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What can you expect from the
Lectures

Lecture 1: Basic Concepts
Histograms, PDF, Testing Hypotheses,
LR as a Test Statistics, p-value, POWER, CLs
Measurements
~ Lecture 2: Wald Theorem, Asymptotic Formalism, Asimov Data
Set, Feldman-Cousins, PL & CLs, Asimov Significance
. Lecture 3: Look Elsewhere Effect

1D LEE the non-intuitive thumb rule
(upcrossings, trial #~Z)
2D LEE (Euler Characteristic)
. Lecture 4: Basic Introduction to Deep Learning
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e
Backgammon

What is the probability

to toss exactly 3 times
6:6 in 10 rounds?

®
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6 6 3
q=1—p=§§
36

The probability to toss 6:6 exactly 3 times, in 10 rounds is

1 1Y 1Y
P(k:3:n=10,p:3—6):( 1;) j(3—6j (1—3—6j
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e
In a Nut Shell

The binomial distribution with parameters n and p

IS

the discrete probability distribution of the k number of successes
In @ sequence of n independent experiments. wiipedia)

P(k:n,p)=( Z ]p"(l—p)”
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P(k:n,p)=£ Z ]p"(l—p)”k

The Poisson distribution with parameter A = np can be used as an
approximation to B(n, p) of the binomial distribution if n is sufficiently
large and p is sufficiently small.

/’Lkg_k
k!

Pk :n,p) o0 np=A > Poiss(k; A) =
If X ~ Poiss(k;A)
E[X]|=Var[X]= /A




e

From Binomial to Poisson to Gaussian
P(k:n,p){ Z )p"(l—p)”‘"

Ae*
Pk :n,p)—22=0=2 5 Poiss(k; ) = X
(k)=2, o, =~/
k—>oco=x=k TN
Using Stirling Formula VAR I
rob(x)=G(x,0 =vJ1) = g (A0 / AN
prob(x)=G( ) N P RN

™~

This is a Gaussian, or Normal distribution

with mean and variance of A




e

Histograms
N collisions
H)A
p(Higgs event) = Lolpp = H) Acy
Lo(pp)

obs

Prob to see n,;” in N collisions is

-
L

N obs _obs
P(n,‘}”s)=£ | obs ]p”’f (1-p)* "

H -~
iy} nobs
At
lim,_ P(ny’)= Poiss(n}’ ,A) = ‘ — mass
n, !
Lo(pp— H) Ae
A=Np=Lo(pp) op Ay _ My

Lo(pp)
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e

A counting experiment
o The Higgs hypothesis is that of signal s(m,,)

s(m,)=Lo, -A-¢€
For simplicity unless otherwise noted S(mH) = LGSM

* In a counting experiment n=pus(m,)+b

— Lo-obs(mH) — Gobs(m]-])
Lo, (m,) oy (m,)

7

e 1 is the strength of the signal (with respect to the expected
Standard Model one)

o The hypotheses are therefore denoted by Hpl

o H, is the SM with a Higgs, H, is the background only model
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e
A Tale of Two Hypotheses

NULL ALTERNATE

o Test the Null hypothesis and try to reject it

e Fail to reject it OR reject it in favor of the alternative
hypothesis

Fgn %' L% Eilam Gross Statistics in PP




e
A Tale of Two Hypotheses

NULL ALTERNATE

H,- SM w/o Higgs

o Test the Null hypothesis and try to reject it

H,- SM with Higgs

e Fail to reject it OR reject it in favor of the alternative
hypothesis

‘El'g‘.'.;tﬁ.aﬁ m EI .. .
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e
A Tale of Two Hypotheses

ALTERNATE

H,- SM w/o Higgs

We quantify rejection by p-value (later)
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e
Swapping Hypotheses—>exclusion

H,- SM with Higgs

H,- SM with Higgs

H,- SM w/o Higgs

» Reject H, in favor of H,

Excluding H, (m,)—=>Excluding the Higgs with a
mass m

We quantify rejection by p-value (later)

T % Eilam Gross Statistics in PP




e
Likelihood

e Likelihood is the
compatibility of the
Hypothesis with a given
data set.

