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The Quark-Gap Equation and the Quark-Gluon Vertex
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Quark propagator
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Fig. 1 The quark-gluon vertex
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enhancement occurs preferably at momenta of ∼ ΛQC D .
Furthermore, the vertex is enhanced when all momenta enter-
ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p− mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p− q) Γ a

µ (−p, p− q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure

[
p

]−1 =
p

[ ]−1 +
p

q = p − k

k

Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
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of the quark-gluon vertex Γµ can be decomposed into longi-
tudinal Γ (L) and transverse Γ (T ) components relative to the
gluon momenta, i.e. one writes

Γµ( p 1, p 2, p 3) = Γ (L)
µ ( p 1, p 2, p 3) + Γ (T )

µ ( p 1, p 2, p 3),

(7)

where, by definition,

p µ
3 Γ (T )

µ ( p 1, p 2, p 3) = 0. (8)

By choosing a suitable tensor basis in the spinor-Lorentz
space, Γµ can be written as a sum of scalar form factors that
multiply each of the elements of the basis. The full vertex
Γµ requires twelve form factors and for the Ball and Chiu
basis [6] it reads

Γ L
µ ( p 1, p 2, p 3) = −i

4∑

i=1

λi ( p 1, p 2, p 3) L(i)
µ ( p 1, p 2) (9)

Γ T
µ ( p 1, p 2, p 3) = −i

8∑

i=1

τi ( p 1, p 2, p 3) T (i)
µ ( p 1, p 2).

(10)

The operators associated to the longitudinal vertex are

L(1)
µ ( p 1, p 2) = γµ,

L(2)
µ ( p 1, p 2) = (/p 1 − /p 2) ( p 1 − p 2)µ ,

L(3)
µ ( p 1, p 2) = ( p 1 − p 2)µ ID ,

L(4)
µ ( p 1, p 2) = σµν ( p 1 − p 2)

ν , (11)

while those associated to the transverse part of the vertex
read

T (1)
µ ( p 1, p 2) =

[
p 1µ ( p 2 · p 3) − p 2µ ( p 1 · p 3)

]
ID,

T (2)
µ ( p 1, p 2) = −T (1)

µ ( p 1, p 2) (/p 1 − /p 2) ,

T (3)
µ ( p 1, p 2) = p 2

3, γµ − p 3µ /p 3,

T (4)
µ ( p 1, p 2) = T (1)

µ ( p 1, p 2) σαβ p α
1 p β

2 ,

T (5)
µ ( p 1, p 2) = σµν p ν

3 ,

T (6)
µ ( p 1, p 2) = γµ

(
p 2

1 − p 2
2

)
+ ( p 1 − p 2)µ /p 3,

T (7)
µ ( p 1, p 2) = −1

2

(
p 2

1 − p 2
2

)

×
[
γµ (/p 1 − /p 2) − ( p 1 − p 2)µ ID

]

− ( p 1 − p 2)µ σαβ p α
1 p β

2 ,

T (8)
µ ( p 1, p 2) = −γµ σαβ p α

1 p β
2 + ( p 1µ /p 2 − p 2µ /p 1),

(12)

where σµν = 1
2 [γµ, γν].

2.1 QCD symmetries and the quark-gluon vertex

The global and local symmetries of QCD constrain the full
vertex Γµ and connect several of the Green’s functions the-
ory. For example, the global symmetries of QCD require
that the form factors λi and τi to be either symmetric or
anti-symmetric under exchange of the two first momenta;
see, e.g., ref. [38] and references therein. On the other hand,
gauge symmetry implies that the Green functions also satisfy
the Slavnov–Taylor identities (STI) [39–41]. These identi-
ties play a major role in our understanding of QCD and, in
particular, the longitudinal part of the quark-gluon vertex is
constrained by the following identity

p µ
3 Γµ( p 1, p 2, p 3) = F( p 2

3)
[

S−1(− p 1) H( p 1, p 2, p 3)

− H( p 2, p 1, p 3) S−1( p 2)
]
, (13)

where the ghost-dressing function F(q 2) is related to the
ghost two-point correlation function as

Dab(q 2) = − δab Dgh(q 2) = − δab F(q 2)

q 2 (14)

and H and H are associated to the quark-ghost kernel. As dis-
cussed in [38], these functions can be parametrised in terms
of four form factors as

H( p 1, p 2, p 3) = X0 ID + X1 /p 1 + X2 /p 2 + X3 σαβ p α
1 p β

2 ,

H( p 2, p 1, p 3) = X0 ID − X2 /p 1 − X1 /p 2 + X3 σαβ p α
1 p β

2 ,

(15)

where Xi ≡ Xi ( p 1, p 2, p 3) and Xi ≡ Xi ( p 2, p 1, p 3).
The STI given in Eq. (13) can be solved with respect to

the vertex [13] to write the longitudinal form factors λi in
terms of the quark propagator functions A( p 2), B( p 2) and
the quark-ghost kernel functions Xi and Xi as

λ1( p 1, p 2, p 3) = F( p 2
3)

2

×
{

A( p 2
1)

[
X0 +

(
p 2

1 − p 1 · p 2

)
X3

]

+ A( p 2
2)

[
X0 +

(
p 2

2 − p 1 · p 2

)
X3

]

+ B( p 2
1) [X1 + X2]

+ B( p 2
2)

[
X1 + X2

] }
, (16)

λ2( p 1, p 2, p 3) = F( p 2
3)

2
(

p 2
2 − p 2

1

)

×
{

A( p 2
1)

[(
p 2

1 + p 1 · p 2

)
X3 − X0

]

+ A( p 2
2)

[
X0 −

(
p 2

2 + p 1 · p 2

)
X3

]
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Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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one aims to look at the quark propagator, or the quark prop-
agator functions to extract information on the quark-gluon
vertex. In both these cases, a complete description of the
gluon and ghost propagators is assumed explicitly.

In the current work, we aim to solve the gap equation
for the quark-gluon vertex and, therefore, the knowledge of
the various propagators over all range of momenta appearing
in the integral equation is required. This is achieved fitting
the Landau gauge lattice propagators with model functions
that are compatible with the results of 1-loop renormalisation
group improved perturbation theory. In this way, it is ensured
that the perturbative tails are taken into account properly
in the parameterisation of the propagators. The parameter-
isations considered here are compared to those of [28] in
“Appendix B”. As can be seen on Fig. 44, the differences
between the two sets of curves are more quantitative than
qualitative.

5.1 Landau gauge lattice gluon and ghost propagators

The lattice gluon propagator has been computed in the Lan-
dau gauge both for full QCD and for the pure Yang–Mills.
The gluon propagator is well known for the pure Yang–
Mills theory and it was calculated in [47] for large statistical
ensembles and for large physical volumes ∼ (6.6 fm)4 and
∼ (8.2 fm)4; see also e.g. [44,45]. Furthermore, in [47] the
authors provide global fits to the lattice data that reproduce
the 1-loop renormalisation group summation of the lead-
ing logarithmic behaviour. Of the various expressions given
there, we will use to solve the integral Dyson–Schwinger
equations the following fit to the (6.6 fm)4 volume result

D(p2) = Z
p2 + M2

1

p4 + M2
2 p2+M4

3

[

ω ln

(
p2+m2

0

Λ2
QC D

)

+1

] γ

,

(63)

with the gluon anomalous dimension being γ = −13/22,
Z = 1.36486±0.00097, M2

1 = 2.510±0.030 GeV2, M2
2 =

0.471 ± 0.014 GeV2, M4
3 = 0.3621 ± 0.0038 GeV4, m2

0 =
0.216 ± 0.026 GeV2 using ΛQC D = 0.425 GeV and where
ω = 33 αs(µ)/12π with a strong coupling constant αs(µ =
3 GeV) = 0.3837; see [47] for details. This fit to the lattice
data has an associated χ2/d.o.f. = 3.15. The authors provide
fits with better values for the χ2/d.o.f. However, given that
the level of precision achieved on lattice simulations for the
quark propagator is considerably smaller than for the gluon
propagator, one should not distinguish between the various
fitting functions provided in [47]. Our option considers the
simplest functional form given in that work.

The lattice data for the Landau gauge gluon dressing func-
tion p2 D(p2), renormalised in the MOM-scheme at the mass
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3

F(
p²
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β = 6.0       804       77 quenched conf.

Fig. 4 Pure Yang–Mills gluon (top) and ghost (bottom) lattice dressing
functions and the corresponding fit functions used herein. See text for
details

scale µ = 3 GeV and the fit associated to Eq. (63) can be
seen on the top part of Fig. 4.

For the ghost propagator we take the data reported in [46]
for the 804 lattice simulation and fit the lattice data to the
functional form

Dgh(p2) = F(p2)

p2

= Z

p2

p4 + M2
2 p2 + M4

1

p4 + M2
4 p2 + M4

3

⎡

⎢⎢⎣ω ln

⎛

⎜⎜⎝
p2 + m4

1
p2+m2

0

Λ2
QC D

⎞

⎟⎟⎠ + 1

⎤

⎥⎥⎦

γgh

,

(64)

getting Z = 1.0429 ± 0.0054, M4
1 = 18.2 ± 5.7 GeV4,

M2
2 = 33.4 ± 6.4 GeV2, M4

3 = 6.0 ± 2.7 GeV4, M2
4 =

29.5 ± 5.7 GeV2, m4
1 = 0.237 ± 0.049, m2

0 = 0.09 ±
0.42 GeV2 with a χ2/d.o.f. = 0.27. In the above expression
the ghost anomalous dimension reads γgh = −9/44 with
ω and ΛQC D taking the same values as in the gluon fitting
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0 =
0.216 ± 0.026 GeV2 using ΛQC D = 0.425 GeV and where
ω = 33 αs(µ)/12π with a strong coupling constant αs(µ =
3 GeV) = 0.3837; see [47] for details. This fit to the lattice
data has an associated χ2/d.o.f. = 3.15. The authors provide
fits with better values for the χ2/d.o.f. However, given that
the level of precision achieved on lattice simulations for the
quark propagator is considerably smaller than for the gluon
propagator, one should not distinguish between the various
fitting functions provided in [47]. Our option considers the
simplest functional form given in that work.

The lattice data for the Landau gauge gluon dressing func-
tion p2 D(p2), renormalised in the MOM-scheme at the mass
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Fig. 4 Pure Yang–Mills gluon (top) and ghost (bottom) lattice dressing
functions and the corresponding fit functions used herein. See text for
details

scale µ = 3 GeV and the fit associated to Eq. (63) can be
seen on the top part of Fig. 4.

