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What can you expect from the 
Lectures
Lecture 1:  Basic Concepts
                  Histograms, PDF, Testing Hypotheses,
                  LR as a Test Statistics, p-value, POWER, CLs
                  Measurements
Lecture 2: Wald Theorem, Asymptotic Formalism, Asimov Data   
                   Set, Feldman-Cousins, PL & CLs, Asimov Significance
Lecture 3: Look Elsewhere Effect
                 1D LEE the non-intuitive thumb rule  
                               (upcrossings, trial #~Z)                       
                 2D LEE (Euler Characteristic)
Lecture 4: Basic Introduction to Deep Learning  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Support Material
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998. 

L. Lista Statistical methods for Data Analysis, 2nd Ed. Springer, 2018 

G. Cowan  PDG
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http://pdg.lbl.gov/2017/reviews/rpp2017-rev-statistics.pdf

http://pdg.lbl.gov/2017/reviews/rpp2017-rev-statistics.pdf


Preliminaries
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Backgammon
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What is the probability 
to toss exactly 3 times
6:6 in 10 rounds?



In a Nut Shell
The binomial distribution with parameters n and p 
is 
the discrete probability distribution of the k number of successes 
in a sequence of n independent experiments. (Wikipedia)

P(k :n, p) = n
k

⎛
⎝⎜

⎞
⎠⎟
pk (1− p)n−k

If X ~ B(n, p)
E[X ]= np
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P(k :n, p) = n
k

⎛
⎝⎜

⎞
⎠⎟
pk (1− p)n−k

The Poisson distribution with parameter λ = np can be used as an 
approximation to B(n, p) of the binomial distribution if n is sufficiently 
large and p is sufficiently small. 

P(k :n, p) n→∞,np=λ⎯ →⎯⎯⎯ Poiss(k;λ) = λ ke−k

k!
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If X ~ Poiss(k;λ)
E[X]=Var[X]= λ



From Binomial to Poisson to Gaussian
P(k :n, p) = n

k
⎛
⎝⎜

⎞
⎠⎟
pk (1− p)n−k

P(k :n, p) n→∞,np=λ⎯ →⎯⎯⎯ Poiss(k;λ) = λ ke−k

k!
k = λ, σ k = λ
k→∞⇒ x = k
Using Stirling Formula

prob(x)=G(x,σ = λ ) = 1
2πσ

e−(x−λ )2 /2σ 2

This is a Gaussian,  or  Normal  distribution 
with mean and  variance of  λ
9
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Histograms

mass

N collisions

p(Higgs event) =
Lσ (pp→ H ) Aε ff

Lσ (pp)
Prob to see nH

obs in N collisions is

P(nH
obs ) =

N
nH
obs

⎛

⎝
⎜

⎞

⎠
⎟ pnH

obs

(1− p)N−nH
obs

ℓimN→∞P(nH
obs ) = Poiss(nH

obs ,λ) = e
−λλ nH

obs

nH
obs !

λ = Np = Lσ (pp) ⋅
Lσ (pp→ H ) Aε ff

Lσ (pp)
= nH

exp
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A counting experiment
● The Higgs hypothesis is that of signal s(mH)
                 
   For simplicity unless otherwise noted
 
● In a counting experiment

● μ is the strength of the signal (with respect to the expected 
Standard Model one) 

● The hypotheses are therefore denoted by Hμ 

● H1 is the SM with a Higgs, H0 is the background only model 

s(mH ) = Lσ SM ⋅ A ⋅ε
s(mH ) = Lσ SM

n = µs(mH )+ b

µ =
Lσ obs(mH )
Lσ SM (mH )

=
σ obs(mH )
σ SM (mH )

11
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A Tale of Two Hypotheses

● Test the Null hypothesis and try to reject it 

● Fail to reject it OR reject it in favor of the alternative 
hypothesis 

NULL ALTERNATE

12
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A Tale of Two Hypotheses
NULL

H0- SM w/o  Higgs H1- SM with Higgs

14

We quantify rejection by p-value (later)

