactions

At $\mathbf{T} \approx 100 \mathrm{GeV}$ (massless gauge bosons)

$$
\sigma \sim \frac{\alpha^{2}}{T^{2}}
$$

$$
\Gamma=n \sigma v \sim T^{3} \times \frac{\alpha^{2}}{T^{2}}=\alpha^{2} T .
$$

$$
\frac{\Gamma}{H} \sim \frac{\alpha^{2} M_{\mathrm{pl}}^{T^{2}}}{T} \sim \frac{10^{16} \mathrm{GeV}}{T}
$$

all SM particles are in thermal equilibrium
At $\mathbf{T} \leq \mathbf{1 0 0} \mathbf{G e V} \quad \sigma \sim G_{F}^{2} T^{2} \quad \frac{\Gamma}{H} \sim \frac{\alpha^{2} M_{\mathrm{pl}} T^{3}}{M_{W}^{4}} \sim\left(\frac{T}{1 \mathrm{MeV}}\right)^{3}$
EW interactions decouple at T~1 MeV

Total energy density of the Standard Model plasma at thermal equilibrium

Total radiation energy density of all relativistic species in equilibrium

$$
\rho_{r}=\sum_{i} \rho_{i}=\frac{\pi^{2}}{30} g_{\star}(T) T^{4}
$$

evolution of number of effective relativistic degrees of freedom in the SM

Key events in the thermal history of the universe

Event	time t	redshift z	temperature T	
Inflation	$10^{-34} \mathrm{~s}(?)$	-	-	
Baryogenesis	$?$	$?$	$?$	
EW phase transition	20 ps	10^{15}	100 GeV	
QCD phase transition	$20 \mu \mathrm{~s}$	10^{12}	150 MeV	
Dark matter freeze-out	?	$?$?	$X+\bar{X} \leftrightarrow \ell+\bar{\ell}$
Neutrino decoupling	1 s	6×10^{9}	1 MeV	$\nu_{e}+\bar{\nu}_{e} \leftrightarrow e^{+}+e^{-}, e^{-}+\bar{\nu}_{e} \leftrightarrow e^{-}+\bar{\nu}_{e}$
Electron-positron annihilation	6 s	2×10^{9}	500 keV	$e^{+}+e^{-} \leftrightarrow \gamma+\gamma$
Big Bang nucleosynthesis	3 min	4×10^{8}	$100 \mathrm{keV}$	$\begin{gathered} a+\nu_{e} \leftrightarrow p^{+}+e^{-}, \quad n+e^{+} \leftrightarrow p^{+}+\bar{\nu}_{e} \\ n \leftrightarrow p^{+}+\bar{\nu}_{e}+e^{-} \\ n+p^{+} \leftrightarrow \mathrm{D}+\gamma \quad \mathrm{D}+p^{+} \leftrightarrow{ }^{3} \mathrm{He}+\gamma, \end{gathered}$
Matter-radiation equality	60 kyr	3400	0.75 eV	$\mathrm{D}+{ }^{3} \mathrm{He} \leftrightarrow{ }^{4} \mathrm{He}+p^{+}$
Recombination	260-380 kyr	1100-1400	$0.26-0.33 \mathrm{eV}$	$e^{-}+p^{+} \leftrightarrow \mathrm{H}+\gamma$
Photon decoupling	380 kyr	1000-1200	$0.23-0.28 \mathrm{eV}$	Thomson $e^{-}+\gamma \leftrightarrow e^{-}+\gamma$
Reionization	100-400 Myr	11-30	$2.6-7.0 \mathrm{meV}$	
Dark energy-matter equality	9 Gyr	0.4	0.33 meV	
Present	13.8 Gyr	0	0.24 meV	

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis

[Check PDG.LBL.GOV (updated review on BBN)]
Predicts abundances of light elements $\mathrm{H},{ }^{2} \mathrm{H},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$.
One of the most important tests of the Standard Cosmological Model.
Was the best method to estimate $\Omega_{\text {baryons }}$ before accurate CMB measurements by WMAP.
H: 74 \% of all baryonic matter energy density most abundant element in known universe
${ }^{4} \mathrm{He}:$ second most abundant element in known universe (24 \%)

Only 2\% made of heavier elements and generated by stellar processes

Abundances of $\mathbf{C}, \mathrm{N}, \mathrm{O}$ vary a lot depending on location while ${ }^{4} \mathrm{He}$ is same everywhere $->$ "primordial"

Abundances produced during BBN: "primordial"

Measurements of abundances: based on spectra (emission lines) of interstellar clouds and stellar surface.

