

ESHEP, Israel December 5-6, 2022

### **Itzhak Tserruya**



### <u>Outline</u>

### LECTURE II

- ✤ Dileptons
  - > Motivation
  - Challenges of measurement
  - SPS results: CERES, NA60
  - RHIC results: PHENIX, STAR
  - Prospects
- Energy loss
  - > Single hadrons high  $p_T$  suppression
  - Jet quenching
  - The golden channels

### Summary

# Dileptons

### **Motivation**

- The Quark Gluon Plasma created in relativistic heavy ion collisions is characterized by two fundamental properties:
  - Deconfinement
  - Chiral Symmetry Restoration
- □ Virtual photons i.e. dileptons (e<sup>+</sup>e<sup>-</sup>, µ<sup>+</sup>µ<sup>-</sup>) are sensitive probes of both properties and in particular dilepton are unique probes of CSR.
- Thermal radiation emitted in the form of real photons or virtual photons (dileptons) provides a direct fingerprint of the matter formed (QGP and HG) and a measurement of its temperature.

$$\mathsf{QGP} \quad q\overline{q} \longrightarrow \gamma^* \longrightarrow l^+ l^-$$

HG  $\pi^+\pi^- \longrightarrow \rho \longrightarrow \gamma^* \longrightarrow l^+l^-$ 

# <u>Chirality</u>

### What is chirality?

- Comes from the greek word " $\chi\epsilon\iota\rho$ " meaning hand
- An object or a system has *chirality* if it differs from its mirror image.

Such objects then come in two forms, L and R, which are mirror images of each other.

### **Simple definition:**

• The chirality of a particle is determined by the projection of its spin along its momentum direction (this is in fact the definition of helicity. In the high energy limit chirality ≈ helicity).



For massive particles, chirality is not conserved.

### **QCD and explicit chiral symmetry breaking**

> QCD, the theory of the strong interaction, is encoded in a one line Lagrangian:



> The mass term  $m_n \psi_n \psi_n$  explicitly breaks the chiral symmetry of the QCD Lagrangian

## Spontaneous Chiral Symmetry Breaking

• <u>Chiral limit:</u>  $m_u = m_d = m_s = 0$ In this idealized world, the interactions quark-gluon conserve the quark chirality.

In the chiral limit:

all states have a chiral partner with opposite parity and equal mass

 $m_u$  and  $m_d$  are so small ( $m_u \approx 4 \text{ MeV} \quad m_d \approx 7 \text{ MeV}$ ) that our world should be very close to the chiral limit

- ➢ In reality:
- $\rho (J^P = 1^-) \text{ m} = 770 \text{ MeV}$  chiral partner  $a_1 (J^P = 1^+) \text{ m} = 1250 \text{ MeV} \rightarrow \Delta \approx 500 \text{ MeV}$
- For the nucleons the splitting is even larger:
   N (1/2<sup>+</sup>) m=940 MeV chiral partner N<sup>\*</sup> (1/2<sup>-</sup>) m=1535 MeV →∆≈600 MeV
- The differences are too large to be explained by the small current quark masses

Chiral symmetry is spontaneously ( $\equiv$  dynamically) broken in nature Quarks have large "effective" mass  $m_u \approx m_d \approx 1/3 m_N \approx 300 \text{ MeV/c}^2$ Constituent quark masses

# **Chiral Symmetry Restoration**

➤The spontaneous breaking is marked by a non-zero value of an order parameter, the quark condensate:

 $<\overline{q}q>\approx 250 MeV^3$ 

> Numerical calculations of QCD on the lattice show that at high T (T>T<sub>C</sub>) or high baryon densities ( $\rho$ > $\rho_{c}$ ), the quark condensate vanishes:

 $\langle qq \rangle \rightarrow 0$ 



constituent mass → current mass chiral symmetry (approximately) restored Chiral partners (e.g. ρ and a<sub>1</sub>) become degenerate Coincides with the deconfinement phase transition?

How is the quark condensate linked to the hadron properties (mass and width)? How is the degeneracy of the chiral partners achieved?

### $\rho - a_1$

If CS is restored the masses of the  $a_1$  and  $\rho$  mesons should become equal.

