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Sources and Recommended Reading
• PDG review of Machine Learning 

https://pdg.lbl.gov/2022/reviews/rpp2022-rev-machine-
learning.pdf


• Graph Neural Net in Particle Physics 
Jonathan Shlomi, Peter Battaglia and Jean-Roch Vlimant  

https://iopscience.iop.org/article/10.1088/2632-2153/
abbf9a
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Why DL is a Boom Now?
• ML started in the 1950s


• Deep Convolutional Nets since the 1990s


• Autonomous driving is now a multi-billion dollars business… 
TESLA (and NOT only) is already there… Why only now?


• Big DATA - Cheap Storage, easy access, and lots of Big 
Data


• GPUs are changing the face of computer hardware  
(Parallelizable tasks)


• Sophisticated software/firmware tools for Deep Learning 
Models implementation
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Example: Classification Dog vs Cat

The DATA

we can


learn from
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Input:
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The Loss Function: 





target:

y ∈ Y

prediction:

fϕ = ̂y

Loss:


ℒ( ̂y, y)
Example:


ℒ( ̂y, y) = (y − ̂y)2



DATA representations
• Much of our knowledge is subjective and intuitive


• Computers need to capture this knowledge in order to make 
intelligent decisions


• The capability to acquire knowledge by extracting patterns from raw 
DATA is what Machine Learning is all about 
 
 
 
 

• The performance of a ML algorithm depends heavily on the 
representation of the DATA they are given.


• Each piece of information given in the representation is called a 
feature.

label: DOG label: CAT
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DATA representations
• Example:




• Choosing the right set of features can make a huge difference in solving a task
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Machine Learning Example

• Map inputs (such as images) to targets (such as labels: Cat, Dog, 
Woman)


• BUT let your mind flies by

Layer 
transforms 

DATA 
into a useful 

representation

Transformation 
is controlled by internal parameters 

 (weights and biases)

Its all about 
finding appropriate 

representations

This is done via training 
rather than programming
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Gentle Introduction (PDG)
• Data: Feature vector x= 


• 


• Say, using MC we know if x originated from an electron or a 
photon


• Task: Find a function  that can accurately predict the 
label for the DATA


• Supervised Learning—> create pairs  where 
y=0 for electrons, 1 for photons


• Use Neural Net to provide a family of functions  
 are the internal parameters of the NN (weights and biases)

(E, P, ϕ, η, . . . . )

X ∈ Rd

f : x → y

{xi, yi}i=1,2,…,n

ϕ
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• Training Procedure: Find values  that provide the best 
predictions for y


• Training is done by minimizing a loss Function 

 , for example: 




• Universal Approximation Theorem (simplified): 
Neural Networks can approximate any function

ϕ

ℒ (fϕ(x), y)
ℒMSE  (fϕ(x), y) = (fϕ(x) − y)

2
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Neural Nets
fϕ : Rd → Rd′￼

x ∈ Rd

fϕ : Rd → Rd′￼

ℒ (fϕ(x), y)

y ∈ Rd′￼
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Deep “representation” Learning
• Break the complex presentation into a series of simpler 

nested ones

Based on Zeiler and Fergus, 2014
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Perceptron
• The basic unit of Deep Learning is the Perceptron

http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf

̂y = g (w0 + Σm
i=1wixi)

14
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̂y = g(w0 + xTw)
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Why non-linearity?

• Linear —> Linear decision boundary


• Non-linear—>Non-linear (complex) decision boundary

http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
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Non-Linear Activation Functions

Sigmoid Saturates and kill Gradients ReLu- Rectified Linear units

Many times you use ReLu for all Hidden Layers and Sigmoid in the final layer 
as to output a probability (a score between 0 and 1)
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Simplified Perceptron
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̂y = g(w0 + xTw)



Simplified Perceptron
• Simplified notation/drawing
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̂y = g(w0 + xTw)



Single Layer Perceptron (NN)          
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Summary: Layers & Weights
• Layers extract representation of the DATA fed into them, which 

are supposed to be more meaningful for decoding the DATA


• Some DATA goes in, and  
comes out in a more useful form


• You can 🤔 of layers as “filters”


• Weights control what the layer is 
 doing to it’s input DATA


• The depth of the model is the  
number of layers contribute to the learning 
process


• GOAL: Find right values for the weights such that the 
 network maps the input to its right target
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target: Y
̂y



MIT Example Problem: Will I Pass This Class?