Effect of chemical evolution has to be subtracted to get 'primordial abundance'
${ }^{3} \mathrm{He}$ and ${ }^{7} \mathrm{Li}$: produced and destroyed in stars so hard to measure primordial abundances.

7Li : measured from population II stars, thought to retain primordial abundances
${ }^{2} \mathrm{H}$ (also noted D): measured from quasar spectra. Necessarily primordial. Cannot be produced/destroyed in stars: too fragile, binding energy is too small.

D very sensitive to $\Omega_{\text {baryons. }}$ Excellent baryometer !
$\Omega_{\text {baryons }}$ related to matter antimatter asymmetry of the universe

$$
\eta \equiv \frac{n_{p}-n_{\bar{p}}}{n_{\gamma}}
$$

Binding energy of lightest nuclei

AZ	$\mathrm{B}($ in MeV)	g	
${ }^{2} \mathrm{H}$	2.22	3	boson (spin 1)
${ }^{3} \mathrm{H}$	8.48	2	fermion (spin 1/2)
${ }^{3} \mathrm{He}$	7.72	2	fermion (spin 1)
${ }^{4} \mathrm{He}$	28.3	1	boson (spin 0)
${ }^{12} \mathrm{C}$	92.2	1	boson

Naively we expect formation of nuclei from the proton-neutron plasma to occur at T~1 MeV.

However it happens at much lower T.

Neutron to proton ratio

Start at $m_{p} \gtrsim T \gtrless 10 \mathrm{MeV}$-after nucleon-antinucleon annihilation -when v 's are at equilibrium

Total number of nucleons is then constant due to baryon \# conservation.
p and n are non-relativistic. They are converted to each other by weak interactions.

- $n+\nu_{e} \leftrightarrow p+e^{-}$
- $n+e^{+} \leftrightarrow p+\bar{\nu}_{e}$
- $n \leftrightarrow p+e^{-}+\bar{\nu}_{e}$

Define

$$
\begin{aligned}
& Q \equiv m_{n}-m_{p}=1.293 \mathrm{MeV} \\
& \left.\frac{n_{n}}{n_{p}}\right|_{e q}=e^{-Q / T} \quad\left(\mathbf{m}_{\mathbf{n}} \approx \mathbf{m}_{\mathbf{p}}\right)
\end{aligned}
$$

Fortunately $\mathbf{Q} \sim \mathbf{O}\left(\mathrm{T}_{\mathrm{F}}\right)$ Amazing coincidence T_{F} freese-out of weak interactions which depends on $G_{F}, M_{P I}, m_{u}, m_{d}$ So depletion of neutrons will be avoided. CRUCIAL INPUT FOR BBN! And we are lucky n has not yet decayed ($\mathrm{T}_{\mathrm{n}}=886.7 \mathrm{~s}$)

Remember T_{F} estimated when

$$
\underset{\left(\Gamma_{n \leftrightarrow p}\right)}{G_{F}^{2} T^{5} \sim H \sim g_{*} T^{2} / M_{P l},}
$$

$T_{F} \sim 1 \mathrm{MeV}$ (This depends on $\mathrm{g}^{*}!$) \rightarrow BBN constrains \mathbf{g}^{*}

$$
e^{-Q / T_{F}} \approx \frac{1}{6}
$$

Deuterium production

```
m}~2\mp@subsup{m}{n}{}\approx2\mp@subsup{m}{p}{}\approx1.9\textrm{GeV
BD= m
玍}{\mp@subsup{n}{p}{}}{|}\mp@subsup{|}{eq}{}\approx\eta(\frac{T}{\mp@subsup{m}{p}{}}\mp@subsup{)}{}{3/2}\mp@subsup{e}{}{\mp@subsup{B}{D}{}/T}
"Deuterium Bottleneck"
when }\mp@subsup{n}{D}{}/\mp@subsup{n}{p}{}~O(1) : start of BB
```

$\left.\frac{n_{D}}{n_{p}}\right|_{e q} \approx \eta\left(\frac{T}{m_{p}}\right)^{3 / 2} e^{B_{D} / T}$
η inhibits production of Deuterium until T drops well below B_{D}

Even if T is well below B_{D}, the photons of the high energy tail of the photon distribution efficiently destroy D