Problem: very hard to measure the  $a_1$  meson

|                 | Mode                                             | Fraction $(\Gamma_{\rm c}/\Gamma)$ |
|-----------------|--------------------------------------------------|------------------------------------|
|                 | + - 0                                            | (1,1)                              |
| 1               | $\pi$ $\pi$ $\pi$                                |                                    |
| Γ2              | $\pi^0 \pi^0 \pi^0$                              |                                    |
| Г3              | $( ho\pi)_{S-wave}$                              | seen                               |
| Г4              | $(\rho \pi)_{D-wave}$                            | seen                               |
| Γ <sub>5</sub>  | $(\rho(1450)\pi)_{S-wave}$                       | seen                               |
| Г <sub>б</sub>  | $(\rho(1450)\pi)_{D-wave}$                       | seen                               |
| Γ <sub>7</sub>  | $\sigma \pi$                                     | seen                               |
| Г <sub>8</sub>  | $f_0(980)\pi$                                    | not seen                           |
| و٦              | $f_0(1370)\pi$                                   | seen                               |
| Γ <sub>10</sub> | f <sub>2</sub> (1270)π                           | seen                               |
| $\Gamma_{11}$   | $\overline{K}\overline{K}^*(892) + \text{ c.c.}$ | seen                               |
| $\Gamma_{12}$   | $\pi\gamma$                                      | seen                               |

a1(1260) DECAY MODES

### Experimental efforts focused on the $\rho$ meson



Low-mass dileptons are the best probes to look for CSR effects:

\* Large mfp:  $\rightarrow$  no final state interaction

carry information from place of creation to detectors.

|        | m [MeV] | $\Gamma_{tot}$ [MeV] | τ [fm/c] |
|--------|---------|----------------------|----------|
| ρ      | 770     | 150                  | 1.3      |
| ω      | 782     | 8.6                  | 23       |
| $\phi$ | 1020    | 4.4                  | 44       |

Short lifetime compared to the medium lifetime (τ ≈ 10 fm/c) can decay and be regenerated in the medium

# Advantages and Chellenges

- No final state interaction: large mfp compared to the size of the system.
   Once produced they leave the fireball without any further interaction
   carry direct information from place of production to
   detectors
- Production rate strongly increasing function of T and density
   most abundantly produced at the early stage of the collisions
- □ …But very difficult measurements
  - large combinatorial background
- Emitted by a variety of sources all along the history of the collision
   need a very good understanding of all these sources to disentangle the interesting ones.

# The double challenge

### **1. Experimental challenge**

- Need to detect a very weak source of  $e^+e^-$  pairs hadron decays (m>150 MeV/c<sup>2</sup> p<sub>T</sub> > 200 MeV/c) ~ 10<sup>-6</sup> /  $\pi^0$
- in the presence of hundreds of charged particles
   central mid-rapidity Au-Au collision at RHIC (dN<sub>ch</sub>/dη) 650
- and several pairs per event from trivial origin  $\pi^{\circ}$  Dalitz decays ~  $10^{-2} / \pi^{0}$ +  $\gamma$  conversions (assume 1% radiation length) 2 .  $10^{-2} / \pi^{0}$

### huge combinatorial background $\propto$ (dN<sub>ch</sub> / dy )<sup>2</sup>

# Combinatorial background



It often happens that only one electron is detected and the other is lost due to:

- limited geometrical acceptance
- Iow p<sub>T</sub> particle curling in the magnetic field
- particle not reconstructed

Since the origin of each track is unknown, must pair all electrons with all positrons in the same event

 $\rightarrow$  Signal (S) and combinatorial Background (B)

B must be subtracted using a mixed event technique or using the like sign spectrum

# Consequences of poor S/B ratio

- The signal is obtained by subtracting the combinatorial background (estimated by the like-sign pair yield or a mixed event technique) from the total unlike sign yield:
   S = U - B
- The <u>statistical error</u> of S is not dictated by the magnitude of S but by the magnitude of the background. In the case S<<B</p>

∆S ≈ √2B

It is useful to consider the <u>"background free equivalent"</u> signal, i.e. the signal with the same relative error as in a situation of zero background:

 $S_{bfe} = S^2 / 2B$ 

A signal S =  $10^4$  pairs measured with a S/B = 1/200 has the same relative statistical error as 25 pairs measured in free background conditions.