For the ghost propagator we take the data reported in [46]
for the 804 lattice simulation and fit the lattice data to the
functional form
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getting Z = 1.0429 ± 0.0054, M4
1 = 18.2 ± 5.7 GeV4,

M2
2 = 33.4 ± 6.4 GeV2, M4

3 = 6.0 ± 2.7 GeV4, M2
4 =

29.5 ± 5.7 GeV2, m4
1 = 0.237 ± 0.049, m2

0 = 0.09 ±
0.42 GeV2 with a χ2/d.o.f. = 0.27. In the above expression
the ghost anomalous dimension reads γgh = −9/44 with
ω and ΛQC D taking the same values as in the gluon fitting
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one aims to look at the quark propagator, or the quark prop-
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3 GeV) = 0.3837; see [47] for details. This fit to the lattice
data has an associated χ2/d.o.f. = 3.15. The authors provide
fits with better values for the χ2/d.o.f. However, given that
the level of precision achieved on lattice simulations for the
quark propagator is considerably smaller than for the gluon
propagator, one should not distinguish between the various
fitting functions provided in [47]. Our option considers the
simplest functional form given in that work.
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functions and the corresponding fit functions used herein. See text for
details

scale µ = 3 GeV and the fit associated to Eq. (63) can be
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getting Z = 1.0429 ± 0.0054, M4
1 = 18.2 ± 5.7 GeV4,

M2
2 = 33.4 ± 6.4 GeV2, M4

3 = 6.0 ± 2.7 GeV4, M2
4 =

29.5 ± 5.7 GeV2, m4
1 = 0.237 ± 0.049, m2

0 = 0.09 ±
0.42 GeV2 with a χ2/d.o.f. = 0.27. In the above expression
the ghost anomalous dimension reads γgh = −9/44 with
ω and ΛQC D taking the same values as in the gluon fitting
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function (63). The lattice data, renormalised in the MOM-
scheme at the mass scale µ = 3 GeV, and the fitting curve
(64) can be seen on the bottom of Fig. 4.

5.2 Lattice quark propagator

For the quark propagator we consider the result of a N f = 2
full QCD simulation in the Landau gauge [27,42] for β =
5.29, κ = 0.13632 and for a 323 × 64 lattice. For this par-
ticular lattice setup, the corresponding bare quark mass is 8
MeV and the pion mass reads Mπ = 295 MeV.

Our fittings to the lattice data, see below, take into account
that the lattice data is not free of lattice artefacts; see [27]
and [42] for details. At high momenta the lattice quark
wave function Z(p2) is a decreasing function of momenta, a
behaviour that is not compatible with perturbation theory that
predicts a constant Z(p2) in the Landau gauge. As reported
in [27,42], the analysis of the lattice artefacts relying on the
H4 method suggests that, indeed, Z(p2) is constant at high
p. In order to be compatible with perturbation theory, we
identify the region of momenta where Z(p2) is constant and,
for momenta above this plateaux, we replace the lattice esti-
mates of Z(p2) by constant values, i.e. the higher value of the
quark wave function belonging to the plateaux. The original
lattice data and the ultraviolet corrected lattice data can be
seen on top of Fig. 5. The UV corrected lattice data is then
fitted to the rational function

Z(p2) = Z0
p4 + M2

2 p2 + M4
1

p4 + M2
4 p2 + M4

3
(65)

giving Z0 = 1.11824 ± 0.00036, M4
1 = 1.41 ± 0.18 GeV4,

M2
2 = 6.28 ± 1.00 GeV2, M4

3 = 2.11 ± 0.28 GeV4, M2
4 =

6.20 ±0.98 GeV2 for a χ2/d.o.f. = 0.74. The solid red line
on Fig. 5 (top) refers to the fit just described.

The removal of the lattice artefacts for the running quark
mass is more delicate when compared to the evaluation of
the quark wave function lattice artefacts [24,42,43]. The lat-
tice data published in [27,42] and reported on Fig. 5 (bot-
tom) was obtained using the so called hybrid corrections to
reduce the lattice effects [24] . The hybrid method results in a
smoother mass function when compared to the one obtained
by applying the multiplicative corrections. The differences on
the corrected running mass between the two methods occur
for momenta above 1 GeV, with the multiplicative corrected
running mass being larger than the corresponding hybrid esti-
mation; see Appendix on [42]. The running mass provided
by the two methods, corrected for the lattice artefacts, seems
to converge to the same values at large momentum.

The running mass reported on Fig. 5 (bottom) is not
smooth enough to be fitted. To model the lattice running
mass in a way that reproduces the ultraviolet and the infrared
lattice data and is compatible with the perturbative behaviour
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Fig. 5 Quark wave function (top) and running mass (bottom) lattice
functions from full QCD simulations with N f = 2

at high moment, we remove some of the lattice data at inter-
mediate momenta. On Fig. 5 the data in the region with an
orange background was not taken into account in the global
fit of the running quark mass. The remaining lattice data was
fitted to

M(p2) = mq(p2)
[

A + log(p2 + λ m2
q(p2))

]γm
(66)

where γm = 12/29 is the quark anomalous dimension for
N f = 2 and

mq(p2) = Mq
p2 + m2

1

p4 + m2
2 p2 + m4

3
+ m0. (67)

The fitted parameters are Mq = 349±10 MeV GeV2, m2
1 =

1.09 ± 0.43 GeV2, m2
2 = 0.92 ± 0.28 GeV2, m4

3 = 0.42 ±
0.15 GeV4, m0 = 10.34±0.63 MeV and A = −2.98±0.25
for a χ2/d.o.f. = 1.97 after setting λ = 1 GeV2/MeV2. The
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function (63). The lattice data, renormalised in the MOM-
scheme at the mass scale µ = 3 GeV, and the fitting curve
(64) can be seen on the bottom of Fig. 4.

5.2 Lattice quark propagator

For the quark propagator we consider the result of a N f = 2
full QCD simulation in the Landau gauge [27,42] for β =
5.29, κ = 0.13632 and for a 323 × 64 lattice. For this par-
ticular lattice setup, the corresponding bare quark mass is 8
MeV and the pion mass reads Mπ = 295 MeV.

Our fittings to the lattice data, see below, take into account
that the lattice data is not free of lattice artefacts; see [27]
and [42] for details. At high momenta the lattice quark
wave function Z(p2) is a decreasing function of momenta, a
behaviour that is not compatible with perturbation theory that
predicts a constant Z(p2) in the Landau gauge. As reported
in [27,42], the analysis of the lattice artefacts relying on the
H4 method suggests that, indeed, Z(p2) is constant at high
p. In order to be compatible with perturbation theory, we
identify the region of momenta where Z(p2) is constant and,
for momenta above this plateaux, we replace the lattice esti-
mates of Z(p2) by constant values, i.e. the higher value of the
quark wave function belonging to the plateaux. The original
lattice data and the ultraviolet corrected lattice data can be
seen on top of Fig. 5. The UV corrected lattice data is then
fitted to the rational function

Z(p2) = Z0
p4 + M2
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3
(65)

giving Z0 = 1.11824 ± 0.00036, M4
1 = 1.41 ± 0.18 GeV4,

M2
2 = 6.28 ± 1.00 GeV2, M4

3 = 2.11 ± 0.28 GeV4, M2
4 =

6.20 ±0.98 GeV2 for a χ2/d.o.f. = 0.74. The solid red line
on Fig. 5 (top) refers to the fit just described.

The removal of the lattice artefacts for the running quark
mass is more delicate when compared to the evaluation of
the quark wave function lattice artefacts [24,42,43]. The lat-
tice data published in [27,42] and reported on Fig. 5 (bot-
tom) was obtained using the so called hybrid corrections to
reduce the lattice effects [24] . The hybrid method results in a
smoother mass function when compared to the one obtained
by applying the multiplicative corrections. The differences on
the corrected running mass between the two methods occur
for momenta above 1 GeV, with the multiplicative corrected
running mass being larger than the corresponding hybrid esti-
mation; see Appendix on [42]. The running mass provided
by the two methods, corrected for the lattice artefacts, seems
to converge to the same values at large momentum.

The running mass reported on Fig. 5 (bottom) is not
smooth enough to be fitted. To model the lattice running
mass in a way that reproduces the ultraviolet and the infrared
lattice data and is compatible with the perturbative behaviour
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functions from full QCD simulations with N f = 2

at high moment, we remove some of the lattice data at inter-
mediate momenta. On Fig. 5 the data in the region with an
orange background was not taken into account in the global
fit of the running quark mass. The remaining lattice data was
fitted to

M(p2) = mq(p2)
[

A + log(p2 + λ m2
q(p2))

]γm
(66)

where γm = 12/29 is the quark anomalous dimension for
N f = 2 and
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The fitted parameters are Mq = 349±10 MeV GeV2, m2
1 =

1.09 ± 0.43 GeV2, m2
2 = 0.92 ± 0.28 GeV2, m4

3 = 0.42 ±
0.15 GeV4, m0 = 10.34±0.63 MeV and A = −2.98±0.25
for a χ2/d.o.f. = 1.97 after setting λ = 1 GeV2/MeV2. The

123

INPUTS FROM LQCD in Landau gauge: SL momenta

Parametrizations summarized in Oliveira,  de Paula,  Frederico, de Melo, EPJ C 79 (2019) 116 

4

“gluon mass” ~ 500 MeV

“const mass” 
200-300 MeV
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Fig. 3. The solutions I and II found for X0(q
2), Y1(q

2) and
Y3(q

2) in [3] and the new solution found with the Padé pa-
rameterisation. See text for details. Also shown are the 1-loop
dressed perturbation theory for X0(q

2) (dashed lines) using
both the tree level gluon-ghost vertex (H(q2) = 1) and an
improved vertex ghost-gluon vertex [24].

for q . 200 MeV, being larger to accommodate the lattice
soft-gluon limit. For q & 1 GeV, the various curves have
similar structures, i.e. the same number of maxima and
minima, but di↵er in UV. Here the Padé based solution
approaches a negative constant value, while the Tikhonov
solutions approach a positive constant value.

The Padé based solution for Y3(q2) is di↵erent from
those computed in [3]. It has a simplified structure that
interpolates between its zero momentum value dictated by

the lattice soft-gluon limit and a UV constant value that
is about the same found for Sol. I in [3].

In [11] the authors solved simultaneously the SDE for
the quark propagator together with the quark-ghost ker-
nel, in its one-loop dressed perturbation theory, to com-
pute the various form factors Xi. At the qualitative level,
but not quantitatively, our results point in the same di-
rection. See [3] also for notation issues.
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Fig. 4. Form factors for Sol. I reported in [3] (left) together
with those associated with the new solution based on Padé
approximantions (right).