Only when $\mathrm{T} \leqslant 0.07 \mathrm{MeV}$, D becomes important

$$
t_{\text {nuc }} \sim 330 s
$$

At that time neutrons have started to decay

Neutron Decay

$$
\begin{aligned}
& X_{n} \equiv \frac{n_{n}}{n_{n}+n_{p}} \approx 1 / 6 \approx 0.17 \\
& X_{n}\left(t_{n u c}\right)=\frac{1}{6} \times e^{-t / \tau_{n}}=\frac{1}{6} e^{-330 s / 886.7 s} \sim \mathbf{1} / \mathbf{8} \\
& \tau_{n}=886 s
\end{aligned}
$$

Helium production

(Only when there is sufficient deuterium)

- $D+p \rightarrow{ }^{3} H e+\gamma$
- $D+D \rightarrow{ }^{3} \mathrm{He}+n$
- $D+{ }^{3} H e \rightarrow{ }^{4} H e+p$
$B_{H e}>B_{D}$ so Helium produced immediately after Deuterium
So most of the remaining neutrons are processed into ${ }^{4} \mathrm{He}$

$$
\frac{n_{H e}}{n_{H}}=\frac{n_{H e}}{n_{p}} \sim \frac{\frac{1}{2} X_{n}\left(t_{n u c}\right)}{1-X_{n}\left(t_{n u c}\right)} \sim \frac{1}{2} X_{n}\left(t_{n u c}\right) \sim \frac{1}{16}
$$

result is usually expressed as mass fraction of Helium

$$
\frac{4 n_{H e}}{n_{H}} \sim \frac{1}{4}
$$

Note: ${ }^{3} \mathrm{H}$ and D decrease with $\boldsymbol{\eta}$ because they fuse

Small η delays $B B N \rightarrow$ smaller fraction of ${ }^{4} \mathrm{He}$

Lithium production

$$
\begin{aligned}
& { }^{4} \mathrm{He}+{ }^{3} \mathrm{He} \rightarrow{ }^{7} \mathrm{Be}+\gamma \\
& { }^{7} \mathrm{Be}+e^{-} \rightarrow{ }^{7} \mathrm{Li}+\nu_{e}
\end{aligned}
$$

Lithium destruction

$$
{ }^{7} \mathrm{Li}+p \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}
$$

No heavier elements: Coulomb barrier shuts off nuclear reaction at $\mathbf{T} \leqslant 30 \mathrm{keV}$ before there is time for heavier elements to form

BBN

Comparaison between
 theory and observations.

The primordial abundances of ${ }^{4} \mathrm{He}, \mathrm{D},{ }^{3} \mathrm{He}$, and ${ }^{7} \mathrm{Li}$ as predicted by the standard model of Big-Bang nucleosynthesis - the bands show the 95\% CL range

Boxes indicate the observed light element abundances. The narrow vertical band indicates the CMB measure of the cosmic baryon density, while the wider band indicates the BBN concordance range (both at $95 \% \mathrm{CL}$).

Figure 3.11: Numerical results for the evolution of light element abundances.
picture from D.
Baumann's lectures.

BBN constraints on Unstable Relic Particles

Exercise

Effect of proton-neutron mass difference on Big Bang Nucleosynthesis

Suppose the difference in rest energy of the neutron and proton were $\mathrm{Q}=\left(\mathrm{m}_{\mathrm{n}}-\mathrm{m}_{\mathrm{p}}\right)=0.129 \mathrm{MeV}$ instead of 1.29 MeV , with all other physical parameters unchanged. What is the proton to neutron abundance at the time of neutron freese-out?

Estimate $Y_{\text {max }}$ the maximum possible mass fraction of ${ }^{4} \mathrm{He}$, assuming that all available neutrons are incorporated into ${ }^{4} \mathrm{He}$ nuclei , i.e. that there were no neutron decays (they would in fact be stable as Q is less than the electron mass).

Can you think of the conse- quences in this case?

Note about BBN

Baryon to photon ratio $\quad \eta \equiv \frac{n_{b}}{n_{\gamma}}=\frac{n_{b, 0} a^{-3}}{n_{\gamma, 0}\left(T / T_{0}\right)^{3}}=\left(\frac{T_{0}}{a T}\right)^{3} \eta_{0}$
as long as $T \sim 1 / a$ $\eta=c s t$

$$
\eta_{\mathrm{BBN}}=\eta_{с м в}=\eta_{0}!
$$

From CMB and BBN: $\eta \sim 6.10^{-10} \ll 1$

Huge number of γ 's per baryon
but

$$
\frac{\rho_{b}}{\rho_{\gamma}} \sim \frac{m_{b} n_{b}}{T n_{\gamma}} \sim \eta \frac{m_{b}}{T} \neq \mathrm{const}
$$