But it depends on the data

L(H)= P(x|H)
Likelihood is not the
probability of the P(x|H)# P(H |x)
hypothesis given the data Bayes Theorem

P(H |x) = P(x|H)-P(H)

X P(x|H)P(H)
P(H |x)= P(x|H)-P(H)

i ni % Eilam Gross Statistics in PP
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4 . .
Frequentist vs Bayesian

e The Bayesian infers from the data using priors
posterior P(H | X) ~ P(X| H). P(H)

e Priors is a science on its own.
Are they objective? Are they subjective?

e The Frequentist calculates the
probability of an hypothesis to
be inferred from the data based
on a large set of hypothetical repeated experiments
|deally, the frequentist does not need priors, or any
degree of belief while the Baseian posterior based inference is a

“Degree of Belief”.

e However, NPs (Systematic) inject a Bayesian flavour to any
Frequentist analysis

;"‘V‘i;‘ [L%4 Eilam Gross Statistics in PP
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e

Likelihood is NOT a PDF

A Poisson distribution describes
a discrete event count n for
a real valued Mean /.

. e H
Pois(n|p) = p"—-
n!

Say, we observe n_events

What is the likelihood of u?
The likelihood of u is given by

L(w) = Pois(, | w)

[t is a continues function
of w butitis NOT a PDF

e [
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e
Testing an Hypothesis (wikipedia...)

e The first step in any hypothesis test is to state the relevant
null, say, H, and alternative hypotheses, say, H,

e The next step is to define a test statistic, g, under the null hypothesis

o Compute from the observations the observed value g, . of the test
statistic q.

o Decide (based on g, ) to either
fail to reject the null hypothesis or

reject it in favor of an alternative hypothesis

e next: How to construct a test statistic, how to decide?

o n:n:_;% Eilam Gross Statistics in PP
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Test statistic and p-value
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Case Study 1 : Spin
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PD
0.40

0.35

0.30

0.25

Spin 0 vs Spin 1 Hypotheses

Null Hypothesis H, = Spin 0
Alt Hypothesis H = Spin 1

J=0 J=1




e
Spin 0 vs Spin 1 Hypotheses

N events
150 Null Hypothesis H = Spin 0
Alt Hypothesis H, = Spin 1

100




e
Spin 0 vs Spin 1 Hypotheses

N events
150 Null Hypothesis H = Spin 0
Alt Hypothesis H, = Spin 1

100




e
Spin 0 vs Spin 1 Hvpotheses

N avents
150

Null Hypothesis H, = Spin 0
Alt Hypothesis H, = Spin 1

100,




e

The Neyman-Pearson Lemma
, _ L(H)
L(H,)

e Define a test statistic

e When performing a hypothesis test between two simple
hypotheses, H, and H,, L(H)
the Likelihood Ratio test, A = !
L(H,)

which rejects H, in favor of H,,

is the most powerful test

for a given significance level o = prob(A <1)
with a threshold n

’.sij;; % Eilam Gross Statistics in PP
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e
Building PDF

Build the pdf of the test statistic

qp = qyp(X) =72 In iigﬁ || ;C;
N experiments
1.0}
0.8}
0.6}
0.4/
0.2}
- 10 -5 0 5 10 15 cosllO)

N events

150

100}

10

15

20 25 30




e
Building PDF

Build the pdf of the test statistic

N experiments N cvents
150

100 ]

80} ] ]

60

40} }

] il hu

i .

=00 o5 0 5 10 38 -2LosiLonym)

J=0 S




e
Basic Definitions: type I-Il errors

e By defining a you determine your

tolerance towards mistakes... (accepted
mistakes frequency)

e The pdfofq....

e type-l error: the probability to reject the N
tested (null) hypothesis (H,) when it is Py

true .

* o =Prob(reject H, | H,) lo
a = typel error .

 Type II: The probability to accept the null f
hypothesis when it is wrong { "|

B =Prob(accept H,| H,) — /

N

A

S50 -3.0

a=significance

ﬁ%ﬁi n:p] Eilam Gross Statistics in PP
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4 N
Basic Definitions: POWER
e o =Prob(rejectH,| H,)

POWER = Prob(reject H,| H,)
H =H,

The POWER of an hypothesis

test is the probability to reject e

the null hypothesis when it is indeed i

wrong [
(the alternate analysis is true) fo

. POWER=Prob(reject H,|H,) ’ P \|-|1
p = Prob(accept H, | H,) o "'
1— B = Prob(reject H,| H,) lf 'l,
A=H . {‘