 The <u>systematic uncertainty</u> in S is dominated by the systematic uncertainty in B. Even if the event mixing technique is mastered to a fantastic precision of ±0.25%, the resulting systematic uncertainty in ∆S/S is ~50% (assuming S/B=1/200). Even in an infinite statistics measurement the systematic uncertainty will be very large.

### The double challenge

### **2. Analysis challenge**

Electron pairs are emitted through the whole history of the collision (from the QGP phase, mixed phase, HG phase and after freeze-out)

- □ need to disentangle the different sources.
- □ need excellent reference pp and dA data.

need independent information about the known sources in nuclear collisions

# Schematic dilepton spectrum



# <u>Au+Au Cocktail</u>

Cocktail of known sources:

• Dalitz decays:  $\pi^{0},\eta,\eta' \rightarrow e^{+}e^{-}\gamma$   $\omega \rightarrow \pi^{0}e^{+}e^{-}$ •Resonance decays:  $\rho, \omega, \phi \rightarrow e^{+}e^{-}$ •Semi-leptonic decays of HF:  $cc, bb \rightarrow e^{+}e^{-}$ 

- π<sup>0</sup> and charged π data fit to a modified Hagedorn function:

 $E\frac{d^{3}}{dp^{3}} = \frac{A}{(e^{-(ap_{T}+bp_{T}^{2})} + p_{T}/p_{0})^{n}}$ 

- Use m<sub>T</sub> scaling for shape of other hadrons, normalize to measured data
- Fits are done independently for each particle and each centrality





# Au+Au Cocktail



Cocktail of known sources:

•Dalitz decays:  $\pi^{0},\eta,\eta' \longrightarrow e^{+}e^{-}\gamma$  $\omega \longrightarrow \pi^{0}e^{+}e^{-}$ 

•Resonance decays:  $\rho, \omega, \phi \longrightarrow e^+e^-$ 

•Semi-leptonic decays of HF:  $c\overline{c}$ ,  $b\overline{b} \longrightarrow e^+e^-$ 

- Sources independently measured in AA collisions
- If not, use  $m_T$  scaling or scale from pp collisions

# Dilepton Experiments

# **Dilepton experiments**



# SPS results:

### CERES – low masses NA60 – low and intermediate masses

# <u>CERES – NA45</u>

Original setup (1992) – minimal configuration, no particle tracking double RICH spectrometer, for eid and CB rejection



- Field free region in RICH-1 (allows rejection of close pairs)
- Field lines in RICH-2 pointing to the target (parallel to particle trajectory)
- Detectors upstream of target (not traversed by the large flux of forward-going charged particles

# <u>CERES – NA45</u>

2000 setup – tracking: doublet of SiDC – RICH1 – RICH2 – TPC improved momentum and mass resolutions eid: double RICH, rejection RICH1 and SiDC



ESHEP, Jerusalem, Dec. 5-6, 2022

# **CERES** Pioneering Results (I)



# **CERES Pioneering Results (II)**



Last CERES result (2000 Pb run) PLB 666(2008) 425

Strong enhancement of low-mass e<sup>+</sup>e<sup>-</sup> pairs (wrt to expected yield from known sources)

Enhancement factor (0.2 <m < 1.1 GeV/c<sup>2</sup>): 2.45  $\pm$  0.21 (stat)  $\pm$  0.35 (syst)  $\pm$  0.58 (decays)



# Interpretation (s)?

# Dropping Mass or Broadening (I)?

\* Invoke new source not present in pp or pA collisions:

 $\pi^+$   $e^+$  $\rho$   $\gamma^*$ 

### thermal radiation from HG

 vacuum ρ not enough to reproduce data

### CERES Pb-Au 158 A GeV 95/96 data



EPJ C41 (2005) 475

### <u>In-medium modification of the ρ meson</u>

### **Dropping mass**

Brown-Rho conjecture that links hadron masses to the quark condensate. Effective QCD Lagrangian, quarks are the relevant d.o.f.

Brown-Rho scaling PRL 66, (1991) 2720

 $\frac{m_{\rho}^*}{m_{\rho}} \approx \frac{m_{\omega}^*}{m_{\omega}} \approx \left(\frac{\langle \overrightarrow{qq} \rangle_{\rho^*}}{\langle \overrightarrow{qq} \rangle_0}\right)^{1/3} = 1 - 0.26 \frac{\rho^*}{\rho_0}$  $= 1 - 0.16 \frac{\rho^*}{\rho_0}$ 

Hatsuda & Lee PR C46, (1992) R34



### **Broadening**

Rapp & Wambach Adv. Nucl. Phys. 25, 1 (2000)

ρ-meson scatters off baryons in the high density medium → collision broadening.