ALTERNATE
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Swapping Hypotheses!exclusion

 

● Reject H1 in favor of H0

    

NULL ALTERNATE
H0- SM w/o  Higgs H1- SM with Higgs

Excluding H1 (mH)!Excluding the Higgs with a 
mass mH

We quantify rejection by p-value (later)

15
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Likelihood
● Likelihood is the 

compatibility of the 
Hypothesis with a given 
data set. 
But it depends on the data  
 
Likelihood is not the 
probability of the 
hypothesis given the data Bayes Theorem

Prior

P(H | x) = P(x |H ) ⋅P(H )
ΣH P(x |H )P(H )

P(H | x) ≈ P(x |H ) ⋅P(H )

16

L(H ) = P(x |H )

P(x |H ) ≠ P(H | x)



● The Bayesian infers from the data using priors 
 

● Priors is a science on its own. 
 Are they objective? Are they subjective?

● The Frequentist calculates the  
probability of an hypothesis to  
be inferred from the data based  
on a large set of hypothetical repeated experiments 
Ideally, the frequentist does not need priors, or any 
degree of belief while the Baseian posterior based inference is a 
“Degree of Belief”.

● However, NPs (Systematic) inject a Bayesian flavour to any 
Frequentist analysis

Eilam Gross Statistics in PP

Frequentist vs Bayesian

  P(H | x) ≈ P(x | H ) ⋅P(H )posterior

17
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Likelihood is NOT a PDF
A Poisson distribution describes 
a discrete event count n for 
a real valued Mean 

18

	

Say,	we	observe	no 	events
What	is	the	likelihood	of	µ?
The	likelihood	of	µ 	is	given	by
L(µ)=Pois(no |µ)
It	is	a	continues	function
	of	µ 	but	it	is	NOT a	PDF
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Testing an Hypothesis (wikipedia…)

● The first step in any hypothesis test is to state the relevant  
null, say,  H0     and alternative hypotheses, say, H1  

● The next step is to define a test statistic, q,  under the null hypothesis 

● Compute from the observations the observed value qobs of the test 
statistic q. 

● Decide (based on qobs ) to either  
fail to reject the null hypothesis or  
reject it in favor of an alternative hypothesis  

● next: How to construct a test statistic, how to decide? 

19
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Test statistic and p-value

20



Case Study 1 : Spin
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Spin 0 vs Spin 1 Hypotheses

Null Hypothesis H0 = Spin 0

Alt   Hypothesis H1 = Spin1

J=0 J=1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 θ0.20

0.25

0.30

0.35

0.40
PDF
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Spin 0 vs Spin 1 Hypotheses

Null Hypothesis H0 = Spin 0

Alt   Hypothesis H1 = Spin1

25



Eilam Gross Statistics in PP

The Neyman-Pearson Lemma
● Define a test statistic  

● When performing a hypothesis test between two simple 
hypotheses, H0 and H1,  
the Likelihood Ratio test, 
          
which rejects H0 in favor of H1,  

is the most powerful test  
for a given significance level  
with a threshold η 

λ =
L(H1)
L(H0 )

19

α = prob(λ ≤η)

26

λ =
L(H1)
L(H0 )



Building PDF

pdf of Q(x |H0 )

pdf of Q(x |H1)

Build the pdf of the test statistic

qNP = qNP(x) = −2ln
L(H0 | x)
L(H1 | x)

27

J=1J=0
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pdf of Q(x |H0 )

pdf of Q(x |H1)

Build the pdf of the test statistic

qNP = qNP(x) = −2ln
L(H0 | x)
L(H1 | x)
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J=1J=0
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Basic Definitions: type I-II errors
● The pdf of q….