The DATA
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features = (x1, x2)



MIT Example Problem: Will I Pass This Class?

The Single Layer NN
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Need to determine 
weights wi,j



MIT Example Problem: Will I Pass This Class?

The LOSS
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Teach the NN the 
weights wi,j

Defi

Prediction , target ̂y y



MIT Example Problem: Will I Pass This Class?

The Empirical LOSS (COST)

• Measure the TOTAL LOSS over the entire DATASET
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Data Set X

Total Loss is the Average

Prediction , target ̂y y



MIT Example Problem: Will I Pass This Class?

Binary Cross Entropy Loss

• Here the output target is binary (fail or pass, 0 or 1)


• We want to predict the probability to pass the class


• A good classifier give high value of  when the target is 
y=1, so what we wants to  
maximize  when y=1, maximized (1- ) when y=o 


• Maximize the Bernoulli Distribution

̂p

̂p ̂p
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p(y |x) = ̂py(1 − ̂p)1−y ⇒
y = 0 → P(y |x) = 1 − ̂p
y = 1 → P(y |x) = ̂p

logP(y |x) = ylog ̂p + (1 − y)log(1 − ̂p) ∂ log P(y ∣ x)
∂ ̂p

= 0 ⇒ ̂p = y



Binary Cross Entropy Loss
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p(y |x) = ̂py(1 − ̂p)1−y

logP(y |x) = ylog ̂p + (1 − y)log(1 − ̂p)

BCE(y, ̂p) = − logP(y |x) = − ylog ̂p − 1 − y)log(1 − ̂p)



MIT Example Problem: Will I Pass This Class?

Binary Cross Entropy Loss
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ℒ(w) =
1
n (∑

i

yi log ̂y + (1 + yi) log (1 − ̂yi))



MIT Example Problem: Will I Pass This Class?

Regression (try to predict the grade)

• Try to predict continuous real numbers


• Use Mean Square Loss Function
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ℒ(w) =
1
n ∑

i
(yi − ̂yi)2



Loss Optimization
• Find the NN weights that give the minimus loss
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W* = argminWℒ(W)



LEARNING
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ℒ(w0, w1)



Loss Optimization: Gradient Descent
• The Loss is a function of the NN weights
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Compute direction of 
maximum ascent 

(gradient) and reverse it

W* = argminWℒ(W)

ℒ(w0, w1)



Gradient Descent
• Algorithm


• Initialize weights randomly


• Loop until convergence:


• Compute Gradient


• Take  a step  (the learning rate - how fast you 
want to achieve the goal)


• Update weights in the opposite direction 


• Return weights

η

33

∂ℒ(w)
∂w

w → w − η
∂ℒ(w)

∂w



BACKPROPAGATION
• Backpropagation is the algorithm that computes the 

gradient of a loss function with respect to the weights of 
the NN in an efficient way


• It is essential to do so in an efficient way in order to cope 
with Multi-Layer Networks.


• Backpropagation is calculating the gradient iterating 
backward from the last layer to the network input
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Overfitting
• Stop Loss
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Summary: Training 
• We divide our labeled 

DATA into~80% training 
and 20% validation 
(sometimes also 
keep some DATA for test)


• In each epoch we run 
on a batch (1000s of 
samples) and adjust the weights


• Our success is measured 
by the accuracy of our 
predictions


• This gap between training accuracy  
and test accuracy is overfitting:  
Overfitting is a central issue


• We want to eliminate the model from learning to memorize the training DATA, 
which will improve the model's generalization to unseen DATA. 
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GNN & HEP

Graph NN & High Energy Physics
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The Philosophy
• GNNs are a class of deep learning architectures that 

implement strong relational inductive biases for learning 
functions that operate on graphs.