At SPS both the mass drop and thebroadening of the ρ-meson are due to the highbaryon density.28

### Dropping Mass or Broadening (I)? \* Interpretations invoke: CERES Pb-Au 158 A GeV 95/96 data $\pi^+\pi^- \rightarrow \rho \rightarrow \gamma^* \rightarrow e^+e^-$ Pb-Au 158 AGeV $\sigma/\sigma_{\rm aeo} \approx 28 \%$ /<N<sub>ch</sub>> (100 MeV/c<sup>2</sup>)<sup>-1</sup> $<dN_{cb}/d\eta>=245$ 10<sup>-5</sup> 2.1<n<2.65 combined 95/96 data

 $10^{-6}$ 

-7 Np-9

10<sup>-8</sup>

0

eev

0.2

0.4

0.6

EPJ C41 (2005) 475

0.8

#### dropping ρ meson mass (Brown et al)

\* in-medium modifications of  $\rho$ :

broadening 
 p spectral shape

vacuum p not enough to

reproduce data

thermal radiation from HG

Itzhak Tserruya

Rapp and Wambach

1.4

 $m_{ee}$  (GeV/c<sup>2</sup>)

1.6

p<sub>t</sub>>0.2 GeV/c

 $\Theta_{ee}$ >35 mrad

→ee

1.2

## Dropping Mass or Broadening (II) ?

\* Interpretations invoke:

 $\pi^+\pi^- \rightarrow \rho \rightarrow \gamma^* \rightarrow e^+e^-$ 



thermal radiation from HG

\* vacuum ρ not enough to reproduce data



**\*** $dropping <math>\rho \text{ meson mass}$ 

(Brown et al)



# Data favor the broadening scenario.

## Dropping Mass or Broadening (III) ?

\* Interpretations invoke:

 $\pi^+\pi^- \rightarrow \rho \rightarrow \gamma^* \rightarrow e^+e^-$ 



thermal radiation from HG





scenario.

ESHEP, Jerusalem, Dec. 5-6, 2022

31

### NA60 – low masses

### NA60 low-mass dimuons



### Superb data!!!

□ S/B = 1/7

 $\square \ \omega, \phi$  and even  $\eta$  peaks clearly visible in dimuon channel

### <u>Low-mass excess</u>

Dimuon excess isolated by subtracting the hadron cocktail (without the  $\rho$ )



<dN<sub>ch</sub>/dy><sub>v=3.8</sub>

### NA60 low-mass dimuons excess



Isolate excess by subtracting the cocktail (without the  $\rho$ ) from the data

Excess shape consistent with broadening of the ρ (Rapp-Wambach)

**Dropping mass of the** ρ (Brown-Rho) ruled out

 Conclusions valid also as a function of  $p_T$ 

Is this telling us something about CSR? 35

ESHEP, Jerusalem, Dec. 5-6, 2022

# NA60 – intermediate masses (m = 1-3 GeV/c<sup>2</sup>)
#### NA50 IMR results

- Drell-Yan and Open Charm are the main contributions in the IMR
- p-A is well described by the sum of these two contributions (obtained from Pythia)
- The yield observed in heavy-ion collisions exceeds the sum of DY and OC decays, extrapolated from the p-A data.
- The excess has mass and p<sub>T</sub> shapes similar to the contribution of the Open Charm (DY + 3.6OC nicely reproduces the data).



#### NA60: IMR excess is a prompt source



... But the offset distribution (displaced vertex) is not compatible with this assumption.

Take offset shape of prompt source from muons from phi and J/psi decays.

Take offset shape of non-prompt source from simulated open charm decays.

Fixed prompt and fit non-prompt (open charm)



Fit prompt and non-prompt (open charm)



#### Origin of IMR excess

Renk/Ruppert, PRL 100,162301 (2008)



Dominant process in mass region  $m > 1 \text{ GeV/c}^2$ :

qq annihilation

ESHEP, Jerusalem, Dec. 5-6, 2022

#### Acceptance corrected invariant mass spectrum



- LMR:
  - → Thermal radiation from HG:  $\pi^+\pi^- \rightarrow \rho \rightarrow \mu^+\mu^-$

Resonances melt as the system approaches CSR?