0 0Pr ( | )ob reject H H
typeI error

α

α

=

=

typeII errorβ =

0 0

1 1

Pr ( | )
Pr ( | )
ob accept H H
ob reject H H

β =

=

H0
H1

29

1−β     α=significance

β

● By defining α you determine your 
tolerance towards mistakes… (accepted 
mistakes frequency) 

● type-I error:  the probability to reject the 
tested (null) hypothesis (H0) when it is 
true  

●  
 
 

● Type II: The probability to accept the null 
hypothesis when it is wrong 



1−β     α=significance

β
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Basic Definitions: POWER
●   

● The POWER of an hypothesis  
test is the probability to reject 
 the null hypothesis when it is indeed  
wrong  
 (the alternate analysis is true) 

●  
 
 
 
 
 
 

● The power of a test increases as  
the rate of type II error decreases 

0 0Pr ( | )ob reject H Hα =
POWER = Prob(reject H0 |H0 )
H0 = H1

POWER = Prob(reject H0 |H0 )
β = Prob(accept H0 |H0 )
1− β = Prob(reject H0 |H0 )
H0 = H1
1− β = Prob(reject H0 |H1)

H0
H1

30
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p-Value
●The observed p-value is a measure of the 

compatibility of the data with the tested hypothesis.  

● It is the probability, under assumption of the null 
hypothesis Hnull, of finding data of equal or greater 
incompatibility with the predictions of Hnull  

●An important property of a test statistic is that its 
sampling distribution under the null hypothesis be 
calculable, either exactly or approximately, which 
allows p-values to be calculated. (Wiki)

31
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PDF of a test statistic

f (q | null ) f (q | alt)

alt like
q

Null  like

32

qobs
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PDF of a test statistic

f (q | null ) f (q | alt)

alt like
q

Null  like

p-value (pnull): 
The probability, under 
assumption of the null 
hypothesis Hnull, of finding data 
of equal or greater 
incompatibility with the 
predictions of Hnull

p =
qobs

∞

∫ f (qnull | Hnull )dqnull

33

If p ≤α reject null

qobs



f (q | null ) f (q | alt)

alt like
q

Null  like

If p ≤α reject null

qobs
Eilam Gross Statistics in PP

PDF of a test statistic

34

palt

palt: 
The probability, under 
assumption of the alt 
hypothesis Halt, of finding 
data of equal or greater 
incompatibility with the 
predictions of Halt



f (q | null ) f (q | alt)

alt like
q

Null  like

If p ≤α reject null

qobs
Eilam Gross Statistics in PP

PDF of a test statistic

35

palt pnull

POWER = Prob(rej Hnull |Halt )

POWER = 1− palt
1− p

alt



Power and Luminosity
For a given significance the power increases with increased luminosity 

Luminosity ~ Total number of events in an experiment

36



Low Luminosity —>No Separation—>Low Power
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Higher Luminosity —>Better Separation—>Higher Power
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Higher Luminosity —>Better Separation—>Higher Power
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Higher Luminosity —>Better Separation—>Higher Power
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Higher Luminosity —>Better Separation—>Higher Power
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Back to Low Luminosity
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CLs

43

p = 5%→ p ' = 5% / 0.155 = 32%

p ' ≡ CLS

p 'µ =
pµ

1− p0

t.tk?hEfEirw#otn*

Birnbaum (1962) suggested that α /1− β
(significance / power)should be used as a measure of
the strength of a statistical test,rather thanα alone

Birnbaum (1977)
"A concept of statistical evidence is not plausible unless it finds 
'strong evidence for H1  as against  H0 '  
with small probability (α ) when  H0  is true,
 and with much larger probability (1− β ) when H1  is true. "



f (q | null ) f (q | alt)

alt like
q

Null  like

If p ≤α reject null

qobs
Eilam Gross Statistics in PP

CLs

44

palt pnull

POWER = Prob(rej Hnull |Halt )

POWER = 1− palt
1− p

alt
p 'null =

pnull
1− palt



Distribution of p-value under H0
f (x) PDF

cumulative F(x) = f
−∞

x

∫ ( ′x )d ′x

let y = F(x)
PDF of y
dP
dy

= dP
dx
dx
dy

= f (x) / (dF / dx) = f (x) / f (x) = 1

F(x) distributes uniform between 0 and 1
p = 1− F(x) distributes uniform between 0 and 1

45 0.2 0.4 0.6 0.8 1.0
p-value0

100

200

300

400

500
N Experiments
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Which Statistical Method is Better

1−β=powerα=p-value

● To find out which of two 
methods is better plot the p-
value vs the power for each 
analysis method  

● Given the p-value, the one 
with the higher power is 
better 

● p-value~significance

46
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From p-values to Gaussian significance
It is a custom to 
express the  
 p-value as the 
significance 
associated to it, had 
the pdf were 
Gaussians

Beware of 1 vs 2-sided definitions!