In Fig. 4 we report the various �i’s, the relevant quark-
gluon vertex form factors, for the new Padé solution and
compare them to the corresponding ones for Sol. I com-
puted in [3]. Somehow surprisingly the di↵erences between
the two sets of form factors are minimal, with the excep-
tion of �2. These situations also occurs for other values of
✓ 6= 0 (not represented here), the angle between the quark
and the gluon momentum. This is a welcome feature, as
the two solutions were computed in completely di↵erent
and independent ways, giving confidence in our findings.
In general the �i based on the Padé solution for X0 and Yi

have slightly less structure as the oscillations observed in
the Tikhonov regularised calculation are not present. �1

for the two solutions is very similar with the Padé based
calculation showing a clear enhancement in the infrared
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those computed in [3]. It has a simplified structure that
interpolates between its zero momentum value dictated by
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is about the same found for Sol. I in [3].
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the quark propagator together with the quark-ghost ker-
nel, in its one-loop dressed perturbation theory, to com-
pute the various form factors Xi. At the qualitative level,
but not quantitatively, our results point in the same di-
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Fig. 4. Form factors for Sol. I reported in [3] (left) together
with those associated with the new solution based on Padé
approximantions (right).

In Fig. 4 we report the various �i’s, the relevant quark-
gluon vertex form factors, for the new Padé solution and
compare them to the corresponding ones for Sol. I com-
puted in [3]. Somehow surprisingly the di↵erences between
the two sets of form factors are minimal, with the excep-
tion of �2. These situations also occurs for other values of
✓ 6= 0 (not represented here), the angle between the quark
and the gluon momentum. This is a welcome feature, as
the two solutions were computed in completely di↵erent
and independent ways, giving confidence in our findings.
In general the �i based on the Padé solution for X0 and Yi

have slightly less structure as the oscillations observed in
the Tikhonov regularised calculation are not present. �1

for the two solutions is very similar with the Padé based
calculation showing a clear enhancement in the infrared
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Fig. 3. The solutions I and II found for X0(q
2), Y1(q

2) and
Y3(q

2) in [3] and the new solution found with the Padé pa-
rameterisation. See text for details. Also shown are the 1-loop
dressed perturbation theory for X0(q

2) (dashed lines) using
both the tree level gluon-ghost vertex (H(q2) = 1) and an
improved vertex ghost-gluon vertex [24].

for q . 200 MeV, being larger to accommodate the lattice
soft-gluon limit. For q & 1 GeV, the various curves have
similar structures, i.e. the same number of maxima and
minima, but di↵er in UV. Here the Padé based solution
approaches a negative constant value, while the Tikhonov
solutions approach a positive constant value.

The Padé based solution for Y3(q2) is di↵erent from
those computed in [3]. It has a simplified structure that
interpolates between its zero momentum value dictated by

the lattice soft-gluon limit and a UV constant value that
is about the same found for Sol. I in [3].

In [11] the authors solved simultaneously the SDE for
the quark propagator together with the quark-ghost ker-
nel, in its one-loop dressed perturbation theory, to com-
pute the various form factors Xi. At the qualitative level,
but not quantitatively, our results point in the same di-
rection. See [3] also for notation issues.
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Fig. 4. Form factors for Sol. I reported in [3] (left) together
with those associated with the new solution based on Padé
approximantions (right).

In Fig. 4 we report the various �i’s, the relevant quark-
gluon vertex form factors, for the new Padé solution and
compare them to the corresponding ones for Sol. I com-
puted in [3]. Somehow surprisingly the di↵erences between
the two sets of form factors are minimal, with the excep-
tion of �2. These situations also occurs for other values of
✓ 6= 0 (not represented here), the angle between the quark
and the gluon momentum. This is a welcome feature, as
the two solutions were computed in completely di↵erent
and independent ways, giving confidence in our findings.
In general the �i based on the Padé solution for X0 and Yi

have slightly less structure as the oscillations observed in
the Tikhonov regularised calculation are not present. �1

for the two solutions is very similar with the Padé based
calculation showing a clear enhancement in the infrared
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Fig. 3. The solutions I and II found for X0(q
2), Y1(q

2) and
Y3(q

2) in [3] and the new solution found with the Padé pa-
rameterisation. See text for details. Also shown are the 1-loop
dressed perturbation theory for X0(q

2) (dashed lines) using
both the tree level gluon-ghost vertex (H(q2) = 1) and an
improved vertex ghost-gluon vertex [24].

for q . 200 MeV, being larger to accommodate the lattice
soft-gluon limit. For q & 1 GeV, the various curves have
similar structures, i.e. the same number of maxima and
minima, but di↵er in UV. Here the Padé based solution
approaches a negative constant value, while the Tikhonov
solutions approach a positive constant value.

The Padé based solution for Y3(q2) is di↵erent from
those computed in [3]. It has a simplified structure that
interpolates between its zero momentum value dictated by

the lattice soft-gluon limit and a UV constant value that
is about the same found for Sol. I in [3].

In [11] the authors solved simultaneously the SDE for
the quark propagator together with the quark-ghost ker-
nel, in its one-loop dressed perturbation theory, to com-
pute the various form factors Xi. At the qualitative level,
but not quantitatively, our results point in the same di-
rection. See [3] also for notation issues.
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Fig. 4. Form factors for Sol. I reported in [3] (left) together
with those associated with the new solution based on Padé
approximantions (right).

In Fig. 4 we report the various �i’s, the relevant quark-
gluon vertex form factors, for the new Padé solution and
compare them to the corresponding ones for Sol. I com-
puted in [3]. Somehow surprisingly the di↵erences between
the two sets of form factors are minimal, with the excep-
tion of �2. These situations also occurs for other values of
✓ 6= 0 (not represented here), the angle between the quark
and the gluon momentum. This is a welcome feature, as
the two solutions were computed in completely di↵erent
and independent ways, giving confidence in our findings.
In general the �i based on the Padé solution for X0 and Yi

have slightly less structure as the oscillations observed in
the Tikhonov regularised calculation are not present. �1

for the two solutions is very similar with the Padé based
calculation showing a clear enhancement in the infrared

Ø Slanov-Taylor identity & Quark-Ghost Kernel
Ø Padé approximants
Ø Error minimization ~ 2-4%
Ø simulating annealing
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reader that in [3] we used µ = 4.3 GeV as renormalisation
scale and it will also be used here to solve the SDE. All
these constraints can be taken in the calculation if all the
functions are parametrised by Padé approximants

X0(q
2) =

1 + a02 q
2 + a04 q

4

1 + b02 q
2 + a04q

4
,

Y1(q
2) =

Y1(0) + a12 q
2 + a14 q

4 + a16 q
6 + a18 q

8

1 + b12 q
2 + b14 q

4 + b16 q
6 + b18 q

8
,

Y3(q
2) =

Y3(0) + a32 q
2 + a34 q

4 + a36 q
6 + a38 q

8

1 + b32 q
2 + b34 q

4 + b36 q
6 + b38 q

8
.(23)

The coe�cients in (23) were computed relying on simu-
lating annealing to minimize the sum of the relative error
of the scalar and vector equations. The numerical experi-
ments show that it is relative easy to produce “solutions”
whose maximum relative error for the SDE is of the order
of 15%. However, for errors below the 10% value we found
a single solution. As seen in Fig. 2 we found a solution
that solves the SDE equations with a relative error, on
each equation, below the 4% level. In the minimisation
and to avoid poles on the Euclidean momenta real axis it
was assumed that all the coe�cients in the denominator
are positive real numbers.

Our parametrisation for X0(q2) is the simplest Padé
approximant that is compatible with the normalisation
conditions X0(0) = X0(+1) = 1 and allows for small de-
viations from unity as found in previous investigations [3,
10,11]. Furthermore, taking as guide these previous calcu-
lations we expected a maximum of X0(q2) below 1 GeV.
Given that for small q2, the function X0(q2) is expected
to grow, then b02 < a02. If X0(q2) has a maximum above
1 for q < 1 GeV, this demands a02 < 1 GeV�2. All these
constraints for X0 were taking into account in the min-
imisation process.

In the minimisation of the error we also changed the
powers of the numerator and denominator in the Padé
approximants for Y1(q2) and Y3(q2) but only with those
reported above we were able to find a solution of the SDE
with a relative error below 4%. During the minimization
process we observed that the first function to stabilize was
Y1(q2), followed by Y0(q2) and then by Y3(q2).

In Fig. 2 we show the relative error for the solution
of the Schwinger-Dyson equations based on Padé approx-
imants and the solutions reported in [3] computed with
↵s = 0.22. In all cases the relative error is below 4%.

6 Results and Summary

In Tab. 1 the coe�cients for the solution that minimise the
relative error of the SDE are reported. The corresponding
form factors X0(q2), Y1(q2) and Y3(q2) are shown in Fig.
3 and compared to the solutions computed in [3] with
a completely di↵erent method, where the original SDE
were replaced by Tikhonov regularised equations. All the
represented solutions were computed using the same set
of parameters, namely an UV hard cuto↵ of ⇤ = 20 GeV,
↵s = 0.22 and all propagators renormalised at µ = 4.3
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Fig. 2. Relative error for the Schwinger-Dyson equations for
the solutions I and II reported in [3] for ↵s = 0.22 and the new
solution considered here, computed using Padé approximants
and taking into account the soft-gluon limit. In both solutions
the propagators were renormalised at µ = 4.3 GeV using the
MOM-scheme.

X0(q
2) 1.00000 8.3596 20.3060

1.00000 4.0300 20.3060

Y1(q
2) 0.14961 9.4365 -23.3389 10.3509 -0.1385

1.00000 0.00016 21.7101 15.7290 3.2992

Y3(q
2) -0.06986 -1.1716 3.8827 -5.7153 3.6862

1.00000 17.5000 6.7462 19.7574 16.9110

Table 1. Coe�cients of the Padé approximant in (23) in pow-
ers of GeV. For each function, the upper line refers to the
numerator coe�cients in increasing power of q2, while in the
lower line are the coe�cients for the denominator polynomial
in increasing powers of q2.

GeV. Moreover, for the various integrations, angular and
momentum, we used exactly the same number of Gauss-
Legendre points as in [3].

For X0(q2) the new solution is enhanced compared to
those computed in [3], it has a maximum of ⇠ 1.35 to be
compared with ⇠ 1.10 for the old solutions. The maximum
of the new solution occurs at slightly larger q ⇠ 450 MeV
for the Padé based solution and ⇠ 350 MeV for Tikhonov
regularised solution. The outcome of the one-loop dressed
perturbation theory reported also in Fig. 3 have maxima
that are similar to those of the Tikhonov regularised so-
lution but occurring at a much larger scale, i.e. for q ⇠ 1
GeV. The Padé based solution does not show any minima
with X0(q2) < 1, as seen on the Tikhonov solutions, and
approaches the UV normalisation condition X0(+1) = 1
in a smoother way than the Tikhonov ones. In this respect
the new solution follows closer the behaviour observed for
the predictions of one-loop dressed perturbation theory.