1— B = Prob(reject H | H)) f i l

The power of a test increases as A i lhhn,,
the rate of type Il error decreases S0 30 a0 g 30 sﬁ\ 70

a=significance 1-f3
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e
p-Value

e The observed p-value is a measure of the
compatibility of the data with the tested hypothesis.

e |t is the probability, under assumption of the null
hypothesis H_ , of finding data of equal or greater

null,

incompatibility with the predictions of H

null

e An important property of a test statistic is that its
sampling distribution under the null hypothesis be
calculable, either exactly or approximately, which
allows p-values to be calculated. wi

\

’.lsij;; % Eilam Gross Statistics in PP
L T




: PDF of a test statistic

1200 =117 T T ™7 T T
1000
b f(g |alt)

600

400 [~

200 -1
0_ SRR i B D 1 | 1l bl 1 e d i
-18 -10 -5 0 q 5 10 15

q 1obs

Null like ) 2| like
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g PDF of a test statistic

If p=<a reject null

RO~ 1T T T T T T T T T T T T T T T T

1000 [~

f(q Ealt)

800

p-value (pnun):

The probability, under
assumption of the null
hypothesis H, , of finding data

of equal or greater

- f(q,|H,,)d
P f Qops (qnull| null ) G incompatibility with the

600

j,.)} predictions of H,
L ‘r/ | - \"‘\-.‘.kl ]

—1§ ) 10 15

q 1obs

Null like — alt like




: PDF of a test statistic )

If p<« Zeject null

]200—.'r1r]1117't'l'v'xr'tx T

1000

f(q | null

800

f(q |alt)

Palt:
The probability, under

assumption of the alt
hypothesis H,, of finding

data of equal or greater
incompatibility with the
predictions of H_,

0_' |l Axﬁrfirl e 11 1 ] bl 1 e i i
-15 -10 -5 0 q 5 10 15
q 1obs
Null like ) 2|t like
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: PDF of a test statistic ) A

If p<o i:eject null

L0Vl L I R B L AL R NLA SN LR B R
POWER=Prob(rejH, , 1 H )

null

1000 [~

800

f (_%q | alt)

60 - POWER=1-p_,
400 :— :
200 :—

-O'IS l 15

q 1obs

Null like  p——————) 2!t like
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e
Power and Luminosity

For a given significance the power increases with increased luminosity

Luminosity ~ Total number of events in an experiment

N avents
150

100




4 N
Low Luminosity —>No Separation—>Low Power

Hard to tell one hypothesis from the other

N experiments

250, 95% HO & = 5%
200} H] asimov
150/
100 N per exp = 100
: power = 0.155
50"
0———— ~2Log(L(0)/L(1))




4 N

Higher Luminosity —>Better Separation—>Higher Power

N experiments

250 95% HO or = 5%
200}
150/
100 N per exp = 300
: power = 0.307
50"
0b— LI - ~2Log(L(0)/L(1)




4 N

Higher Luminosity —>Better Separation—>Higher Power

N experiments

250, 95% HO ¢¢ = 5%
200} 1 asimov
150!
100; N per exp = 500
: power = 0.442
50{
or—— _10‘ oy 0 5 10 15—2Log(L(0)IL(1))
-




/
Higher Luminosity —>Better Separation—>Higher Power
N experiments

250 95% HO & = 5%

200} H1 asimov

150

100; N per exp = 700

: power = 0.551
50
0~ ;‘10 5 0 5 10 1'5 -2Log(L(0)/L(1))

N




4 N

Higher Luminosity —>Better Separation—>Higher Power

N experiments

250 95% HO O = 5%
200;— H1 asimov
150,
e 58°
50/ .
OE — HHH‘ H| = _2 og(L(0)/L(1))

-10 -5 0 5 10 15




e

Back to Low Luminosity
Hard to tell one hypothesis from the other
N experiments |45 16 tell f(qlJ=0) from f(gl=1)—>CLs
250 95% HO o = 5%
200 HJ asimov
150/
100 N per exp = 100
: power = 0.155
50"
— N ~2Log(L(0)/L(1
0 =5 o0 5 10 15 2re9(tO)L(1)




- Birnbaum (1977) N
C LS "A concept of statistical evidence is not plausible unless it finds