5447
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1-Sided p-value
●When trying to reject an 

hypothesis while 
performing searches, one 
usually considers only 
one-sided tail 
probabilities.  

●Downward fluctuations of 
the background will not 
serve as an evidence 
against the background

●  Upward fluctuations of 
the signal will not be 
considered as an 
evidence against the 
signal

48

A Sanity Requirement:
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2-Sided p-value
●When performing a 

measurement (   ), any 
deviation above or below 
the expected null is 
drawing our attention and 
might serve an indication 
of some anomaly or new 
physics. 
 

●Here we use a 2-sided p-
value

49

tµ
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1-sided 2-sided

To determine a 1 sided 95% CL,  
we sometimes need to set the critical 
region to 10% 2 sided 

2-sided 5% is 1.95 
2-sided 10% is 1.64

5%

10%

50

{1.64σσσ
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p-value – testing the null hypothesis

When testing the b hypotheis (null=b), it is custom to set 
α = 2.9 10-7  
! if pb<2.9 10-7 the b hypothesis is rejected 
!Discovery

When testing the s+b hypothesis (null=s+b), set α =5%
if ps+b<5% the signal hypothesis is rejected  
at the 95% Confidence Level (CL) 
 ! Exclusion

51
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Confidence Interval and 
Confidence Level (CL)

52
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CL & CI 

● A confidence interval (CI) is a particular kind of interval 
estimate of a population parameter.  

● Instead of estimating the parameter by a single value, an 
interval likely to include the parameter is given.  

● How likely the interval is to contain the parameter is 
determined by the confidence level 

●  Increasing the desired confidence level will widen the 
confidence interval. 

53

measurement µ̂ = 1.1± 0.3
L(µ) = G(µ; µ̂,σ µ̂ )

⇒CI of µ = 0.8,1.4[ ] at 68%CL
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Confidence Interval & Coverage
●Say you have a measurement μmeas of μ with μtrue being the 
unknown true value of μ 

●Assume you know the probability distribution function  
p(μmeas|μ) 

●based on your statistical method you deduce 
 that there is a 95% Confidence interval [μ1,μ2].

   (it is 95% likely that the μtrue is in the quoted interval) 

The correct statement: 
●In an ensemble of experiments 95% of the obtained confidence 
intervals will contain the true value of μ.

54
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Confidence Interval & Coverage
●You claim, CIμ=[μ1,μ2] at the 95% CL 
i.e. In an ensemble of experiments CL (95%) of the 
obtained confidence intervals will contain the true 
value of μ. 

●If your statement is accurate, you have full coverage  

●If the true CL is>95%, your interval has an over 
coverage  

●If the true CL is <95%, your interval has an 
undercoverage

55
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Upper Limit
● Given the measurement you deduce somehow (based on your 

statistical method) that there is a 95% Confidence interval [0,μup]. 

● This means: our interval contains μ=0 (no Higgs) 

● We therefore deduce that μ<μup at the 95% Confidence Level (CL) 

● μup is therefore an upper limit on μ 

● If μup<1 ! 
σ(mH)<σSM(mH)! 
a SM Higgs with a mass mH is excluded at the 95% CL  
 

56



● One can show that if the data is 
distributed normal around the 
average i.e. P(data|μ )=normal  
 

● then one can construct a 68% CI 
around the estimator of μ to be

   

• However, not all distributions are 
normal, many distributions are 
even unknown and coverage 
might be a real issue

Eilam Gross Statistics in PP

How to deduce a CI?