POST-BBN ERA

Recombination \& photon decoupling

POST-BBN ERA

After BBN, we are left with radiation (photons) and matter (e-,protons and nuclei)

In radiation era $\mathbf{t}=\mathbf{H} / \mathbf{2} \quad T=\frac{1.56}{g_{*}^{1 / 4}} \sqrt{\frac{1 \mathrm{~s}}{t}} \mathrm{MeV}=1.15 \sqrt{\frac{1 \mathrm{~s}}{t}} \mathrm{MeV} \quad \begin{aligned} & \text { after e+e- annihilation } \\ & \mathbf{g}=\mathbf{3 . 3 6}\end{aligned}$

$$
\begin{aligned}
& \mathrm{T}=100 \mathrm{keV} @ 2 \text { minutes } \\
& \mathrm{T}=10 \mathrm{keV} @ 4 \text { hours } \\
& \mathrm{T}=1 \mathrm{keV} @ 2 \text { weeks } \\
& \mathrm{T}=100 \mathrm{eV} @ 4 \text { years } \\
& \mathrm{T}=10 \mathrm{eV} @ 400 \text { years } \\
& \mathrm{T}=1 \mathrm{eV} @ 40 \text { Kyears }
\end{aligned}
$$

Later (T~0.7 eV) matter-radiation equality, see exercise sheet \#3.

Hydrogen recombination $\quad p+e^{-} \rightarrow H+\gamma$

when universe becomes transparent will lead to release of CMB (when γ mean free path>Horizon)

Formation of first atom: $\quad p+e^{-} \rightarrow H+\gamma$

Baryons and γ at equilibrium through electromagnetic reactions
At the same time, rapid interactions between γ and e^{-}

$$
e^{-}+\gamma \leftrightarrow e^{-}+\gamma
$$

keep γ and matter in interaction -> opaque universe
$\Gamma_{\gamma} \approx n_{e} \sigma_{T} \quad$ Thomson cross section
\mathbf{e}^{-}and γ decouple when $H \sim \Gamma_{\gamma}$

Evolution of the e^{-}fraction

Consider T> $\mathbf{1 e V}$
$\mathbf{e}^{-}, \mathbf{p}$ and \mathbf{H} are all non-relativistic $\quad n_{i}=g_{i}\left(\frac{m_{i} T}{2 \pi}\right)^{3 / 2} e^{-\left(m_{i}-\mu_{i}\right) / T}$
After BBN, there are no free neutrons, they have either decayed or combined with p to form He , so

$$
n_{b} \approx n_{p}+n_{H}=n_{e}+n_{H}
$$

Binding energy of Hydrogen $B_{H}=m_{p}+m_{e}-m_{H}=13.6 \mathrm{eV}$
$n_{p}=n_{e}$ (electrical neutrality of universe)

$$
\left.\frac{n_{H}}{n_{e}^{2}}\right|_{e q}=\left(\frac{2 \pi}{m_{e} T}\right)^{3 / 2} e^{B_{H} / T}
$$

Define the fractional ionisation (free e- fraction) : $\quad X_{e}=\frac{n_{e}}{n_{b}}=\frac{n_{p}}{n_{p}+n_{H}}$

$$
\left.\frac{1-X_{e}}{X_{e}^{2}}\right|_{e q}=\left(\frac{2 \pi T}{m_{e}}\right)^{3 / 2} e^{B_{H} / T} \eta \frac{2 \zeta(3)}{\pi^{2}} \quad \begin{aligned}
& \text { Saha } \\
& \text { equation }
\end{aligned}
$$

When $B_{H} \ll T \ll m_{e}$, the RHS is $\ll 1$ so $X_{e} \approx 1$
At large T almost all protons and e^{-}are free
Because $\eta \ll 1$ and $T / m_{e} \ll 1$, T needs to fall $\ll B$ before RHS gets large.