• Inductive Bias means that using GNN we can inject our 
physics understanding (e.g. Lagrangians) into the problem


• GNN implements a form of parameterized message-passing 
whereby information is propagated across the graph, 
allowing sophisticated edge-, node-, and graph-level 
outputs to be computed


• Within a GNN there are one or more standard neural 
network building blocks, typically fully connected layers, 
which implement the message computations and 
propagation functions.
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GNN Example 1
clustering tracking detector hits into tracks,
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GNN Example 2
Segmenting Calorimeter Cells
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GNN Example 3
Jet Classification
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MLP
• MLP (NN) is the basic building 

block of GNN


• It has a fixed-size of 
input and output


• MLP is a sequence of matrix 
multiplications with non-linear 
element-wise functions 
between them, which transform 
the input into the output.


• Weights learnt. by using 
stochastic gradient descent.


• This structure can, in theory, 
learn to approximate any 
function
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Hidden Representations
• The network creates its own language via representations
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Nodes Represerntation
• A network ”creates a 

representation” for the nodes in 
the GNN


• By a sequence of data-
transformation steps, the neural 
network is learning to describe the 
data in its own format such that it 
will be able to perform the function 
approximation task it was asked to 
do.
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GNN
• The hidden representation term is a key concept in GNNs. 

Looking at the GNN as a black box, it allows for creating 
neural networks that operate on variable size sets and 
graphs and create a hidden representation for the 
components - the nodes, edges and graph
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GNN Inputs and Equivariance
• Each Node , Edge has Features


• GNN is Equivariant: 
The output of the GNN must be equivariant to the 
arbitrary labeling of the nodes. 
Permutation of the input permutes the output
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Equivariant Building Blocks
• Basic operations: Parallel Update and Permutation 

invariant aggregation

Parallel Update ( )ϕ Permutation invariant aggregation ( )ρ
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GN Blocks
• Architecture Example: Graph with only input node features and 

directional edges


• First, the node features are used to construct an edge 
representation simply by concatenating the node features


• The same MLP is used to create edge (hidden) representations


• Edges aggregated to 
create (hidden) node 
representations

Concatination MLP
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Stacking GN Blocks
• Stacking GN Blocks increases the depth of the network, 

which allows for approximating more complex functions.
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Increasing the Receptive Field
• Stacking GN Blocks increases the receptive field of a 

node


• Each iteration communicates with a remoter circle of 
neighbors 
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A Typical Design Example
• Creating GNN from Jets and Lepton features
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Attention
• Use weighted sums in the various 

aggregation functions of the GN 
block. 


• Give the network flexibility in 
determining the relative importance 
of elements in a set to a particular 
task


• The red node is collecting 
information from all its incoming 
edges, which have different 
weights assigned to them, shown 
as different shades of green.
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Key Query Attention• 2 MLPs create the Keys 
and the Queries


• The attention Matrix is 
made by an outer product
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Key Query Attention
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• 2 MLPs create the Keys 
and the Queries


• The attention Matrix is 
made by an outer product



• 2 MLPs create the Keys 
and the Queries


• The attention Matrix is 
made by an outer product

Key Query Attention

X =>
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Deep set GN block
• Here the nodes are not connected by edges, yet you 

allow the nodes to communicate with each other via an 
attention mechanism
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Summary
• We are in the midst of a revolution that is taking the HEP 

world by a storm


• Deep Learning is changing the world of HEP


• DL allows faster, more efficient, and  more reliable (with 
reduced systematics) HEP Data analyses


• DL will also improve our Data taking via improved triggers 
and real time analyses 


• DL is the new calculus…   
In 10 years there will be no HEP Data taking and analysis 
without Deep Learning… So better take the ride (or stay 
behind)
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