Pion and Kaon Structure using Basis Light-front Quantization

Jiangshan Lan*, Hengfei Zhao*, Kaiyu Fu*,
Chandan Mondal*, Xingbo Zhao*, James P. Vary \dagger

*Institute of Modern Physics, CAS, Lanzhou, China \dagger lowa State University, Ames, US

Outline

- Basis Light-front Quantization approach
- Application to π and K
- Leading Fock sector (based on NJL interacton)
- With one dynamical gluon
- Summary and Future Plan

Hamiltonian Formalism

- Schrödinger equation universally describes different physics :

$$
H|\psi\rangle=E|\psi\rangle
$$

Nonrelativistic, few-body

Nonrelativistic, many-body

Relativistic, many-body

- Wave functions encode full information of the system

Proton density

Neutron - proton density

Light-front Quantization

[Dirac, 1949]

Basis Light-front Quantization

- Nonperturbative eigenvalue problem

$$
P^{-}|\beta\rangle=P_{\beta}^{-}|\beta\rangle
$$

- P^{-}: light-front Hamiltonian
- $|\beta\rangle$: mass eigenstate
- P_{β}^{-}: eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate

$$
O \equiv\langle\beta| \hat{O}|\beta\rangle
$$

- Fock sector expansion
- Eg. $\quad|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle+c|q \bar{q} g g\rangle+d|q \bar{q} q \bar{q}\rangle+\ldots$.
- Discretized basis
- Transverse: 2D harmonic oscillator basis: $\Phi_{n, m}^{b}\left(\vec{p}_{\perp}\right)$.
- Longitudinal: plane-wave basis, labeled by k.
- Basis truncation:

$$
\begin{gathered}
\sum_{i}\left(2 n_{i}+\left|m_{i}\right|+1\right) \leq N_{\max } \\
\sum_{i} k_{i}=K
\end{gathered}
$$

$N_{\text {max }}, K$ are basis truncation parameters.
Large $N_{\max }$ and K : High UV cutoff \& low IR cutoff

Application to π and K

PDF from BLFQ and QCD Evolution for Light Mesons

$$
H_{\mathrm{eff}}=\frac{\overrightarrow{k_{\perp}^{2}}+m_{q}^{2}}{x}+\frac{\overrightarrow{k_{\perp}^{2}}+m_{\bar{q}}^{2}}{1-x}+\kappa^{4} x(1-x) \vec{r}_{\perp}^{2}-\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \partial_{x}\left(x(1-x) \partial_{x}\right)+H_{\mathrm{eff}}^{\mathrm{NJL}}
$$

PDF for the valence quark result from the light-front wave functions obtain by diagonalizing the effective Hamiltonian.

[Lan, Mondal, Jia, Zhao, Vary, PRL122, 172001(2019)]

Agree with experimental results

The moments of pion valence quark PDF

$$
\left\langle x^{n}\right\rangle=\int_{0}^{1} d x x^{n} f_{v}^{\pi / K}\left(x, \mu^{2}\right), n=1,2,3,4 .
$$

$\langle\boldsymbol{x}\rangle$ @ $4 \mathbf{G e V}^{\mathbf{2}}$	Valence	Gluon	Sea
BLFQ-NJL	$\mathbf{0 . 4 8 9}$	$\mathbf{0 . 3 9 8}$	$\mathbf{0 . 1 1 3}$
[Ding et. al., BSE model 2019']	$0.48(3)$	$0.41(2)$	$0.11(2)$

Agree with other results

$$
|\pi\rangle=|q \bar{q}\rangle_{1}^{1}+\cdots
$$

Jiangshan Lan

$$
|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{1}^{\prime}+\cdots
$$

Structure of Hamiltonian

$$
\begin{gathered}
|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{\mid}^{\prime}+\cdots \\
P^{-}=\frac{\overrightarrow{k_{\perp}^{2}}+m_{q}^{2}}{x}+\frac{\overrightarrow{k_{\perp}^{2}}+m_{q}^{2}}{1-x}+\kappa^{4} x(1-x) \vec{r}_{\perp}^{2} \\
\\
-\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \partial_{x}\left(x(1-x) \partial_{x}\right)+\boldsymbol{H}_{\mathrm{int}}
\end{gathered}
$$

$\boldsymbol{H}_{\mathrm{int}}$	$\|q \bar{q}\rangle$	$\|q \bar{q} g\rangle$
$\langle q \bar{q}\|$	$\cdots \frac{\sigma^{6}}{6} \cdot$	$\ldots 6^{6^{6}}$
$\langle q \bar{q} g\|$	$\ldots 6^{6^{6}}$	$\mathbf{0}$