Time of recombination

Defined as $\left.\quad X_{e}\right|_{r e c}=10^{-1} \quad$ i.e. 10% of free electrons and $\left(1-X_{e}\right) / X_{\mathrm{e}}^{2}=90 \%$

$$
T_{r e c} \approx B / 40 \approx 0.3 \mathrm{eV} \ll B
$$

(matter era)
$\rightarrow \quad t_{\text {rec }} \approx 290000$ years

Photon decoupling

photon "last scattering"
takes place when $\mathbf{x}_{\mathbf{e}}$ is small enough such that $\Gamma_{\gamma} \lesssim H$
$e^{-}+\gamma \leftrightarrow e^{-}+\gamma$
$\Gamma_{\gamma} \approx n_{e} \sigma_{T} \approx n_{b} \sigma_{T} X_{e}$ $\sigma_{T}=6.65 \times 19^{-25} \mathrm{~cm}^{2}=2 \times 10^{-3} \mathrm{MeV}^{-2}$

$$
\begin{aligned}
& T_{d e c} \sim 0.27 \mathrm{eV} \\
& X_{e}\left(T_{d e c}\right)=0.01 \\
& t_{d e c} \sim 380000 \text { years } \\
& \quad \rightarrow \text { CMB emission }
\end{aligned}
$$

Key events in the thermal history of the universe

Event	time t	redshift z	temperature T	
Inflation	$10^{-34} \mathrm{~s}(?)$	-	-	
Baryogenesis	$?$	$?$?	
EW phase transition	20 ps	10^{15}	100 GeV	
QCD phase transition	$20 \mu \mathrm{~s}$	10^{12}	150 MeV	
Dark matter freeze-out	?	$?$?	$X+\bar{X} \leftrightarrow \ell+\bar{\ell}$
Neutrino decoupling	1 s	6×10^{9}	1 MeV	$\nu_{e}+\bar{\nu}_{e} \leftrightarrow e^{+}+e^{-}, \quad e^{-}+\bar{\nu}_{e} \leftrightarrow e^{-}+\bar{\nu}_{e}$
Electron-positron annihilation	6 s	2×10^{9}	500 keV	$e^{+}+e^{-} \leftrightarrow \gamma+\gamma$
Big Bang nucleosynthesis	3 min	4×10^{8}	$100 \mathrm{keV}$	$\begin{gathered} n+\nu_{e} \leftrightarrow p^{+}+e^{-}, \quad n+e^{+} \leftrightarrow p^{+}+\bar{\nu}_{e} \\ n \leftrightarrow p^{+}+\bar{\nu}_{e}+e^{-} \\ n+p^{+} \leftrightarrow \mathrm{D}+\gamma \quad \mathrm{D}+p^{+} \leftrightarrow{ }^{3} \mathrm{He}+\gamma, \end{gathered}$
Matter-radiation equality	60 kyr	3400	0.75 eV	$\mathrm{D}+{ }^{3} \mathrm{He} \leftrightarrow{ }^{4} \mathrm{He}+p^{+}$
Recombination	260-380 kyr	1100-1400	$0.26-0.33 \mathrm{eV}$	$e^{-}+p^{+} \leftrightarrow \mathrm{H}+\gamma$
Photon decoupling	380 kyr	1000-1200	$0.23-0.28 \mathrm{eV}$	Thomson $e^{-}+\gamma \leftrightarrow e^{-}+\gamma$
Reionization	100-400 Myr	11-30	$2.6-7.0 \mathrm{meV}$	
Dark energy-matter equality	9 Gyr	0.4	0.33 meV	
Present	13.8 Gyr	0	0.24 meV	

From BBN, we have determined that $\eta \sim 6.0^{-10}$
(that is independently confirmed by CMB measurements)
What would $\boldsymbol{\eta}$ be in a symmetric universe?

Baryon to photon ratio $\eta \equiv \frac{n_{b}}{n_{\gamma}}$
$\Omega_{\text {baryons }}=\mathbf{n}_{\mathrm{b}} \mathrm{m}_{\mathrm{b}} / \boldsymbol{\rho}_{\mathrm{c}}$

Notation: $\mathbf{Y} \equiv \mathbf{n} / \mathbf{s}$

comoving number density

s~T^3: entropy density
Since $s \sim a^{-3} \quad Y \sim n a^{3}$

If no entropy is produced $\quad Y_{\text {today }}=Y_{\text {freese-out }}$

Calculation of the relic abundance of cold relics

Freese-out of a stable massive particle Back-of-the-envelope calculation

Cold relic $\quad n \sim(m T)^{3 / 2} e^{-m / T}$
Freese-out : $n \sigma \sim H \longrightarrow n_{\text {f.o } o} \sim \frac{T_{f .0}^{2}}{\sigma M_{P l}}$

$$
\begin{array}{cc}
x \equiv \frac{m}{T} & \left(\frac{m^{2}}{x}\right)^{3 / 2} e^{-x} \sim \frac{m^{2}}{x^{2}} \frac{1}{M_{P l} \sigma} \\
\longrightarrow \quad \sqrt{x} e^{-x} \sim \frac{1}{m M_{P l} \sigma}
\end{array}
$$