'strong evidence for H, as against H,'

with small probability (o) when H, is true,

and with much larger probability (1— ) when H, is true. "

j@ )j :9 }(O) ) :)i ,> Birnbaum (1962) suggested that o /1— 3

(significance | power)should be used as a measure of

the strength of a statistical test ,rather than o alone

\Q Folroth | P=5%—> p'=5%/0.155 = 32%

0( P'fog(r@HO Ho) p'=CL




CLs

\
If p<a reject null

]2007!1r111!1]l7[f

lHalt)

null

™ ™ LI | ]
POWER =Prob(rej H

1000 [~

800 —

f (_%q | alt)

600 |~

POWER+1-p,,
. p null
: = P alt

400 [~

200 —

15

q 1obs

Null like  p——————) 2!t like
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e

Distribution of p-value under HO
f(x) PDF

cumulative F(x) = f f(x"dx’

let y=F(x)
PDF of y
L& [0/ (dF )= ()] f(x)=]
dy dx dy

F(x) distributes uniform between 0 and 1

p =1- F(x) distributes uniform between 0 and 1

04 06 08 1.0




e To find out which of two
methods is better plot the p-
value vs the power for each
analysis method

o Given the p-value, the one
with the higher power is
better

e p-value~significance

Which Statistical Method is Better

| Ihllnt:o

“f % Eilam Gross Statistics in PP
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From p-values to Gaussian significance

It is a custom to
express the
p-value as the //\\
significance / \
associated to it, had / \
the pdf were / \
Gaussians N pvalue
xs ] 20 . // /
p= / e dx=1 d(Z) )y ¢
s ‘v/

2 — |

Z—® ‘(1-p)
A significance of Z = 5 corresponds to p = 2.87 » 10

Beware of 1 vs 2-sided definitions!

@ ‘m: TT:E,—’J‘ Eilam Gross Statistics in PP
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e

1-Sided p-value

e When trying to reject an
hypothesis while
performing searches, one
usually considers only

o <005

one-sided talil
probabillities.

A Sanity Requirement:

e Downward fluctuations of ¢ Upward fluctuations of
the background will not the signal will not be

serve as an evidence considered as an

. evidence against the
against the background signal

NIRRT . . . .
I faf{-!g E%m,] Eilam Gross Statistics in PP
g i v




e
2-Sided p-value

» When performing a
measurement ( 4), any
deviation above or below
the expected null is
drawing our attention and @&,
might serve an indication ****
of some anomaly or new S el Yagronis)
physics.

/

ps0

e Here we use a 2-sided p-
value

’f}f“%%g E%m“ Eilam Gross Statistics in PP
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e

1-sided 2-sided

To determine a 1 sided 95% CL,
we sometimes need to set the critical
region to 10% 2 sided

2-sided 5% is 1.95 0O
2-sided 10% is 1.64 O

5%

1.640

lv: n:?, Eilam Gross Statistics in PP

e < 0.05

10%

o 4

p s 0.025

ps0

two-tail critical region(s)




p-value — testing the null hypothesis

When testing the b hypotheis (null=b), it is custom to set
A =29107

- if p,<2.9 10-7the b hypothesis is rejected
->Discovery

When testing the s+b hypothesis (null=s+b), set a =5%
Iif p.,,<5% the signal hypothesis is rejected

at the 95% Confidence Level (CL)
- EXxclusion

AN TTRY . Pt R
B Tach n-_-g_;% Eilam Gross Statistics in PP
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Confidence Interval and
Confidence Level (CL)

rf'f.“;.;“‘vv.:,' rm . o o B
BIall ery Eilam Gross Statistics in PP
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/CL & Cl measurement [1=1.1%£0.3
— Cl of 1=[08,1.4]ar 68% CL

e A confidence interval (Cl) is a particular kind of interval
estimate of a population parameter.

e Instead of estimating the parameter by a single value, an
interval likely to include the parameter is given.

e How likely the interval is to contain the parameter is
determined by the confidence level

e Increasing the desired confidence level will widen the
confidence interval.

’.sij;‘ % Eilam Gross Statistics in PP
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4 ™
Confidence Interval & Coverage

eSay you have a measurement p_ .. of u with p,. . being the
unknown true value of u

eAssume you know the probability distribution function
P(Mmeas! M)

ebased on your statistical method you deduce
that there is a 95% Confidence interval [[,, ).