The Y1(q2) seen in Fig. 3 are quite similar up to ⇠ 1
GeV. The maximum of the Padé solution being slightly
smaller than those of [3] and its deep infrared values, i.e.
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reader that in [3] we used µ = 4.3 GeV as renormalisation
scale and it will also be used here to solve the SDE. All
these constraints can be taken in the calculation if all the
functions are parametrised by Padé approximants
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The coe�cients in (23) were computed relying on simu-
lating annealing to minimize the sum of the relative error
of the scalar and vector equations. The numerical experi-
ments show that it is relative easy to produce “solutions”
whose maximum relative error for the SDE is of the order
of 15%. However, for errors below the 10% value we found
a single solution. As seen in Fig. 2 we found a solution
that solves the SDE equations with a relative error, on
each equation, below the 4% level. In the minimisation
and to avoid poles on the Euclidean momenta real axis it
was assumed that all the coe�cients in the denominator
are positive real numbers.

Our parametrisation for X0(q2) is the simplest Padé
approximant that is compatible with the normalisation
conditions X0(0) = X0(+1) = 1 and allows for small de-
viations from unity as found in previous investigations [3,
10,11]. Furthermore, taking as guide these previous calcu-
lations we expected a maximum of X0(q2) below 1 GeV.
Given that for small q2, the function X0(q2) is expected
to grow, then b02 < a02. If X0(q2) has a maximum above
1 for q < 1 GeV, this demands a02 < 1 GeV�2. All these
constraints for X0 were taking into account in the min-
imisation process.

In the minimisation of the error we also changed the
powers of the numerator and denominator in the Padé
approximants for Y1(q2) and Y3(q2) but only with those
reported above we were able to find a solution of the SDE
with a relative error below 4%. During the minimization
process we observed that the first function to stabilize was
Y1(q2), followed by Y0(q2) and then by Y3(q2).

In Fig. 2 we show the relative error for the solution
of the Schwinger-Dyson equations based on Padé approx-
imants and the solutions reported in [3] computed with
↵s = 0.22. In all cases the relative error is below 4%.

6 Results and Summary

In Tab. 1 the coe�cients for the solution that minimise the
relative error of the SDE are reported. The corresponding
form factors X0(q2), Y1(q2) and Y3(q2) are shown in Fig.
3 and compared to the solutions computed in [3] with
a completely di↵erent method, where the original SDE
were replaced by Tikhonov regularised equations. All the
represented solutions were computed using the same set
of parameters, namely an UV hard cuto↵ of ⇤ = 20 GeV,
↵s = 0.22 and all propagators renormalised at µ = 4.3
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Fig. 2. Relative error for the Schwinger-Dyson equations for
the solutions I and II reported in [3] for ↵s = 0.22 and the new
solution considered here, computed using Padé approximants
and taking into account the soft-gluon limit. In both solutions
the propagators were renormalised at µ = 4.3 GeV using the
MOM-scheme.

X0(q
2) 1.00000 8.3596 20.3060

1.00000 4.0300 20.3060

Y1(q
2) 0.14961 9.4365 -23.3389 10.3509 -0.1385

1.00000 0.00016 21.7101 15.7290 3.2992

Y3(q
2) -0.06986 -1.1716 3.8827 -5.7153 3.6862

1.00000 17.5000 6.7462 19.7574 16.9110

Table 1. Coe�cients of the Padé approximant in (23) in pow-
ers of GeV. For each function, the upper line refers to the
numerator coe�cients in increasing power of q2, while in the
lower line are the coe�cients for the denominator polynomial
in increasing powers of q2.

GeV. Moreover, for the various integrations, angular and
momentum, we used exactly the same number of Gauss-
Legendre points as in [3].

For X0(q2) the new solution is enhanced compared to
those computed in [3], it has a maximum of ⇠ 1.35 to be
compared with ⇠ 1.10 for the old solutions. The maximum
of the new solution occurs at slightly larger q ⇠ 450 MeV
for the Padé based solution and ⇠ 350 MeV for Tikhonov
regularised solution. The outcome of the one-loop dressed
perturbation theory reported also in Fig. 3 have maxima
that are similar to those of the Tikhonov regularised so-
lution but occurring at a much larger scale, i.e. for q ⇠ 1
GeV. The Padé based solution does not show any minima
with X0(q2) < 1, as seen on the Tikhonov solutions, and
approaches the UV normalisation condition X0(+1) = 1
in a smoother way than the Tikhonov ones. In this respect
the new solution follows closer the behaviour observed for
the predictions of one-loop dressed perturbation theory.

The Y1(q2) seen in Fig. 3 are quite similar up to ⇠ 1
GeV. The maximum of the Padé solution being slightly
smaller than those of [3] and its deep infrared values, i.e.Oliveira, Frederico, de Paula, EPJC 80 (2020) 484 
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built our anzats such that the soft-gluon limit from QCD
lattice simulations of �1 is incorporated. In section 5, we
present the results from the inversion of the Schwinger-
Dyson equations to get the coe�cients of the Padé ap-
proximants for the quark-ghost kernel relying on simulat-
ing annealing to minimize the sum of the relative error of
the scalar and vector equations. In section 6 we present
our results for the form factors of the longitudinal com-
ponents of the quark-gluon vertex and also analyze their
contribution of the quark-ghost kernel separately and we
close this section with a summary of our work.

2 The Quark Gap Equation and the
Quark-Gluon Vertex

The quark propagator is color diagonal and its spin-Lorentz
structure reads, in Minkowski space,

S
�1(p) = �i

�
A(p2)/p �B(p2)

�
= �i Z2( /p�m

bm)+⌃(p2)
(1)

where Z(p2) = 1/A(p2) is the quark wave function renor-
malisation,M(p2) = B(p2)/A(p2) the renormalisation group
invariant running quark mass, Z2 is the quark renormal-
isation constant and m

bm the bare current quark mass.
The quark self-energy is given by

⌃(p2) = Z1

Z
d
4
q

(2⇡)4
D

ab
µ⌫(q) ( i g t

b
�⌫ )

⇥S(p� q) � a
µ (�p, p� q, q), (2)

where Z1 is a combination of several renormalisation con-
stants and the Landau gauge gluon propagator is

D
ab
µ⌫(q) = �i �

ab

✓
gµ⌫ � qµq⌫

q2

◆
D(q2) . (3)

The quark-gluon vertex is defined with incoming momenta
p1 + p2 + p3 = 0, where p2 is the incoming quark momen-
tum, �p1 the outgoing quark momentum and p3 the in-
coming gluon momentum. Our notation follows that used
in [3,4]. The one-particle irreducible quark-gluon Green
function is depicted as

�
a
µ (p1, p2, p3) = g t

a
�µ(p1, p2, p3) , (4)

where g is the strong coupling constant and t
a are the

generators of the color SU(3) group in the fundamental
representation.

Assuming that the gluon propagator and �
a
µ are known,

from the gap equation (2), one can get the quark propaga-
tor. If Z(p2) and M(p2) are known, it is possible to use (2)
to extract information on the quark-gluon vertex. From
the mathematical point of view, computing �

a from the
gap equation means solving an ill-defined problem. The in-
troduction of a prior, that can be accommodated by reg-
ularising the integral equation or introducing a basis of
functions, allows to exactly and unambiguously solve the
modified equation for the vertex. The solution depends on

the prior and one should check its (in)dependence on the
prior.

The vertex function �µ, see Eq. (4), can be decom-

posed in a longitudinal � (L)
µ and a transverse �

(T )
µ com-

ponent, relative to the gluon momenta, as

�µ(p1, p2, p3) = �
(L)
µ (p1, p2, p3) + �

(T )
µ (p1, p2, p3) (5)

and, by definition, pµ3 �
(T )
µ (p1, p2, p3) = 0. As is usual

in the analysis of the Dyson-Schwinger equations, in the
current work we will focus on the longitudinal component

of the �µ and will ignore �
(T )
µ . If a tensor basis for �

(L)
µ

and �
(T )
µ is given, then �µ is a sum of scalar form factors

that multiply each of the elements of the tensor basis. The
full vertex requires twelve form factors, with four of them
being associated with the longitudinal component that in
the Ball and Chiu basis [7] are

�
L
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(6)

where �µ⌫ = 1
2 [�µ, �⌫ ] and �i = �i(p21, p

2
2, p

2
3). The symme-

tries of QCD constraint the quark-gluon vertex. For the
longitudinal form factors, charge conjugation invariance
[4] requires
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These properties under interchange of quark momenta im-
ply that when p

2
1 = p

2
2 and, therefore, �4 = 0 as happens

for the soft-gluon limit where p3 = 0.
The Slavnov-Taylor identity (STI) for the quark-gluon

vertex,

p
µ
3 �µ(p1, p2, p3) =

F (p23)
h
S

�1(�p1)H(p1, p2, p3)�H(p2, p1, p3)S
�1(p2)

i
,

(8)

relates the �i’s with the quark propagator, the quark-ghost
kernels that are define by H and H, see [4] for notation
and definitions, and the ghost dressing function F (p23),
related to the ghost propagator by

D
ab(p2) = �i �

ab
F (p2)/p2 . (9)

The quark-ghost kernel can be written in terms of four
form factors [4], called Xi ⌘ Xi(p21, p

2
2, p

2
3) and Xi ⌘

Xi(p22, p
2
1, p

2
3) , as

H(p1, p2, p3) = X0ID +X1 /p1 +X2 /p2 +X3 �↵� p
↵
1 p

�
2 ,

H(p2, p1, p3) = X0ID �X2 /p1 �X1 /p2 +X3 �↵� p
↵
1 p

�
2 .

(10)
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enhancement occurs preferably at momenta of ∼ ΛQC D .
Furthermore, the vertex is enhanced when all momenta enter-
ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p− mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p− q) Γ a

µ (−p, p− q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure

[
p
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p
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p

q = p − k
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Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
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to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p− mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p− q) Γ a

µ (−p, p− q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure

[
p

]−1 =
p

[ ]−1 +
p

q = p − k

k

Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices
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(Nakanishi 1962)

Bosons: Kusaka and Williams, PRD 51 (1995) 7026;
Light-front projection: integration in k-Carbonell&Karmanov EPJA27(2006)1;EPJA27(2006)11; 
TF, Salme, Viviani PRD89(2014) 016010,…
Fermions (0-): Carbonell and Karmanov EPJA 46 (2010) 387;  
de Paula, TF,Salmè, Viviani PRD 94 (2016) 071901;  
de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764

Each BS amplitude component:

Main Tool: Nakanishi Integral Representation (NIR)

Pion BS amplitude
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Generalized Stietjes transform and the LF  valence wave function
Carbonell, TF,  Karmanov PLB769 (2017) 418 (bosons)

UNIQUENESS OF THE NAKANISHI REPRESENTATION 

PHENOMENOLOGICAL APPLICATIONS from  the valence wf → BSA! 