$$
\begin{aligned}
& x \sim \log \left[\sigma m M_{P l}\right] \\
& \mathbf{x} \sim \mathbf{2 0} \ldots \mathbf{3 0}
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{X}=\frac{m_{X}}{\rho_{c}} n_{X}\left(T=T_{0}\right) & =\frac{m_{X}}{\rho_{c}} T_{0}^{3} \frac{n_{0}}{T_{0}^{3}}=\frac{m_{X}}{\rho_{c}} T_{0}^{3} \frac{n_{f . o}^{3}}{T_{f .0}^{3}} \\
& =\frac{m_{X}}{\rho_{c}} T_{0}^{3} \frac{1}{T_{f . o} M_{P l} \sigma}=\frac{x_{f . o} T_{0}^{3}}{\rho_{c} M_{P l} \sigma}
\end{aligned}
$$

$$
\Omega_{X}=\frac{m_{X}}{\rho_{c}} T_{0}^{3} \frac{1}{T_{f . o} M_{P l} \sigma}=\frac{x_{f . o} T_{0}^{3}}{\rho_{c} M_{P l} \sigma}
$$

$$
\begin{aligned}
\rho_{c} & =8.098 \times 10^{-47} \mathrm{~h}^{2} \mathrm{GeV}^{4} \\
T_{0} & =2.36 \times 10^{-13} \mathrm{GeV}
\end{aligned}
$$

$$
\frac{\Omega_{X}}{0.2} \sim \frac{x_{f . o}}{20} \times\left(\frac{10^{-8} \mathrm{GeV}^{-2}}{\sigma}\right)
$$

'WIMP miracle’

The famous 'freese-out plot'

$$
\begin{aligned}
& \text { increasing } \\
& \sigma
\end{aligned}
$$

Example of a cold relic: protons

$$
\mathbf{X}=\mathbf{p}: \quad \quad \sigma \sim \sigma_{\pi} \sim m_{\pi}^{-2} \sim 10^{10} \sigma_{E W}
$$

$$
m_{\pi}=135 \mathrm{MeV}
$$

$$
X_{F} \sim 40 \quad T_{F} \sim 22 \mathrm{MeV} \quad Y_{\infty} \sim 7 \times 10^{-20}
$$

$$
\text { but we know from BBN that } Y_{\infty \sim \eta / 7 ~ 10-10}
$$

our freese-out calculation predicts a baryon number density that is $\boldsymbol{\sim} 9$ orders of magnitude too small than the measured one.

$$
\Omega_{\mathrm{b}} \sim \mathbf{1 0}^{-10} \text { in symmetric universe! }
$$

~10-9 smaller than measured

Existence of a primordial asymmetry

to prevent the annihilation catastrophe in a symmetric universe
Theory of baryogenesis required

Relic abundance of hot relics

Decoupling of relativistic species

Hot relic: freezes out when species is still relativistic.

The final value of the relic abundance is very insensitive to the details of freese-out.

The abundance is of the same order as that of photons

$$
n_{\infty} \approx 800 \frac{g_{e f f}}{g_{*}\left(x_{F}\right)} \mathrm{cm}^{-3}
$$

Hot relic

$$
\begin{aligned}
& \rho_{X}=m_{X} n_{X} \approx 800 \frac{g_{e f f}}{g_{*}\left(x_{F}\right)}\left(\frac{m_{X}}{\mathrm{eV}}\right) \mathrm{eV} \mathrm{~cm}^{-3} \\
& \rho_{c}=1.05 h^{2} \times 10^{4} \mathrm{eV} \mathrm{~cm}^{-3} \\
& \Omega_{X} h^{2} \approx 0.076 \frac{g_{e f f}}{g_{*}\left(x_{F}\right)}\left(\frac{m_{X}}{\mathrm{eV}}\right)
\end{aligned}
$$

proportional to mass \& insensitive to interaction cross section
The case of SM neutrinos: hot relics
Neutrinos decouple when T $\sim \operatorname{MeV}$ and $\mathrm{g}_{\mathrm{s}}=\mathrm{g} *=10.75$
For a single 2-component neutrino species geff $=2 \times 3 / 4=3 / 2$
$\mathbf{g e f f} / \mathbf{g}^{*}{ }_{\mathrm{s}}\left(\mathrm{X}_{\mathrm{F}}\right)=\mathbf{0 . 1 4 0}$

$$
\Omega_{\nu, \bar{\nu}} h^{2} \approx \frac{m_{\nu}}{93 \mathrm{eV}}
$$

3 flavours: $\quad n_{\nu}=336 \mathrm{~cm}^{-3}$
$\Omega_{\nu, \bar{\nu}} h^{2} \approx 0.11 \longrightarrow$ we would need $\mathbf{m}_{\nu} \sim 10 \mathbf{e V}!$
dark matter
while $\mathbf{m}_{\boldsymbol{v}} \leqslant \mathbf{2 e V}$ from Tritium beta-decay $\longrightarrow \Omega_{\nu, \overline{,}}{ }^{2} \lesssim 0.02$