(it is 95% likely that the .. is in the quoted interval)

The correct statement:

eln an ensemble of experiments 95% of the obtained confidence
intervals will contain the true value of p.




e
Confidence Interval & Coverage

eYou claim, Cly=[J,H1,] at the 95% CL

l.e. In an ensemble of experiments CL (95%) of the
obtained confidence intervals will contain the true
value of J.

o|f your statement is accurate, you have full coverage

o|f the true CL is>95%, your interval has an over
coverage

o|f the true CL is <95%, your interval has an
undercoverage

i g%' L2 Eilam Gross Statistics in PP




4 ™
Upper Limit

e Given the measurement you deduce somehow (based on your
statistical method) that there is a 95% Confidence interval [0, 1y, ]-

e This means: our interval contains u=0 (no Higgs)

» We therefore deduce that p<p,,, at the 95% Confidence Level (CL)
* Y, is therefore an upper limit on p
o If p,<1->

o(my)<0gy(my)=>
a SM Higgs with a mass m,, is excluded at the 95% CL




e
How to deduce a CI?

e One can show that if the data is
distributed normal around the

average I'e' P(datalu )=norma| ? b A‘Szandafd(l))eviat-‘ons‘ : ’
flz| p,o) = 1 (—&rﬁ Side Note:
ol lat o\ 2T A Cl is an interval in the true
» then one can construct a 68% C|  |Parameters phase-space

around the estimator of u to be

X+0 |ie.x,, e[i-0,5+0.]@68%CL

frue

 However, not all distributions are . one can guarantee a

normal, many distributions are coverage with the

even unknown and coverage Neyman Construction
might be a real issue (1937)

Neyman, J. (1937) Philosophical

Transactions of the Royal Society of London A, 236, 333-380.

N T



https://www.jstor.org/stable/91337

The Frequentist Game a ’la
Neyman

Or

How to ensure a Coverage with
Neyman construction

]:\-" g%'m Eilam Gross Statistics in PP /




4 | N
Neyman Construction

Prob(s, |s,)is known

@
Sy C
s, gy
u =
8 $rntidence Belt
-
D)
RS
(.
5
St1 Y U
N 0
o s
Sl """"""""""""""""

[s,s,] 68% Confidence Interval
In 68% of the experiments the derived C.l. contains the unknown true value of s

« With Neyman Construction we guarantee a coverage via construction, i.e. for
any value of the unknown true s, the Construction Confidence Interval will
K E\ the correct rate /




Nuisance Parameters

or Systematics
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4 N
Nuisance Parameters (Systematics)

e There are two kinds of parameters:
e Parameters of interest (signal strength... cross section... u)
* Nuisance parameters (background (b), signal efficiency, resolution,
energy scale,...)

e The nuisance parameters carry systematic uncertainties

e There are two related issues:
e Classifying and estimating the systematic uncertainties
e Implementing them in the analysis

e The physicist must make the difference between cross checks and
identifying the sources of the systematic uncertainty.

e Shifting cuts around and measure the effect on the observable...
Very often the observed variation is dominated by the statistical
uncertainty in the measurement.

i

fftgf%;‘
" i

nj% Eilam Gross Statistics in PP
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e

Implementation of Nuisance Parameters

e Implement by marginalizing (Bayesian) or profiling
(Frequentist)

e Hybrid: One can also use a frequentist test statistics (PL)
while treating the NPs via marginalization (Hybrid,
Cousins & Highland way)

e Marginalization (Integrating))

e [ntegrate the Likelihood, L, over possible values of
nuisance parameters (weighted by their prior belief functions
-- Gaussian,gamma, others...

L)~ | Lu.0)w(6)de

i % Eilam Gross Statistics in PP
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e
Profile Likelihood

_ L(s,b) A
O]— LédD) 4 ’*("'1’5)”?’([(5’”
|~

[.(.3‘,2) = VS",A{( L(-S,é)




The Hybrid Cousins-Highland Marginalization

Cousins & Highland
_ Ls+b(©®) _ JL(s+0(©)7(0)d0
L(b(6)) [ L(b®))m(6)de
Profiling the NPs A
_ L(s+b(9) _ L(s+ b(6,)
LOO)  L®@é,)