Relations: LF, NIR and BS amplitude

The Nakanishi integral representation (NIR) gives the
Bethe-Salpeter amplitude c (BSA) through the weight function g;
The Light-Front projection of the BSA gives the valence light-front
wave function (LFWF) Y2;
The inverse Stieltjes transform gives g from the valence LFWF;

Carbonell, Frederico, Karmanov Phys.Lett. B769 (2017) 418-423

J. Nogueira (ITA, Brazil / ’La Sapienza’, Italy) Few-body with BSE 19 / 26

132 6. Fermion-antifermion bound state: Pion phenomenology

Moreover, in Eq. (6.1) the Dirac propagator S for a fermion of mass m reads

S(k) = i
/k + m

k2 ≠ m2 + i‘
. (6.3)

Furthermore, �̂2 = C�T
2 C and the vertex "quark-gluon" form factor F is of the form

F (k ≠ kÕ) = µ2 ≠ �2

(k ≠ kÕ)2 ≠ �2 + i‘
, (6.4)

where � is a suitable scale for giving the size of the color distribution of the interaction
vertex. It is worth mentioning that the form factor F acts as a regulator to avoid
the breakdown following from scale invariance in the ultraviolet region that also
happens in the present system, similarly to what was discussed in Sec. 5.2 for the
boson-fermion bound state.

The BS amplitude can be decomposed as

�(k, p) =
4ÿ

i=1
Si(k, p)„i(k, p), (6.5)

where each „i is a scalar function of the invariants k2, p2, k·p. The symmetry property
of the scalar functions, i.e. k æ ≠k for „i(k, p), can be straightforwardly translated
to the corresponding properties of the Nakanishi weight function, gi(“Õ, zÕ; Ÿ2), which
is associated with the exchange zÕ æ ≠zÕ. Hence, the weight functions must be even
for i = 1, 2, 4 and odd for i = 3. Moreover, the allowed Dirac structures read

S1(k, p) = “5, S2(k, p) = /p

M
“5, S3(k, p) =

Ë(k · p)
M3 /p ≠ 1

M
/k

È
“5,

S4(k, p) = i

M2 ‡µ‹pµk‹“5.
(6.6)

The NIR can subsequently be applied to each scalar functions, „i, i.e.,

„i(k, p) =
⁄ 1

≠1
dzÕ

⁄ Œ

0

gi(“Õ, zÕ; Ÿ2)
[k2 + (p · k)zÕ ≠ “Õ ≠ Ÿ2 + i‘]3 (6.7)

with Ÿ2 = m2 ≠ M2/4.
Noteworthy to mention that the Si operators of Eq. (6.6), present in the amplitude

�(k, p), together with the fermionic propagators (6.3) bring terms that produce
extra singularities, not present for the boson-boson or fermion-boson systems.

By inserting Eqs. (6.7) and (6.5) in (6.1), and subsequently performing the
light-front projection one can derive the following set of coupled integral equations
for the Nakanishi weight functions [50, 51]

⁄ Œ

0
d“Õ gi(“Õ, z; Ÿ2)

[“ + “Õ + m2z2 + (1 ≠ z2)Ÿ2]2 =

–
4ÿ

j=1

⁄ 1

≠1
dzÕ

⁄ Œ

0
d“Õ#L(ns)

ij
(“, z, “Õ, zÕ) + L(s)

ij
(“, z, “Õ, zÕ)

$
gj(“Õ, zÕ; Ÿ2),

(6.8)
 i(�, z;

2
) =
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3D LF amplitudes

Dynamical observables: the LFWF components;
(B/m = 1.35, µ/m = 2.0, L/m = 1.0, mq=215 MeV): fp = 96 MeV,
Pval = 0.34
Other observables are straightforward to compute once you have
BS amplitude solution;

J. Nogueira (ITA, Brazil / ’La Sapienza’, Italy) Few-body with BSE 16 / 19

Light-front amplitudes 9

Kernel has similar magnitude with LQCD form-factor ~ 50%

21

3 4

6.1 The BSE for a 0≠ state 137

⁄QCD. The coupling constant is conveniently rescaled as

–s = g2

4fi
(1 ≠ µ2/�2)2,

where g2 is fixed through the outcome of the eigenvalue problem. The form presented
above is introduced in order to match the behavior in the infrared region [170].
Another relevant observable that can be computed is the pion decay constant,
defined as

i p2ffi = NC

⁄
d4k

(2fi)4 Tr[ /p “5 �(p, k)] , (6.20)

where NC is the number of colors. More details on the formulation of the decay
constant within the BS approach are presented in Appendix I.3. These parameters
give for the pion decay constant ffi = 96 MeV, which is very close to the experimental
value [1]. The obtained valence probability for this system is pval = 0.68. The
parameters, as well as the outcomes for pval and ffi, are summarized in Table 6.2.

Table 6.2. Input parameters for the mock pion. The last two columns show the results for
the valence probability pval and decay constant ffi.

B/m Mfi (MeV) g2 µ (MeV) �/m m (MeV) pval ffi (MeV)
1.35 140 26.718 430 1.0 215 0.68 96

6.1.2 GPD and elastic form factor

In order to access information inside hadrons, considering the quark and gluon dof,
the so-called Generalized Parton Distributions (GPDs)4 belong to the set of the
elective quantities. It can be understood as a 3D picture of the hadrons, carrying
the correlation between the transverse position and the longitudinal momentum
of partons within the hadron, giving direct access to observables like form factors
and parton distribution functions. One way of understanding the GPDs is as the
o�-shell parton-hadron scattering amplitude projected onto the LF, which reads [171].
Schematically, one has

H(x, ›, t) = 1
2

⁄
dk+d2k‹”

A

x ≠ k+

P +

B ⁄
dk≠A(k), (6.21)

with
A(k) =

⁄
d4zeik·z ÈP + �

2 |T
5
Â̄(≠z

2)“+Â(z

2)
6

|P ≠ �
2 Í , (6.22)

where the light-cone gauge is considered, P is the momentum average of the hadron
between the incoming and outgoing states, � is the transfered momentum and T is

4Worth pointing out that the Transverse Momentum Distributions (TMDs) are the relevant
quantities for focusing on the momentum distributions. Their calculation will be done in a future
study.
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by the treatment of the spin degrees of freedom acting in the problem. They
were successfully accounted by the methods developed in [30] (see Ref. [55]
for an early discussion of those singularities). The above set of integral equa-
tions is solved numerically by matrix methods, using an expansion in Laguerre
and Gegenbauer polynomials of the weight function in the � and z variables,
respectively.

Valence probability and LF momentum distributions. The valence probability
and momentum distributions can be derived resorting to the LF quantum-field
theory methods (see Ref.[56]), where one defines the creation and annihilation
operators for particles and antiparticles onto the null-plane with arbitrary
spin, in order to construct the generic LF Fock state. Then, one ultimately
recognizes that the evaluation of the valence wave function comes from the
elimination of the relative light front time between quark operators entering
the matrix element between the vacuum and hadron state, which defines the
BS amplitude. Alternatively, the valence wave function can be obtained using
the quasi-potential expansion method adapted to perform the LF projection
of the BS equation and amplitude (see Refs. [23,24,57,58] for details). For
instance one has for the valence probability [57]:

Pval =
Nc

27 ⇡2

Z 1

�1
dz

Z 1

0
d�

Z dk�

2⇡

Z dk0�

2⇡
Tr

n
�+ �(k, p) �+ �̄(k0, p)

o
, (7)

where � = k2
? and z = 2⇠ � 1, with the quark Bjorken momentum fraction

0 < ⇠ < 1. Calculating the traces and integrating over k� and k0� one finds
that

Pval =
Z 1

�1
dz

Z 1

0
d� Pval(�, z) , (8)

where the valence momentum distribution density is:

Pval(�, z) = P"#
val(�, z) + P##

val(�, z) , (9)

where the anti-aligned quark spin probability density is:

P"#
val(�, z) =

Nc

16 ⇡2
| "#

val(�, z)|2 , (10)

and the density for the spin aligned configuration is:

P""
val(�, z) =

Nc

16 ⇡2
| ""

val(�, z)|2 . (11)

The anti-parallel helicity component is given by [68]

i
2p+

M
 "#(�, z) =

1

2

Z dk�

2⇡
Tr[�+�5�(k, p)], (12)

6

Normalization:

The two spin-components of the wave function are written in terms of auxiliary
amplitudes, where the leading asymptotic behaviour for large b is factor out:

 ̃"#(z̃, b) = e�b �"#(z̃, b) and  ̃""(z̃, b) = e�b �""(z̃, b) (29)

where

�"#(z̃, b) = �
eb

2(2⇡)2M

Z 1

0
d�

Z 1

0
d⇠ F0(⇠, �, b) cos(⇠z̃) g2(�, z)|z=2⇠�1

�
eb

2(2⇡)2M

Z 1

0
d�

Z 1

0
d⇠ F0(⇠, �, b)

⇣
⇠ � 1

2

⌘
cos(⇠z̃) g3(�, z)|z=2⇠�1

+
eb

2(2⇡)3M3

Z 1

0
d�

Z 1

0
d⇠ F 0

0(⇠, �, b) cos(⇠z̃)
@

@z
g3(�, z)|z=2⇠�1 , (30)

�""(z̃, b) = �
eb

2(2⇡)2M2

Z 1

0
d�

Z 1

0
d⇠ F1(⇠, �, b) cos(⇠z̃) g4(�, z)|z=2⇠�1.(31)

Instead the direct pion wave functions for the purpose of the presentation,
we will provide results for the amplitudes �"#(z̃, b) and �""(z̃, b), where the
exponential drop is softened. The cos(⇠z̃) close to the origin can be expanded
in a Taylor series for both �"# and �"" as:

�"#(z̃, b) =�
eb

2(2⇡)2M

1X

n=0

(�1)nz̃2n

(2n)!

Z 1

0
d⇠ ⇠2n

⇢ Z 1

0
d� F0(⇠, �, b) g2(�, z)|z=2⇠�1

+
Z 1

0
d�

Z 1

0
d⇠

⇣
⇠ � 1

2

⌘
F0(⇠, �, b) g3(�, z)|z=2⇠�1

� 1

M2

Z 1

0
d�

Z 1

0
d⇠ F 0

0(⇠, �, b)
@

@z
g3(�, z)|z=2⇠�1

�
, (32)

�""(z̃, b) =�
eb

2(2⇡)2M2

1X

n=0

(�1)nz̃2n

(2n)!

Z 1

0
d�

Z 1

0
d⇠ ⇠2n F1(⇠, �, b) g4(�, z)|z=2⇠�1.

Normalization. In order to calculate hadronic observables, namely in our case
the valence probability and momentum distributions, the BS amplitude has
to be properly normalized, and in the ladder approximation it reads [60]

Tr

Z
d4k

(2⇡)4
@

@p0µ
{S�1(k � p0/2)�̄(k, p)S�1(k + p0/2)�(k, p)}|p0=p

�
= i 2pµ . (33)

Therefore, by using Eq. (3), and performing the Dirac trace, the normalization
condition turns to be:

i Nc

Z
d4k

(2⇡)4

h
�1�1 + �2�2 + b�3�3 + b�4�4 � 4 b�1�4 � 4

m

M
�2�1

i
= �1 , (34)
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where the higher Fock state contributions to the form factor are summed up in the nonvalence
form factor, with Fnval(0) = 1 � Pval for its normalization. Therefore, once we are able to
compute the valence contribution to the form factor, the nonvalence part of the form factor
can be obtained by using (14), and the role of higher Fock-components in composing the form
factor can be accessed, as for example, the nonvalence charge radius.