Cosmology (CMB): $\quad \sum_{i} m_{\nu_{i}} \lesssim 0.12 \mathrm{eV} \quad \longrightarrow \quad \Omega_{\nu, \bar{\nu}} h^{2} \lesssim 0.001$

Cosmological constraints on neutrino mass

From structure formation
Hot Dark Matter prevents formation of structures and excludes light neutrinos as main component of dark matter.

The case of SM neutrinos: hot relics

Neutrinos become non-relativistic at T_{nr} when $\mathrm{m}_{\mathrm{v}}=\langle\mathrm{p}>$
For Fermi-Dirac distribution in relativistic limit $\langle\mathrm{p}>=3.15 \mathrm{~T}$

$$
\begin{aligned}
\rho & =\frac{7}{8} \frac{\pi^{2}}{30} g_{i} T^{4} \\
n & =\frac{3}{4} \frac{\zeta(3)}{\pi^{2}} g_{i} T^{3}
\end{aligned}
$$

$$
\langle p\rangle=\frac{\rho}{n}=\frac{7 \pi^{4}}{180 \zeta(3)} T \approx 3.15 T
$$

$$
\mathrm{T}_{\mathrm{nr}} \sim \mathrm{~m}_{\mathrm{v}} / 3
$$

$$
\begin{array}{ll}
\mathbf{T}_{\mathbf{n r}} / \mathbf{T}_{\mathbf{0}}^{\mathbf{v}}=\mathbf{a}_{\mathbf{0}} / \mathbf{a}_{\mathbf{n r}} & T_{\nu}^{0} \simeq 1.7 \times 10^{-4} \mathrm{eV} \simeq 1.9 \mathrm{~K} . \\
\mathbf{T}_{\mathbf{n r}}=\mathbf{T}_{\mathbf{0}}^{\mathrm{v}} / \mathbf{a}_{\mathbf{n r}} \sim \mathbf{m}_{\mathbf{v}} / \mathbf{3} & \\
\left|\Delta m_{31}^{2}\right|^{1 / 2}>\left|\Delta m_{21}^{2}\right|^{1 / 2}>T_{\nu}^{0} &
\end{array}
$$

At least two of the neutrino mass eigen states are non-relativistic today
Matter era : T < Teq $\sim 0.75 \mathrm{eV}$ $\mathbf{T}_{\mathbf{n r}}<\mathbf{T e q}_{\mathbf{e q}} \quad$ (Teq:matter-radiation equality)
Neutrinos become non-relativistic deep in matter era

Once neutrinos have decoupled from the plasma, they simply travel in free fall in the expanding universe.

Energetic motion of neutrinos destroys formation of small structures and prevents formation of first structures.

Free streaming of fast-moving neutrinos washes out any inhomogeneities in their spatial distributions that will later become galaxies.

How structures form

The early universe is filled with an almost homogeneous matter density field with tiny random fluctuations.
Perturbations grow via gravitational instability, and eventually form galaxies and galaxy clusters, etc.
Leading theory for the origin of small fluctuations is inflation. (Quantum fluctuations on the inflaton field.)

Free streaming length $\lambda_{\text {Fs }}$: sets minimum scale for structure formation

The distance traversed by a free-streaming particle at time t is

$$
\lambda_{F S}(t)=\int_{0}^{t} d r=\int_{0}^{t} \frac{v\left(t^{\prime}\right)}{a\left(t^{\prime}\right)} d t^{\prime}
$$

$a(t) d r=v(t) d t$ in free fall

Initially v~c, later v~1/a
Primordial density fluctuations smaller than $\lambda_{F S}$ get washed out as particles move from overdense to underdense regions, while fluctuations larger than $\lambda_{F S}$ are unaffected.