x̂±σ

57

Side Note:
A CI is an interval in the true 
parameters phase-space

i.e. xtrue ∈ x̂ −σ x̂ , x̂ +σ x̂[ ]@68%CL

• One can guarantee a  
coverage with the  
Neyman Construction  
(1937)

Neyman, J. (1937) "Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability" Philosophical 
Transactions of the Royal Society of London A, 236, 333-380.

https://www.jstor.org/stable/91337
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The Frequentist Game a ’la  
Neyman

Or

How to ensure a Coverage with 

Neyman construction

58
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Neyman Construction

%68)|(2

1
1 =∫

m

m

s

s mtm dsssg

sm

st

st1

Confidence Belt

sm1

sl

su

[sl,su] 68% Confidence Interval 
In 68% of the experiments the derived C.I. contains the unknown true value of s

[s
l,s

u]  

68
%

 C
on

fid
en

ce
 In

te
rv

al

The INTERVAL contains 68% of the 
terms with the maximum likelihood Acceptance Interval

March 2017
• With Neyman Construction we guarantee a coverage via construction, i.e. for 

any value of the unknown true s, the Construction Confidence Interval will 
cover s with the correct rate.59

Prob(sm | st ) is known



Eilam Gross Statistics in PP

Nuisance Parameters

or Systematics

60
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Nuisance Parameters (Systematics)
● There are two kinds of parameters:

● Parameters of interest (signal strength… cross section… µ)
● Nuisance parameters (background (b), signal efficiency, resolution, 

energy scale,…) 

● The nuisance parameters carry systematic uncertainties 

● There are two related issues:
● Classifying and estimating the systematic uncertainties
● Implementing them in the analysis 

● The physicist must make the difference between cross checks and 
identifying the sources of the systematic uncertainty.
● Shifting cuts around and measure the effect on the observable… 

 Very often the observed variation is dominated by the statistical 
uncertainty in the measurement.

61
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Implementation of Nuisance Parameters

● Implement by marginalizing (Bayesian) or profiling  
 (Frequentist) 

● Hybrid: One can also use a frequentist test statistics (PL) 
while treating the NPs via marginalization (Hybrid,  
Cousins & Highland way) 

● Marginalization (Integrating))
●   Integrate the Likelihood, L, over possible values of 

nuisance parameters (weighted by their prior belief functions 
-- Gaussian,gamma, others...)

●  

62

L(µ) = L∫ (µ,θ )π (θ )dθ



Profile Likelihood

63
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The Hybrid Cousins-Highland Marginalization
Cousins & Highland

64

q = L(s + b(θ ))
L(b(θ ))

⇒
L∫ s + b(θ )( )π (θ )dθ
L∫ b(θ )( )π (θ )dθ

q = L(s + b(θ ))
L(b(θ ))

⇒ L(s + b( ˆ̂θ s ))

L(b( ˆ̂θb ))

Profiling the NPs

ˆ̂θ s is the MLE of θ fixing s



● Usually the nuisance parameters are auxiliary 
parameters and their values are constrained by auxiliary 
measurements

● Example

Nuisance Parameters and Subsidiary Measurements

~ ( )Hn s m bµ + n s bµ= +

m bτ=

L µ ⋅ s + b(θ)( ) = Poisson n;µ ⋅ s + b(θ)( ) ⋅ Poisson m;τb(θ)( )

65
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Mass shape as a discriminator

( ) ( ) ( )
1

( ) ; ( ) ; ( )
nbins

i i i i i
i

L s b Poisson n s b Poisson m bµ θ µ θ τ θ
=

⋅ + = ⋅ + ⋅∏

( )Hn s m bµ +∼ ~m bτ

mH
mH

ˆ̂b = ˆ̂bµ=1

66
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Pulls and Ranking of NPs
The pull of θ i  is given by 

θ̂ i −θ0,i

σ 0

without constraint     σ
θ̂ i −θ0,i

σ 0

⎛

⎝
⎜

⎞

⎠
⎟ = 1   

θ̂ i −θ0,i

σ 0

= 0

It’s a good habit to look at the pulls of the NPs and make sure that
Nothing irregular is seen