Valence electromagnetic form factor. The valence contribution to the pion electromagnetic
form factor at a given momentum transfer Q2 can be written as [30] (see also [31, 32]):

F val(Q
2) =

Nc

16⇡3

Z
d
2
k?

Z 1

�1

dz

h
 

⇤
"#(�

0
, z) "#(�

00
, z) +

~k
0
? · ~k00

?
k
0
?k

00
?
 

⇤
""(�

0
, z) ""(�

00
, z)

i
, (15)

where Q
2 = |~q?|2, � = |~k?|2, �0 = |~k0

?|2, �00 = |~k00
?|2,

~k
0
? = ~k? +

1

4
(1� z)~q?, ~k

00
? = ~k? � 1

4
(1� z)~q? = ~k0? � 1

2
(1� z)~q? ,

~k
0
? · ~k00

? = � � (1� z)2

16
Q

2 and ~k? · ~q? = |~k?||~q?| cos ✓ .
(16)

In Eq. (15) the antiparallel spin component ( "#), and the parallel one ( ""), are given by
[24]

 "#(�, z) = �i
M

4p+

Z
dk

�

2⇡
Tr[�+�5�(k; p)]

=  2(�, z) +
z

2
 3(�, z) +

Z 1

0

d�
0

M3

@g3(�0, z)/@z

[� + �0 + z2m2 + (1� z2)2]
,

 ""(�, z) =

p
�M

4ip+

Z
dk

�

2⇡
Tr[�+i

�5�(k; p)] =

p
�

M
 4(�, z),

(17)

with

 i(�, z) = �
Z 1

0

d�
0

M

gi(�0, z)

[� + �0 +m2z2 + (1� z2)2]2
. (18)

The decay constant is obtained from the spin antiparallel valence pion wave function, and
using the plus component of the axial-current as:

f⇡ = �i
Nc

p+

Z
d
4
k

(2⇡)4
Tr[ �+ �5 �(p, k)] =

2Nc

M

Z
d
2
k?

(2⇡)2
dk

+

2⇡
 "#(�, z) , (19)

with k
+ = p

+
z/2 (p+ = M), and where we have used that d4k = 1

2d
2
k?dk

+
dk

� and introduced
Eq. (17) for the antiparallel spin component. On the other side the decay constant can be also
written in the form:

f⇡ = � Nc

2(2⇡)2M

Z 1

0

d�
0
Z 1

�1

dz

Z 1

0

d�
g2(�, z)

[� + �0 +m2z2 + (1� z2)2]2
, (20)

where the contribution of g3 from the valence wave function is exactly canceled.
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where the higher Fock state contributions to the form factor are summed up in the nonvalence
form factor, with Fnval(0) = 1 � Pval for its normalization. Therefore, once we are able to
compute the valence contribution to the form factor, the nonvalence part of the form factor
can be obtained by using (14), and the role of higher Fock-components in composing the form
factor can be accessed, as for example, the nonvalence charge radius.

Valence electromagnetic form factor. The valence contribution to the pion electromagnetic
form factor at a given momentum transfer Q2 can be written as [30] (see also [31, 32]):

F val(Q
2) =

Nc

16⇡3

Z
d
2
k?

Z 1

�1

dz

h
 

⇤
"#(�

0
, z) "#(�

00
, z) +

~k
0
? · ~k00

?
k
0
?k

00
?
 

⇤
""(�

0
, z) ""(�

00
, z)

i
, (15)

where Q
2 = |~q?|2, � = |~k?|2, �0 = |~k0

?|2, �00 = |~k00
?|2,

~k
0
? = ~k? +

1

4
(1� z)~q?, ~k

00
? = ~k? � 1

4
(1� z)~q? = ~k0? � 1

2
(1� z)~q? ,

~k
0
? · ~k00

? = � � (1� z)2

16
Q

2 and ~k? · ~q? = |~k?||~q?| cos ✓ .
(16)

In Eq. (15) the antiparallel spin component ( "#), and the parallel one ( ""), are given by
[24]

 "#(�, z) = �i
M

4p+

Z
dk

�

2⇡
Tr[�+�5�(k; p)]

=  2(�, z) +
z

2
 3(�, z) +

Z 1

0

d�
0

M3

@g3(�0, z)/@z

[� + �0 + z2m2 + (1� z2)2]
,

 ""(�, z) =

p
�M

4ip+

Z
dk

�

2⇡
Tr[�+i

�5�(k; p)] =

p
�

M
 4(�, z),

(17)

with

 i(�, z) = �
Z 1

0

d�
0

M

gi(�0, z)

[� + �0 +m2z2 + (1� z2)2]2
. (18)

The decay constant is obtained from the spin antiparallel valence pion wave function, and
using the plus component of the axial-current as:

f⇡ = �i
Nc

p+

Z
d
4
k

(2⇡)4
Tr[ �+ �5 �(p, k)] =

2Nc

M

Z
d
2
k?

(2⇡)2
dk

+

2⇡
 "#(�, z) , (19)

with k
+ = p

+
z/2 (p+ = M), and where we have used that d4k = 1

2d
2
k?dk

+
dk

� and introduced
Eq. (17) for the antiparallel spin component. On the other side the decay constant can be also
written in the form:

f⇡ = � Nc

2(2⇡)2M

Z 1

0

d�
0
Z 1

�1

dz

Z 1

0

d�
g2(�, z)

[� + �0 +m2z2 + (1� z2)2]2
, (20)

where the contribution of g3 from the valence wave function is exactly canceled.
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Moreover, in Eq. (6.1) the Dirac propagator S for a fermion of mass m reads

S(k) = i
/k + m

k2 ≠ m2 + i‘
. (6.3)

Furthermore, �̂2 = C�T
2 C and the vertex "quark-gluon" form factor F is of the form

F (k ≠ kÕ) = µ2 ≠ �2

(k ≠ kÕ)2 ≠ �2 + i‘
, (6.4)

where � is a suitable scale for giving the size of the color distribution of the interaction
vertex. It is worth mentioning that the form factor F acts as a regulator to avoid
the breakdown following from scale invariance in the ultraviolet region that also
happens in the present system, similarly to what was discussed in Sec. 5.2 for the
boson-fermion bound state.

The BS amplitude can be decomposed as

�(k, p) =
4ÿ

i=1
Si(k, p)„i(k, p), (6.5)

where each „i is a scalar function of the invariants k2, p2, k·p. The symmetry property
of the scalar functions, i.e. k æ ≠k for „i(k, p), can be straightforwardly translated
to the corresponding properties of the Nakanishi weight function, gi(“Õ, zÕ; Ÿ2), which
is associated with the exchange zÕ æ ≠zÕ. Hence, the weight functions must be even
for i = 1, 2, 4 and odd for i = 3. Moreover, the allowed Dirac structures read

S1(k, p) = “5, S2(k, p) = /p

M
“5, S3(k, p) =

Ë(k · p)
M3 /p ≠ 1

M
/k

È
“5,

S4(k, p) = i

M2 ‡µ‹pµk‹“5.
(6.6)

The NIR can subsequently be applied to each scalar functions, „i, i.e.,

„i(k, p) =
⁄ 1

≠1
dzÕ

⁄ Œ

0

gi(“Õ, zÕ; Ÿ2)
[k2 + (p · k)zÕ ≠ “Õ ≠ Ÿ2 + i‘]3 (6.7)

with Ÿ2 = m2 ≠ M2/4.
Noteworthy to mention that the Si operators of Eq. (6.6), present in the amplitude

�(k, p), together with the fermionic propagators (6.3) bring terms that produce
extra singularities, not present for the boson-boson or fermion-boson systems.

By inserting Eqs. (6.7) and (6.5) in (6.1), and subsequently performing the
light-front projection one can derive the following set of coupled integral equations
for the Nakanishi weight functions [50, 51]

⁄ Œ

0
d“Õ gi(“Õ, z; Ÿ2)

[“ + “Õ + m2z2 + (1 ≠ z2)Ÿ2]2 =

–
4ÿ

j=1

⁄ 1

≠1
dzÕ

⁄ Œ

0
d“Õ#L(ns)

ij
(“, z, “Õ, zÕ) + L(s)

ij
(“, z, “Õ, zÕ)

$
gj(“Õ, zÕ; Ÿ2),

(6.8)
 i(�, z;

2
) =
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Set m B/m µ/m ⇤/m ↵s (↵s) Pval P"# P"" f⇡/m f⇡

I 187 1.25 0.15 2 5.146 (23.13) 0.64 0.55 0.09 0.414 77

II 255 1.45 1.5 1 52.78 (21.54) 0.65 0.55 0.10 0.433 112

III 215 1.35 2 1 76.28 (18.16) 0.67 0.57 0.11 0.453 98

IV 255 1.45 2 1 78.01 (18.57) 0.66 0.56 0.11 0.459 117

V 255 1.45 2.5 1 108.87 (16.87) 0.68 0.56 0.11 0.477 122

VI 255 1.45 2.5 1.1 87.66 (13.59) 0.69 0.56 0.12 0.498 127

VII 255 1.45 2.5 1.2 72.32 (11.21) 0.70 0.57 0.13 0.511 130

VIII 215 1.35 1 2 10.20 (8.50) 0.71 0.57 0.14 0.520 112

IX 187 1.25 1 2 9.96 (8.30) 0.71 0.58 0.14 0.514 96

TABLE I. Pion model with m⇡ = 140 MeV for di↵erent parameter sets, m and f⇡ in MeV. Calculated valence probability,
total, antiparallel and parallel, and decay constant. The values of the coupling constant ↵s and the e↵ective strength,
defined in Eq. (46), are also given.

to 0.71 and f⇡ between 77 and 130 MeV. The calcu-
lations are organized according to the dimensionless
e↵ective kernel strength ↵s, introduced as

↵s =
↵s

µ2

m2 + 0.2
with ↵s =

g2

4⇡
(1� µ2/⇤2)2 , (46)

where the value of average momentum
p
0.2m has its

correspondence on the characteristic scale for the de-
creasing behaviour of the transverse momentum dis-
tribution in the model, as it will be clear when present-
ing results for this quantity. The valence probabilities
for the antiparallel and parallel valence spin compo-
nents are shown in Table I, where it is found that the
values range from 0.55 to 0.58 and from 0.09 to 0.14,
respectively.
The probabilities seem to be organized following ↵̄s

and increase as it decreases. This tendency is some-
what natural to expect, as ↵̄s weights e↵ectively the
coupling to the higher Fock states present in the dy-
namical model. The ratio f⇡/m is associated with the
spin antiparallel wave function at the origin (see Eq.
(35)), which is depleted as the higher Fock-states, cor-
responding to more compact configurations, are pop-
ulated as the coupling of these Fock states with the
valence one is favored at short distances. The higher-
Fock components are associated with high virtuality
and thus present themselves at small distances. Ob-
serve, the spread of the values of f⇡ as it carries the
constituent quark mass, in addition to the dependence
on ↵̄s.
We found that, the higher Fock components con-

tent of the LF pion wave function is appreciable in
this model with probability about 30%. The ladder
kernel of the BS equation when projected onto the LF

[12, 13, 15, 16] takes into account an infinite number
of Fock-components beyond the valence state, built
as a qq̄ pair and any number of gluons. We have not
yet computed how the remaining probability is dis-
tributed among the first components, thought it is
indicative that the lowest value for the valence proba-
bility is found for the smallest e↵ective gluon mass,
where it is supposedly more likely that the higher
Fock-states are populated. In the limit µ ! 0, the va-
lence probability accommodates within a finite value
as the quark-gluon vertex has a definite size in our
model.