és is the MLE of 0 fixing s

e Tih E%—’% Eilam Gross Statistics in PP
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4 N
Nuisance Parameters and Subsidiary Measurements

e Usually the nuisance parameters are auxiliary
parameters and their values are constrained by auxiliary
measurements

e Example
n~us(m,)+b (n)=us+b

m=1b

L(,u -85+ b(@)) = Poisson(n;u -85+ b(@)) : Poisson(m;l‘b(@))




e
Mass shape as a discriminator

n~uws(m,)+b m~1tb

L (u -5+ b )) = H Poisson (nl.; w-s; +b.(0 ))°P0iSSOn (ml.;rbi(ﬁ))
i=1




e
Pulls and Ranking of NPs

0.-9,
The pull of 8, is given by ——
00
0.-0, 0 -0
without constraint 0/ ! 0”\ =1 i 0,
L Oy ) O,

=0

It’s a good habit to look at the pulls of the NPs and make sure that
Nothing irregular is seen

a NP in a non sensible way

In particular one would like to guarantee that the fits do not over constrain

Sl
B 52

&
l:‘
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4 _ _ N
A toy case with 1 pol
n= UeAs+b

L=L(u,,A,b)

lpoi:t,=-2In L(‘lf f"i"[f)
L(u,.€,A,D)
L(u,eA)= Poiss(n|l ueA+b)G(A, . 1A,0,)G(, le,c )G, |1b,0,)

L(lu7 g, A) — (/’LgAS + b)n 6_(M€As+b) #6_(87"'6“3_8)2/205 # _(bmeas_b)2/2ag —1 _(Ameas_A)2/20?4
n! OV 2T opV 2T oAV 2T
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e
Profile Likelihood n=UeAs+b

background = 100

signal = 90 A Aoa
£e=0.5 . L(#,G,A,b)
A=0.7 fu——21n AR R
o =005 . L(u,e, /,\b)
9, =10 1.3; A R
TA =02 : A HA — 9
1.2+b(1)
Nimaas = 137 1 1: é\,\ — é\
bmeas = 105.533 e e
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/Profile Likelihood for Measurement
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Random Data Set

Niaas = 132
bm - 103-208
Emess = 0.465459
A eas = 0.487107
To get the pulls:
—scan q(e€)
—Find é
—Find 6" and o i.e. the poitive and negative error bar substituting q(e)=1
q(e a[A) ' a(b)
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With the random data sets we find perfect pulls for the profiled scans
But not for the fix scans!




/ Random Data Set: Find the Impact of NP
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To get the impact of a Nuisance Parameter
in order to rank them: 0.5
Say we want the impact of €
—Scan q(€), profiling all other NPs ::
—Find € o 20
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Random Data Set: SUMMARY of Pulls and Impact
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Ranking 0. by its effect
in the NP

By ranking we can tell
which NPs are the important
ones and which can be pruned

Eilam Gross Statistics in PP

e
Pulls and Ranking of NEPs
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If time permits:
The Feldman Cousins Unified Method
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The Flip Flop Way of an Experiment

o The most intuitive way to analyze the results of an
experiment would be

If the significance based on qobs, IS less than 3 sigma,

derive an upper limit (just looking at tables), if the result is >5

sigma derive a discovery central confidence interval for the
measured parameter (cross section, mass....)

e This Flip Flopping policy leads to undercoverage:
Is that really a problem for Physicists?
Some physicists say, for each experiment quote always two

results, an upper limit, and a (central?) discovery confidence
interval

o Many LHC analyses report both ways.
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Frequentist Paradise — F&C Unified with Full Coverage

e Frequentist Paradise is certainly made up of an interpretation by
constructing a confidence interval in brute force ensuring a coverage'

e This is the Neyman confidence interval adopted by F&C..

e The motivation:
e Ensures Coverage
e Avoid Flip-Flopping — an ordering rule determines the nature of the

interval
(1-sided or 2-sided depending on your observed data)

e Ensures Physical Intervals
y —21%?12 §>0
e Let the test statistics be q=- B * )
—21In (s+b) S
L(b)

where § is the _
hysically allowed mean s that maximizes L(5+b)
Fprotect a downward fluctuation of the background,n_, >b ; $>0 )

e Order by taking the 68% highest g’s
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How to tell an Upper limit from a Measurement without Flip Flopping
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How to tell an Upper limit from a Maoaaciiramant withniit Flin I:lopping
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e An upper
limit (1
sided)
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