In particular one would like to guarantee that the fits do not over constrain
a NP in a non sensible way

67
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A toy case with 1 poi

68

1poi : tµ = −2 ln L(µ,
ˆ̂ε, ˆ̂A, ˆ̂b)

L(µ̂,ε̂, Â, b̂)

L(µ,ε.A) = Poiss(n | µεA + b)G(Ameas | A,σ A )G(εmeas |ε,σ ε )G(bmeas | b,σ b )



Profile Likelihood

69

background = 100 
signal = 90 
ε = 0.5 
A=0.7

= 0.05
= 10

= 0.2
ˆ̂θ µ̂ = θ̂

ˆ̂εµ̂ = ε̂

tµ = −2 ln L(µ,
ˆ̂ε, ˆ̂A, ˆ̂b)

L(µ̂,ε̂, Â, b̂)

ˆ̂ε(µ)

ˆ̂b(µ)

ˆ̂εµ̂ = ε̂



Profile Likelihood for Measurement
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tµ = −2 ln L(µ,
ˆ̂ε, ˆ̂A, ˆ̂b)

L(µ̂,ε̂, Â, b̂)



reminder:
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90

Random Data Set

With the random data sets we find perfect pulls for the profiled scans 
But not for the fix scans!

= 0.05
= 10

= 0.2
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= 0.05
= 10

= 0.2

reminder:
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90

Random Data Set: Find the Impact of NP

To get the impact of a Nuisance Parameter 
in order to rank them:

ε̂

ε̂ +σ ε̂
+ε̂ −σ ε̂

−

ˆ̂µ
ε̂+σ ε̂

+

ˆ̂µ
ε̂−σ ε̂

−

µ̂
ˆ̂µ(ε)
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Random Data Set: SUMMARY of Pulls and Impact

reminder:
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90

= 0.05
= 10

= 0.2
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Eilam Gross Statistics in PP

Pulls and Ranking of NPs

By ranking we can tell  
which NPs are the important  
ones and which can be pruned

March 201774



Eilam Gross Statistics in PP

If time permits: 
The Feldman Cousins Unified Method
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Eilam Gross Statistics in PP

The Flip Flop Way of an Experiment
● The most intuitive way to analyze the results of an 

experiment would be  
 
   If the significance based on qobs, is less than 3 sigma, 
derive an upper limit (just looking at tables), if the result is >5 
sigma derive a discovery central confidence interval for the 
measured parameter (cross section, mass….) 

●  This Flip Flopping policy leads to undercoverage:  
Is that really a problem for Physicists?  
Some physicists say, for each experiment quote always two 
results, an upper limit, and a (central?) discovery confidence 
interval  

● Many LHC analyses report both ways.
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Eilam Gross Statistics in PP

Frequentist Paradise – F&C Unified with Full Coverage
● Frequentist Paradise is certainly made up of an interpretation by 

constructing a confidence interval in brute force ensuring a coverage!
● This is the Neyman confidence interval adopted by F&C…. 

● The motivation:
● Ensures Coverage
● Avoid Flip-Flopping – an ordering rule determines the nature of the 

interval  
(1-sided or 2-sided depending on your observed data)

● Ensures Physical Intervals 

● Let the test statistics be  
 
 
where ŝ is the  
physically allowed mean s that maximizes L(ŝ+b) 
(protect a downward fluctuation of  the background, nobs>b  ;     ŝ>0   )  

● Order by taking the 68% highest q’s
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q =
−2 ln L(s + b)

L(ŝ + b)
ŝ ≥ 0

−2 ln L(s + b)
L(b)

ŝ < 0

⎧

⎨
⎪
⎪

⎩
⎪
⎪



Eilam Gross Statistics in PP

How to tell an Upper limit from a Measurement without Flip Flopping

● A 
measurement 
(2 sided)

xobs

C
I
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Eilam Gross Statistics in PP

How to tell an Upper limit from a Measurement without Flip Flopping

● An upper 
limit (1 
sided)

xobs

C
I
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