We should remind that the BS equation for the
model is ill-behaved for ⇤ ! 1, as the coupling con-
stant is dimensionless. In such case the BS integral
equation for the bound state has a continuous scale
invariance in the UV, which implies that above a crit-
ical value of coupling the model has no stable solutions
(see e.g. [5]), and the scale invariance is broken to a
discrete one, demanding a cut-o↵ to recover stabil-
ity. However, the quark-gluon vertex has a strong IR
enhancement with a UV tail carrying a perturbative
value of ↵s, well below the critical coupling constant
[7]. Below the critical coupling the UV behavior of the
BS amplitude is dominated by power law form with
exponents depending on the ↵s. In our case as we are
going to show this dependence is reflected on the run-
ning of the end-point behavior of the valence parton
distribution with ↵̄s.

In a concise way, Table I emphasizes two main fea-
tures, which can be identified: (i) the infrared proper-
ties reflected in the decay constant, with the conspic-
uous relation to the constituent quark mass, and (ii)
the ultraviolet properties reflected at the end points

where the higher Fock state contributions to the form factor are summed up in the nonvalence
form factor, with Fnval(0) = 1 � Pval for its normalization. Therefore, once we are able to
compute the valence contribution to the form factor, the nonvalence part of the form factor
can be obtained by using (14), and the role of higher Fock-components in composing the form
factor can be accessed, as for example, the nonvalence charge radius.

Valence electromagnetic form factor. The valence contribution to the pion electromagnetic
form factor at a given momentum transfer Q2 can be written as [30] (see also [31, 32]):

F val(Q
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Nc
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~k
0
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00
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(1� z)~q? ,

~k
0
? · ~k00

? = � � (1� z)2

16
Q

2 and ~k? · ~q? = |~k?||~q?| cos ✓ .
(16)

In Eq. (15) the antiparallel spin component ( "#), and the parallel one ( ""), are given by
[24]

 "#(�, z) = �i
M

4p+

Z
dk

�

2⇡
Tr[�+�5�(k; p)]

=  2(�, z) +
z

2
 3(�, z) +

Z 1

0

d�
0

M3

@g3(�0, z)/@z

[� + �0 + z2m2 + (1� z2)2]
,

 ""(�, z) =

p
�M

4ip+

Z
dk

�

2⇡
Tr[�+i

�5�(k; p)] =

p
�

M
 4(�, z),

(17)

with

 i(�, z) = �
Z 1

0

d�
0

M

gi(�0, z)

[� + �0 +m2z2 + (1� z2)2]2
. (18)

The decay constant is obtained from the spin antiparallel valence pion wave function, and
using the plus component of the axial-current as:

f⇡ = �i
Nc

p+

Z
d
4
k

(2⇡)4
Tr[ �+ �5 �(p, k)] =

2Nc

M

Z
d
2
k?

(2⇡)2
dk

+

2⇡
 "#(�, z) , (19)

with k
+ = p

+
z/2 (p+ = M), and where we have used that d4k = 1

2d
2
k?dk

+
dk

� and introduced
Eq. (17) for the antiparallel spin component. On the other side the decay constant can be also
written in the form:

f⇡ = � Nc

2(2⇡)2M

Z 1

0

d�
0
Z 1

�1

dz

Z 1

0

d�
g2(�, z)

[� + �0 +m2z2 + (1� z2)2]2
, (20)

where the contribution of g3 from the valence wave function is exactly canceled.
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where the higher Fock state contributions to the form factor are summed up in the nonvalence
form factor, with Fnval(0) = 1 � Pval for its normalization. Therefore, once we are able to
compute the valence contribution to the form factor, the nonvalence part of the form factor
can be obtained by using (14), and the role of higher Fock-components in composing the form
factor can be accessed, as for example, the nonvalence charge radius.

Valence electromagnetic form factor. The valence contribution to the pion electromagnetic
form factor at a given momentum transfer Q2 can be written as [30] (see also [31, 32]):
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In Eq. (15) the antiparallel spin component ( "#), and the parallel one ( ""), are given by
[24]
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The decay constant is obtained from the spin antiparallel valence pion wave function, and
using the plus component of the axial-current as:
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with k
+ = p

+
z/2 (p+ = M), and where we have used that d4k = 1
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+
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� and introduced
Eq. (17) for the antiparallel spin component. On the other side the decay constant can be also
written in the form:
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where the contribution of g3 from the valence wave function is exactly canceled.
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Valence probability:

by the treatment of the spin degrees of freedom acting in the problem. They
were successfully accounted by the methods developed in [30] (see Ref. [55]
for an early discussion of those singularities). The above set of integral equa-
tions is solved numerically by matrix methods, using an expansion in Laguerre
and Gegenbauer polynomials of the weight function in the � and z variables,
respectively.

Valence probability and LF momentum distributions. The valence probability
and momentum distributions can be derived resorting to the LF quantum-field
theory methods (see Ref.[56]), where one defines the creation and annihilation
operators for particles and antiparticles onto the null-plane with arbitrary
spin, in order to construct the generic LF Fock state. Then, one ultimately
recognizes that the evaluation of the valence wave function comes from the
elimination of the relative light front time between quark operators entering
the matrix element between the vacuum and hadron state, which defines the
BS amplitude. Alternatively, the valence wave function can be obtained using
the quasi-potential expansion method adapted to perform the LF projection
of the BS equation and amplitude (see Refs. [23,24,57,58] for details). For
instance one has for the valence probability [57]:

Pval =
Nc

27 ⇡2

Z 1

�1
dz

Z 1

0
d�

Z dk�

2⇡

Z dk0�

2⇡
Tr

n
�+ �(k, p) �+ �̄(k0, p)

o
, (7)

where � = k2
? and z = 2⇠ � 1, with the quark Bjorken momentum fraction

0 < ⇠ < 1. Calculating the traces and integrating over k� and k0� one finds
that

Pval =
Z 1

�1
dz

Z 1

0
d� Pval(�, z)

Pval =
Nc

16 ⇡2

Z 1

�1
dz

Z 1

0
d�

h
| "#(�, z)|2 + | "#(�, z)|2

i
(8)

where the valence momentum distribution density is:

Pval(�, z) = P"#
val(�, z) + P##

val(�, z) , (9)

where the anti-aligned quark spin probability density is:

P"#
val(�, z) =

Nc

16 ⇡2
| "#

val(�, z)|2 , (10)

and the density for the spin aligned configuration is:

P""
val(�, z) =

Nc

16 ⇡2
| ""

val(�, z)|2 . (11)

6

Decay constant:
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Set m B/m µ/m ⇤/m ↵s (↵s) Pval P"# P"" f⇡/m f⇡

I 187 1.25 0.15 2 5.146 (23.13) 0.64 0.55 0.09 0.414 77

II 255 1.45 1.5 1 52.78 (21.54) 0.65 0.55 0.10 0.433 112

III 215 1.35 2 1 76.28 (18.16) 0.67 0.57 0.11 0.453 98

IV 255 1.45 2 1 78.01 (18.57) 0.66 0.56 0.11 0.459 117

V 255 1.45 2.5 1 108.87 (16.87) 0.68 0.56 0.11 0.477 122

VI 255 1.45 2.5 1.1 87.66 (13.59) 0.69 0.56 0.12 0.498 127

VII 255 1.45 2.5 1.2 72.32 (11.21) 0.70 0.57 0.13 0.511 130

VIII 215 1.35 1 2 10.20 (8.50) 0.71 0.57 0.14 0.520 112

IX 187 1.25 1 2 9.96 (8.30) 0.71 0.58 0.14 0.514 96

TABLE I. Pion model with m⇡ = 140 MeV for di↵erent parameter sets, m and f⇡ in MeV. Calculated valence probability,
total, antiparallel and parallel, and decay constant. The values of the coupling constant ↵s and the e↵ective strength,
defined in Eq. (46), are also given.

to 0.71 and f⇡ between 77 and 130 MeV. The calcu-
lations are organized according to the dimensionless
e↵ective kernel strength ↵s, introduced as

↵s =
↵s

µ2

m2 + 0.2
with ↵s =

g2

4⇡
(1� µ2/⇤2)2 , (46)

where the value of average momentum
p
0.2m has its

correspondence on the characteristic scale for the de-
creasing behaviour of the transverse momentum dis-
tribution in the model, as it will be clear when present-
ing results for this quantity. The valence probabilities
for the antiparallel and parallel valence spin compo-
nents are shown in Table I, where it is found that the
values range from 0.55 to 0.58 and from 0.09 to 0.14,
respectively.
The probabilities seem to be organized following ↵̄s

and increase as it decreases. This tendency is some-
what natural to expect, as ↵̄s weights e↵ectively the
coupling to the higher Fock states present in the dy-
namical model. The ratio f⇡/m is associated with the
spin antiparallel wave function at the origin (see Eq.
(35)), which is depleted as the higher Fock-states, cor-
responding to more compact configurations, are pop-
ulated as the coupling of these Fock states with the
valence one is favored at short distances. The higher-
Fock components are associated with high virtuality
and thus present themselves at small distances. Ob-
serve, the spread of the values of f⇡ as it carries the
constituent quark mass, in addition to the dependence
on ↵̄s.
We found that, the higher Fock components con-

tent of the LF pion wave function is appreciable in
this model with probability about 30%. The ladder
kernel of the BS equation when projected onto the LF

[12, 13, 15, 16] takes into account an infinite number
of Fock-components beyond the valence state, built
as a qq̄ pair and any number of gluons. We have not
yet computed how the remaining probability is dis-
tributed among the first components, thought it is
indicative that the lowest value for the valence proba-
bility is found for the smallest e↵ective gluon mass,
where it is supposedly more likely that the higher
Fock-states are populated. In the limit µ ! 0, the va-
lence probability accommodates within a finite value
as the quark-gluon vertex has a definite size in our
model.