- IMR:
  - → Thermal radiation from QGP:  $q\bar{q} \rightarrow \mu^+\mu^-$

# **PHENIX, STAR**PHENIX: p+p d+Au and Au+Au at 200 GeV STAR: p+p and Au+Au at 200 GeV BES Au+Au at 62.4, 39, 27 and 19.6 GeV

#### Low-mass e<sup>+</sup>e<sup>-</sup> Pairs at RHIC

- At SPS energies, the ρ-meson broadening, that explains both the CERES and NA60 data, relies on a high baryon density.
  - □ Baryon density at RHIC?

|                                                | SPS     | RHIC    |
|------------------------------------------------|---------|---------|
|                                                | (Pb-Pb) | (Au-Au) |
| dN( p ) / dy                                   | 6.2     | 20.1    |
| Produced baryons (p, p, n, n)                  | 24.8    | 80.4    |
| $p - \overline{p}$                             | 33.5    | 8.6     |
| Participants nucleons (p – $\overline{p}$ )A/Z | 85      | 21.4    |
| Total baryon density                           | 110     | 102     |

□ Baryon density is almost the same at RHIC and SPS (the decrease in the participating nucleons transported to mid-rapidity is compensated by the copious production of nucleon-antinucleon pairs)

#### Low-mass e<sup>+</sup>e<sup>-</sup> Pairs at RHIC



#### Enhancement of low-mass pairs persists at RHIC

#### Open charm contribution becomes significant

#### Dileptons in PHENIX: p+p and d+Au



#### **Dileptons in PHENIX: Au+Au**



□ HBD upgrade:

- Improved hadron rejection:  $30\% \rightarrow 5\%$
- Improved signal sensitivity
- □ New improved analysis
  - Neural network
  - Flow modulation incorporated in the mixed event using an exact analytical method
  - Absolutely normalized correlated BG

#### MB Enhancement factor

Data/Cocktail ±stat ±syst ±model m=0.3 – 0. 76 (GeV/c<sup>2</sup>)

 $2.3 \pm 0.4 \pm 0.4 \pm 0.2$ 

#### Consistent with STAR results

#### **Dileptons in STAR: Au+Au**



- LMR: clear enhancement wrt to cocktail small centrality dependence observed at all energies down to 19.6 GeV
  - ✤ IMR: no clear picture

#### Comparison to Rapp model



#### Same model that describes the SPS data reproduces the dilepton excess all the way up to top RHIC energy

Itzhak Tserruya

#### **Dilepton measurements - Summary**

- All HI systems at all energies studied show an excess of dileptons wrt to hadronic sources
- Excess consistently reproduced by microscopic many body model (Rapp et al.)
- LMR:
  - ➤ Thermal radiation from HG  $\pi^+\pi^- \rightarrow \rho \rightarrow \mu^+\mu^-$
  - Tracks the medium lifetime
- IMR:
  - ➤ Thermal radiation from QGP qq →  $\mu^+\mu^-$
  - Provides a measurement of <T>
- Emerging picture for the realization of CSR: the ρ meson broadens in the medium, the a<sub>1</sub> mass drops and becomes degenerate with the ρ.



#### □ Effects exclusively observed in AA collisions

#### Prospects

- Onset of deconfinement? Onset of CSR? Energy scan of dilepton excess
  - Integrated yield in the LMR tracks the fireball lifetime
  - Inverse slope of the mass spectrum in the IMR provides a measurement of <T>
     First order phase transition?
  - Thermal radiation down to  $\sqrt{s_{NN}} 6$  GeV ?



#### LMR as chronometer

IMR as thermometer

#### **S18: HADES dileptons**





#### MPD at NICA

 $Vs_{NN} = 4 - 11 \text{ GeV}$ Expected to start operation in 2024





 $Vs_{NN} = 2 - 5 \text{ GeV}$ Expected to start operation in 2028?