Free-streaming ends when neutrinos become nonrelativistic:

$$
\left.\begin{array}{rl}
\lambda_{F S}= & \int_{0}^{t_{N R}} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}
\end{array}+\int_{t_{N R}}^{t_{e q}} \frac{v\left(t^{\prime}\right)}{a\left(t^{\prime}\right)} d t^{\prime}\right)
$$

$t_{\text {eq }}$: when structures start to form
$t_{N R} \sim l_{H}$ Horizon size when relic becomes non-relativistic:

$$
l_{H} \sim 1 / H(T=m) \sim M_{P I} / m^{2}
$$

Corresponding present size

$$
\mathrm{I}_{\mathrm{H}, \mathrm{O}}=\mathrm{I}_{\mathrm{H}} \times\left(\mathrm{T} / \mathrm{T}_{0}\right) \sim \mathrm{M}_{\mathrm{PI}} /\left(\mathrm{T}_{\mathrm{o}} \mathrm{~m}\right)
$$

= Present maximum size of suppressed density perturbations

$$
\begin{array}{ll}
\mathrm{m} \sim 1 \mathrm{keV} & ->\mathrm{I}_{\mathrm{H}, 0} \sim 0.1 \mathrm{Mpc} \\
\mathrm{~m} \sim 1 \mathrm{eV} & ->\mathrm{I}_{\mathrm{H}, 0} \sim 100 \mathrm{Mpc}
\end{array}
$$

(1 Mpc= $10^{38} / \mathrm{GeV}$)
$\lambda_{\mathrm{FS}, \text { max }}$: maximum size of objects that could not have been formed in a neutrino dark matter-only universe.

$$
\lambda_{F S}^{\infty}=\int_{0}^{t} d r \approx 70 \mathrm{Mpc} \frac{1 \mathrm{eV}}{T_{n r}} \approx \frac{210 \mathrm{Mpc} 1 \mathrm{eV}}{m_{\nu}}
$$

Structures smaller than ~ 210 Mpc should have been destroyed by a neutrino of mass $<1 \mathrm{eV}$ if they were the main constituents of Dark Matter.

The limit $\mathrm{m}_{\mathrm{v}}=1 \mathrm{keV}$: warm dark matter limit $->$ free streaming around 0.1 Mpc which is typical size for perturbations that developed into small structures like dwarf galaxies.

CDM:	objects with $\lambda_{\text {FS }} \ll$ protogalaxy		
Warm DM:	\ldots	$\lambda_{F S} \sim$	\ldots
Hot DM:	\ldots	$\lambda_{F S} \gg$	\ldots

For hot dark matter:

Larger structures (clusters of galaxies) form first and then fragment into smaller structures.

This sequence of events is in disagreement with observations.

Conclusion: Dark Matter must be cold.

Energy density from thermal relics

("thermal"=that were once in thermal equilibrium)

$$
\frac{\Omega_{X}}{0.2} \sim \frac{x_{f . o}}{20} \times\left(\frac{10^{-8} \mathrm{GeV}^{-2}}{\sigma}\right)
$$

cold relic

$$
\Omega_{X} h^{2} \approx 0.076 \frac{g_{e f f}}{g_{*}\left(x_{F}\right)}\left(\frac{m_{X}}{\mathrm{eV}}\right)
$$

hot relic

Lower bound on Dark Matter Mass

Dark Matter must behave classically to be confined on galaxy scales. DM with De Broglie wavelength > size of dwarf galaxies ~kpc will prevent their formation

$$
\text { We demand } \lambda<\text { kpc }->m v>1 / k p c
$$

```
1 pc= 3\times1018 cm= 3\times10'8 / (2\times10-14 GeV)=1032 GeV-1}=(1\mp@subsup{0}{}{-32}\textrm{GeV}\mp@subsup{)}{}{-1
1 kpc-1 =10-35 GeV=10-26 eV
    v~10-3
    mv~m 10-3
    mDM }210-23 eV
```


More stringent bound for fermionic Dark Matter

Pauli exclusion principle. Phase space density for fermions has a maximum value,

$$
\begin{gathered}
M_{\text {halo }}=m V \int d^{3} p f(p)<m V \int d^{3} p<m V(m v)^{3} \\
v \sim \sqrt{\frac{G M_{\text {halo }}}{r_{\text {halo }}}} \\
M_{\text {halo }}<R_{\text {halo }}^{3} m^{4}\left(\frac{G M_{\text {halo }}}{R_{\text {halo }}}\right)^{3 / 2} \\
m>\frac{1}{\left(G^{3} R_{\text {halo }}^{3} M_{\text {halo }}\right)^{1 / 8}}
\end{gathered}
$$

for dwarf galaxies: m>0.7 keV

