Pion and Kaon Structure using Basis Light-front Quantization

Jiangshan Lan*, Hengfei Zhao*, Kaiyu Fu*, Chandan Mondal*, Xingbo Zhao*, James P. Vary†

*Institute of Modern Physics, CAS, Lanzhou, China † Iowa State University, Ames, US

Perceiving the Emergence of Hadron Mass through AMBER@CERN 08/06/2020

<u>Outline</u>

- Basis Light-front Quantization approach
- Application to π and K
 - Leading Fock sector (based on NJL interacton)
 - With one dynamical gluon
- Summary and Future Plan

<u>Hamiltonian Formalism</u>

• Schrödinger equation universally describes different physics : $H|\psi\rangle = E|\psi\rangle$

hadron

Nonrelativistic, few-body

nucleus

Nonrelativistic, many-body

Relativistic, many-body

• Wave functions encode full information of the system

Light-front Quantization

[Dirac, 1949]

Basis Light-front Quantization

Nonperturbative eigenvalue problem

[Vary et al, 2008]

 $P^{-}|\beta\rangle = P_{\beta}^{-}|\beta\rangle$

- *P*⁻: light-front Hamiltonian
- $|\beta\rangle$: mass eigenstate
- P_{β}^{-} : eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate

 $\boldsymbol{O}\equiv\left\langle \boldsymbol{\beta}\left|\hat{\boldsymbol{O}}\right|\boldsymbol{\beta}\right\rangle$

- Fock sector expansion
 - Eg. $|\mathbf{\pi}\rangle = a|q\bar{q}\rangle + b|q\bar{q}g\rangle + c|q\bar{q}gg\rangle + d|q\bar{q}q\bar{q}\rangle + \dots$
- Discretized basis
 - Transverse: 2D harmonic oscillator basis: $\Phi_{n,m}^{b}(\vec{p}_{\perp})$.
 - Longitudinal: plane-wave basis, labeled by k.
 - Basis truncation:

$$\sum_{i} (2n_i + |m_i| + 1) \le N_{max},$$

$$\sum_{i} k_i = K.$$

 N_{max} , K are basis truncation parameters.

Large N_{max} and K: High UV cutoff & low IR cutoff

Application to π and K

PDF from BLFQ and QCD Evolution for Light Mesons

$$H_{\rm eff} = \frac{\overline{k_{\perp}^2 + m_q^2}}{x} + \frac{\overline{k_{\perp}^2 + m_{\bar{q}}^2}}{1 - x} + \kappa^4 x (1 - x) \vec{r}_{\perp}^2 - \frac{\kappa^4}{(m_q + m_{\bar{q}})^2} \partial_x (x(1 - x) \partial_x) + H_{\rm eff}^{\rm NJL}$$

PDF for the valence quark result from the light-front wave functions obtain by diagonalizing the effective Hamiltonian.

[Lan, Mondal, Jia, Zhao, Vary, PRL122, 172001(2019)]

Agree with experimental results

The moments of pion valence quark PDF

$$\langle x^n \rangle = \int_0^1 dx \ x^n f_v^{\pi/K}(x,\mu^2), \ n = 1, 2, 3, 4.$$

$\langle x \rangle$ @ 4 GeV ²	Valence	Gluon	Sea
BLFQ-NJL	0.489	0.398	0.113
[Ding et. al., BSE model 2019']	0.48(3)	0.41(2)	0.11(2)

Agree with other results

[Lan, Mondal, Jia, Zhao, Vary, PRD101,034024(2020)]

Jiangshan Lan

 $|\pi\rangle = a |q\bar{q}\rangle + b |q\bar{q}g\rangle + \cdots$

Structure of Hamiltonian

Mass spectrum

[Lan, et al, in preparation]

12

Preliminary

Pion mass, DC, Radii

$$\langle r_c^2 \rangle = -6 \frac{\partial}{\partial Q^2} F(Q^2)|_{Q^2 \to 0}$$
$$F(Q^2) = \sum \int dx_i H(x_i, 0, Q^2)$$

 $\langle 0|\bar{\psi}(0)\gamma^{+}\gamma_{5}\psi(0)|P(p)\rangle = \mathrm{i}p^{+}f_{P}, \\ \langle 0|\bar{\psi}(0)\gamma^{+}\psi(0)|V(p,\lambda)\rangle = e_{\lambda}^{+}M_{V}f_{V}.$

	m_{π^+} [MeV]	$m_{ ho^+}$ [MeV]	${f_{\pi^+}}$ [MeV]	${f_{ ho^+}}$ [MeV]	$\sqrt{\langle r_c^2 angle} _{\pi^+}$ [fm]	norm q q	Pr
BLFQ	139.57	775.26	138.2	129.0	0.516~?	0.492	elir.
PDG [Tanabashi, et	139.57 al, PRD(2018)]	775.26 <u>±</u> 0.25	130.2 <u>+</u> 1.7	221 <u>+</u> 2	0.672±0.008		nin
BLFQ-NJL [Jia, Vary, PRO	139.57 C(2018)]	775.23 <u>±</u> 0.04	202.10	100.12	0.68±0.05		ary

BLFQ

Pion Form Factor

Preliminary: based on leading Fock Sector WF

Pion initial PDF

Valence close to BLFQ-NJL result at large x, more than BLFQ-NJL result at small x; we have gluon in initial PDF.

Pion PDF

Preliminary

19

Pion PDA

Light meson in progress

Kaon Spectrum

Kaon Form Factor

Preliminary: based on leading Fock Sector WF

Wave function

11 - 11

Wave function $|\psi|^2$

Kaon PDA

Preliminary

Kaon PDF

 $|K\rangle = a|u\bar{s}\rangle + b|u\bar{s}g\rangle + \cdots$

Kaon PDF

$$|K\rangle = |u\bar{s}\rangle + \cdots$$
 VS $|K\rangle$

VS
$$|K\rangle = a|u\bar{s}\rangle + b|u\bar{s}g\rangle + \cdots$$

Preliminary

Kaon

$$ep \to e' X \Sigma^0$$

Conclusions

- Basis Light-front Quantization:
 - Nonperturbative approach to relativistic many-body bound states
- Light-front Hamiltonian \implies Wavefunction \implies Observables
 - Mass spectrum + structure
- Systematically expandable by including higher Fock sectors

 $-|\text{Meson}\rangle = |q\bar{q}\rangle + |q\bar{q}g\rangle + |q\bar{q}q\bar{q}\rangle + \cdots$

Thank you ! Questions/suggestions: xbzhao@impcas.ac.cn