Mass spectrum

Pion mass, DC, Radii

$$
\begin{array}{lr}
\left\langle r_{c}^{2}\right\rangle=-\left.6 \frac{\partial}{\partial Q^{2}} F\left(Q^{2}\right)\right|_{Q^{2} \rightarrow 0} & \langle 0| \bar{\psi}(0) \gamma^{+} \gamma_{5} \psi(0)|P(p)\rangle=\mathrm{i} p^{+} f_{P} \\
F\left(Q^{2}\right)=\sum_{i} \int d x_{i} H\left(x_{i}, 0, Q^{2}\right) & \langle 0| \bar{\psi}(0) \gamma^{+} \psi(0)|V(p, \lambda)\rangle=e_{\lambda}^{+} M_{V} f_{V}
\end{array}
$$

	$\boldsymbol{m}_{\boldsymbol{\pi}^{+}}[\mathrm{MeV}]$	$\boldsymbol{m}_{\boldsymbol{\rho}^{+}}[\mathrm{MeV}]$	$f_{\pi^{+}}[\mathrm{MeV}]$	$\boldsymbol{f}_{\boldsymbol{\rho}^{+}}[\mathrm{MeV}]$	$\left.\sqrt{\left\langle r_{c}^{2}\right\rangle}\right\|_{\pi^{+}}[\mathrm{fm}]$	norm $q \bar{q}$
BLFQ	139.57	775.26	138.2	129.0	0.516~?	0.492
PDG	${ }_{a l}^{\mathbf{1 3 9}, 57}$	775.26 ± 0.25	130.2 ± 1.7	221 ± 2	0.672 ± 0.008	
BLFQ-NJL [Jia, Vary, PR	$\begin{array}{r} 139.57 \\ C(2018)] \end{array}$	775.23 ± 0.04	202.10	100.12	0.68 ± 0.05	

BLFQ

$$
\begin{gathered}
N_{\max }=14, K_{\max }=15, M_{J}=0 \\
m_{\mathrm{q}}=0.39 \mathrm{GeV}, m_{\mathrm{g}}=0.60 \mathrm{GeV}, \\
\kappa=0.65 \mathrm{GeV}, b=0.29 \mathrm{GeV} \\
\alpha=0.293, m_{\mathrm{f}}=5.69 \mathrm{GeV}
\end{gathered}
$$

Pion Form Factor

$$
F\left(Q^{2}\right)=\sum_{i} \int d x_{i} H\left(x_{i}, 0, Q^{2}\right)
$$

Preliminary: based on leading Fock Sector WF

Pion initial PDF

Valence close to BLFQ-NJL result at large x , more than BLFQ-NJL result at small x ; we have gluon in initial PDF.

$$
|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{\|}+\cdots
$$

Pion PDA

Light meson in progress

Kaon Spectrum

Norm1 DC[MeV]

Kaon Form Factor

$$
F\left(Q^{2}\right)=\sum_{i} \int d x_{i} H\left(x_{i}, 0, Q^{2}\right)
$$

Preliminary: based on leading Fock Sector WF

Wave function
 $\uparrow \downarrow-\downarrow \uparrow$

Pion

Wave function
 $|\psi|^{2}$

Pion

1.1

Kaon PDA

Kaon initial PDF

$$
|K\rangle=|u \bar{s}\rangle_{\mathbf{1}}^{1}+\cdots \quad \text { vs } \quad|K\rangle=a|u \bar{s}\rangle+b|u \bar{s} g\rangle_{\mathbf{1}}^{\prime}+\cdots
$$

Kaon PDF $\quad|K\rangle=|u \bar{s}\rangle_{1}^{\prime}+\cdots \quad$ vs $\quad|K\rangle=a|u \bar{s}\rangle+b|u \bar{s} g\rangle_{1}^{\prime}+\cdots$

Preliminary

Kaon PDF

$$
|K\rangle=a|u \bar{s}\rangle+b|u \bar{s} g\rangle_{1}+\cdots
$$

Preliminary

Kaon PDF $\quad|K\rangle=|u \bar{s}\rangle_{1}^{\prime}+\cdots \quad$ vs $\quad|K\rangle=a|u \bar{s}\rangle+b|u \bar{s} g\rangle_{1}^{\prime}+\cdots$

$\frac{0}{D}$
$\frac{D}{2}$
$\frac{3}{3}$
$\frac{0}{2}$

$F_{2}\left(x, \mu^{2}\right)=\sum_{i} e_{i}^{2} x f_{i}^{K}\left(x, \mu^{2}\right)$
EicC ?

Conclusions

- Basis Light-front Quantization:
- Nonperturbative approach to relativistic many-body bound states
- Light-front Hamiltonian \Longrightarrow Wavefunction \Longrightarrow Observables
- Mass spectrum \longleftrightarrow structure
- Systematically expandable by including higher Fock sectors

$$
-\mid \text { Meson }\rangle=|q \bar{q}\rangle+|q \bar{q} g\rangle+|q \bar{q} q \bar{q}\rangle+\cdots
$$

Thank you!

Questions/suggestions: xbzhao@impcas.ac.cn