## Parton energy loss

#### An old prediction



#### **Motivation**



Goal: achieve same level of understanding for partons traversing strongly interacting matter (QCD)

54

## Single Hadrons -High p<sub>T</sub> suppression R<sub>AA</sub>



#### <u>High p<sub>T</sub> Suppression in Au-Au collisions !!</u>

Major RHIC discovery



Central collisions are strongly suppressed - Factor 5! but Cronin enhancement

#### Identified particles R<sub>AA</sub>

#### The PHENIX T-shirt plot



 □ High p<sub>T</sub>: Same suppression level for all particles at p<sub>T</sub> larger than ~7 GeV/c
 □ Low p<sub>T</sub>: Hierarchy in the suppression pattern? R<sub>AA</sub>(baryons) > R<sub>AA</sub>(strange mesons, e<sub>HE</sub>) > R<sub>AA</sub>(light quark mesons)

#### Also observed at LHC



□ Extended to much higher p<sub>T</sub>
 □ Electroweak probes give R<sub>AA</sub> = 1

#### **Comparison to theory**



#### Charged particle R<sub>AA</sub> alone is not highly discriminating

### Jet Quenching

#### **Spectacular events**

Jet reconstruction in HI collisions?

STAR @ RHIC Au+Au  $\sqrt{s_{NN}}$  = 200 GeV/c



CMS @ LHC Pb+Pb  $\sqrt{s_{NN}}$  = 2.76 TeV/c



#### Jet quenching at RHIC



#### Jets at LHC





#### Medium is opaque

#### Jets - R<sub>AA</sub>



R<sub>AA</sub> monotonically decreases with N<sub>part</sub> Jet yield suppressed in central collisions by about a factor of 2 Suppression level independent of jet energy Suppression level independent of rapidity

#### **Fragmentation Functions**

PRC 98, 024908 (2018)



To quantify possible modifications of the fragmentation functions take the ratio to the same quantity in pp collisions:

#### **Modifications of Fragmentation Functions**



Significant modifications of the FF in central collisions:

- Enhancement of soft fragment yield for p<sub>T</sub> < 4 GeV</p>
- Enhancement of hard fragments at z > 0.3
- Suppression between these two enhancements

## The golden channels: • Calibrated Probes: γ, Ζ, W – Jet



- $\gamma$ , Z, W unmodified by the medium. Provide direct information about the initial parton energy
- $\gamma$  measurements difficult due to large background
- Z, W are practically background free, but need high luminosity

#### **Electroweak Probes**



#### First measurements

#### <u>y-Jet Momentum Balance</u>



- Momentum ratio distribution shifts and decreases with centrality in γ-Jet
- Same trend in Z jet but uncertainties too large.

#### Z-Jet Momentum Balance



#### <u>y-Jet Momentum Balance</u>



- Quantify the  $\gamma$ -jet  $p_T$  imbalance with the asymmetry ratio  $x_{j\gamma} = p^{jet} r/p^{\gamma}$
- Significant modifications (lower mean and smaller integral values) in 0-30% centrality PbPb collisions
- ✤ Much smaller modifications in the 30–100% centrality PbPb collisions.

#### **<u>y</u>-Jet Fragmentation Function**



PRL 121, 242301 (2018)

 $\xi_T^{\gamma} = ln \left[ - |\vec{p}_T^{\gamma}|^2 / (\vec{p}_T^{trk}, \vec{p}_T^{\gamma}) \right]$  $\xi^{jet} = \ln\left[|p^{jet}|^2/(\vec{p}^{trk}, \vec{p}^{jet})]\right]$ 

N<sup>jet</sup> number of  $\gamma$ -jet pairs

- ✤ For peripheral collisions, 50-100% centrality, Pb-Pb consistent with pp.
- In more central collisions:
  - Enhancement of the FF in Pb-Pb collisions with respect to the pp reference data for ξ<sup>jet</sup> > 2.5 - 3 (low-p<sub>T</sub> tracks)
  - ▶ Small suppression for  $0.5 < \xi^{jet} < 2.5 3$  (high-p<sub>T</sub> tracks).
  - > Effects more pronounced in the  $\xi_T^{\gamma}$  distribution.

#### Unbiased characterization of the parton energy loss in the medium
## <u>Outlook</u>

□ At the high energy frontier (LHC and RHIC till 2025):

Focus the experimental efforts on precision measurements to characterize the properties of the QGP.

□ At the low energy frontier (STAR-BESII, NICA and FAIR):

- Explore the QCD phase diagram in the region of high baryon density
- Search for the conjectured critical point and 1<sup>st</sup> order phase transition
- Search for the onset of deconfinement and CSR phase transition(s).