We should remind that the BS equation for the
model is ill-behaved for ⇤ ! 1, as the coupling con-
stant is dimensionless. In such case the BS integral
equation for the bound state has a continuous scale
invariance in the UV, which implies that above a crit-
ical value of coupling the model has no stable solutions
(see e.g. [5]), and the scale invariance is broken to a
discrete one, demanding a cut-o↵ to recover stabil-
ity. However, the quark-gluon vertex has a strong IR
enhancement with a UV tail carrying a perturbative
value of ↵s, well below the critical coupling constant
[7]. Below the critical coupling the UV behavior of the
BS amplitude is dominated by power law form with
exponents depending on the ↵s. In our case as we are
going to show this dependence is reflected on the run-
ning of the end-point behavior of the valence parton
distribution with ↵̄s.

In a concise way, Table I emphasizes two main fea-
tures, which can be identified: (i) the infrared proper-
ties reflected in the decay constant, with the conspic-
uous relation to the constituent quark mass, and (ii)
the ultraviolet properties reflected at the end points

increasing  Pval



Pion EM Form Factor

A. I(1)

I(1) = i

Z
d4k

(2⇡)4
1

[k2 + k · p z � � � 2 + i✏]3
1

[k02 + k0 · p0 z0 � �0 � 2 + i✏]3
(23)

From the Feynman trick it follows

I(1) = i

Z
d4k

(2⇡)4

Z 1

0

dv
30v2(1� v)2

[(1� v) (k2 + k · p z � � � 2 + i✏0) + v (k02 + k0 · p0 z0 � �0 � 2 + i✏)]6
=

= i

Z
d4k

(2⇡)4

Z 1

0

dv
30v2(1� v)2

h
k
2 �Mcov + i✏

i6 (24)

where k = k + ↵ p+ �1 q, ↵ = z(1�v)+z0 v
2 , �1 =

v(1+z0)
2 and

Mcov1 = 2 + �(1� v) + �0 v + ↵2 M2 +
Q2

2
(1� v)(1 + z) �1 (25)

I(1) = � 3

32⇡2

Z 1

0

dv
v2(1� v)2

M4
cov

(26)

B. I(2)

I(2) = i

Z
d4k

(2⇡)4
k2

[k2 �Mcov + i✏]6
=

1

480 ⇡2 M3
cov

(27)

III. FORM FACTOR

After the loop integration writing in a more compact form, we find the following formula

F (Q2) =
Nc

25⇡2NQ0

4X

i,j=1

Z 1

0

d�

Z 1

�1

dz gi(�, z)

Z 1

0

d�0
Z 1

�1

dz0 gj(�
0, z0)

Z 1

0

dv v2(1� v)2 cij

where NQ0 is the normalization factor given by F (0) = 1 and Q2 = �(p� p0)2 > 0 and with

cij = c(I)ij + c(II)ij (28)

c(I)ij =
⌘ij +Mcov1 �ij

M4
cov1

(29)
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Figure 1: Right: Pion EM form factor and its valence contribution divided by the monopole form factor
Fmon(Q2) = 1/(1 + Q2/m2

⇢) versus Q2, compared with experimental data of Refs. [36, 37, 38, 39, 40, 41] for
the parameter sets III and VII. Left: Pion EM form factor and its valence contribution multiplied by Q2, as
functions of momentum transfer, compared with experimental data of Refs. [36, 37, 38, 39, 40, 41] for the
parameter sets III and VII. The result of the QCD asymptotic formula is also shown with the blue dot-dashed
line.

the asymptotic dominance. Additionally, we show in the right panel of the figure the form factor
and its valence contribution multiplied by Q

2, as functions of momentum transfer, compared
with the QCD asymptotic formula [43]

Q
2
Fasymp(Q

2) = 8⇡↵s(Q
2)f 2

⇡ , (23)

and it comes closer to the model results only around Q
2 ⇠ 100GeV2, and consistent with the

previous analysis of the valence dominance in the pion form factor.
The valence, nonvalence and total EM form factors are shown in Fig. 2, where it is appreci-

ated the faster decrease with momentum of the small higher Fock components of the LF pion
wave function. A higher Fock-component contribution to the form factor appears in the form of
valence state matrix elements of a two-body current operator [31, 32], which carries the virtual
propagation of the intermediate states and thus are short-ranged, being subleading at large
momentum transfers and reflected in the faster damping with respect to the dominant valence
contribution as momentum increases. In addition the ratio of the valence to the covariant form
factor is shown in the figure, and for Q2 ⇠ 100GeV2 exhausts about 95% of the full form factor,
and the di↵erence is appreciable ⇠ 30% below 30GeV2.

The contributions of the antiparallel and parallel spin components of the valence state to the
form factor is shown in the left panel of Fig. 3 . The probability of the parallel configuration
is only about 20% of the antiparallel one, which is seen at zero momentum transfer, and
by increasing Q

2 it turns to be subleading with respect to the dominant spin antiparallel
contribution. The zero in the parallel spin form factor is due to the orbital and spin coupling
factor as seen in (21), which flips the sign of this contribution around Q

2 ⇠ 8GeV2. In the right
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[32] J. A. O. Marinho, T. Frederico, E. Pace, G. Salmè, P. Sauer, Light-front Ward-Takahashi Identity for Two-
Fermion Systems, Phys. Rev. D 77 (2008) 116010. arXiv:0805.0707, doi:10.1103/PhysRevD.77.116010.

[33] M. B. Parappilly, P. O. Bowman, U. M. Heller, D. B. Leinweber, A. G. Williams, J. B. Zhang, Scal-
ing behavior of quark propagator in full QCD, Phys. Rev. D 73 (2006) 054504. arXiv:hep-lat/0511007,
doi:10.1103/PhysRevD.73.054504.

[34] B. Ananthanarayan, I. Caprini, D. Das, Electromagnetic charge radius of the pion at high precision,
Physical review letters 119 (13) (2017) 132002.

[35] M. Tanabashi, et al., Review of Particle Physics, Phys. Rev. D 98 (3) (2018) 030001.
doi:10.1103/PhysRevD.98.030001.
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Set m B/m µ/m ⇤/m f⇡/m Pval f⇡ r⇡ (fm) rval (fm) rnval (fm)
I 187 1.25 0.15 2 0.414 0.64 77 1.035 1.099 0.913
II 255 1.45 1.5 1 0.433 0.65 110 0.718 0.770 0.610
III 215 1.35 2 1 0.453 0.67 98 0.835 0.895 0.703
IV 255 1.45 2 1 0.459 0.66 117 0.699 0.750 0.586
V 255 1.45 2.5 1 0.477 0.68 122 0.687 0.736 0.570
VI 255 1.45 2.5 1.1 0.498 0.69 126 0.674 0.722 0.553
VII 255 1.45 2.5 1.2 0.511 0.70 130 0.663 0.710 0.538
VIII 215 1.35 1 2 0.520 0.71 112 0.782 0.836 0.632
IX 187 1.25 1 2 0.514 0.71 96 0.913 0.975 0.742

Table 1: Pion model with m⇡ = 140 MeV for various parameter sets, valence probability, f⇡ in MeV, pion charge
radius, valence and non-valence charge radii. The experimental pion charge radius is 0.657± 0.003 fm [34] with

r⇡ =
q

�6 d
dQ2F⇡(Q2)|Q2=0. The experimental value of f⇡ is 130.50± 0.017 MeV from [35].

which follows from the decomposition given in Eq. (13) and the normalization of the valence
and nonvalence form factors.

It is noteworthy that the higher Fock components have a smaller size compared to the
pion itself, namely r⇡ = 0.661 fm compared to rnval = 0.537 fm, while the radius of the valence
component is rval = 0.709 fm, showing an extended valence quark charge distribution compared
to the full pion state, while the higher Fock components of the pion shows a more compact
charge distribution of the quarks.

The interpretation is quite natural considering that the higher Fock components of the pion
composed by the two valence quarks and gluons have larger virtualities, living less time and not
allowing quarks to fly far from to the pion center, making the charge distribution associated to
these higher Fock components more compact than the pion itself.

Form-factor results. The pion EM form factor and its valence contribution divided by the
monopole form factor Fmon(Q2) = 1/(1 + Q

2
/m

2
⇢) is presented in Fig. 1 and compared with

experimental data of Refs. [36, 37, 38, 39, 40, 41]. We choose the parameter sets III and VII,
with f⇡ of 98 and 130 MeV, and valence probabilities of 0.67 and 0.70, respectively. It is well
known the strong correlation between f⇡ and the pion radius [42], and in the present model
once the parameters were fine tuned to reproduce f⇡ resulting in model VII, the form factor
at low momenta is well described together with the charge radius. The valence probability of
0.70 is the same as the normalization of the valence form factor, and for quite large momentum
the nonvalence contribution becomes subleading and dominated by the valence one, as it is
known. The dynamical model gives quantitatively that this happens above 80 GeV2. In Fig. 1
the results are compared with the ones of model III, with f⇡ being 30% below the experimental
value, with a larger charge radius in the same proportion. That is reflected in the larger
slope close to Q

2 = 0, despite such a di↵erence one can also observe that at 80 GeV2 of
momentum transfer it gives 90% of the form factor and being a good guess for the beginning of
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Figure 2: Left: The valence, nonvalence and total EM form factors as functions of Q2. Right: Ratio of the
valence to the covariant form factor. Model VII.

panel of the figure, the approximate asymptotic expression for the valence form factor (22) is
compared to the valence one, and it gives an error of about 20%, such approximate expression
should be distinguished of the QCD asymptotic formula, that is derived by considering the one
gluon exchange contribution to the kernel, while we have not done that. Our formulation aimed
only to reveal how the asymptotics is formed from the z or ⇠ integration of the form factor, as
will be detailed next.
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Figure 3: Left: Comparison of the anti-parallel and parallel contributions to the valence form factor vs Q2.
Right: Asymptotic expression for the valence form factor compared to the valence one.

The z-dependencies of the valence form factor, approximate asymptotic formula, and full
form factor are presented in Fig. 4, where we have plotted F̃ (Q2

, z) with F (Q2) =
R 1

�1 dzF̃ (Q2
, z)

for each of the three cases. As we have anticipated, the formation of the asymptotic follows for
the region close to z = 1 from the competition of the small values of the product (1� z)Q2 and
the damping of the wave function and distribution amplitude at the end points. The peak seen
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in the figure for the valence contribution and the approximate expression put in evidence the
known close relation between the end-point behavior and the large momentum behavior of the
pion form factor. The support of the bump is ⇠ Q

�2. In the left panel the plot of F̃ (Q2
, z) for

the full form factor, which endorses the dominance of the end-point region for the asymptotic
of the form factor, although tempting, we cannot simply identify the dependence in z obtained
for the full form factor with the valence one.

Summary. We developed a fully Minkowski space four-dimensional calculation of the pion
electromagnetic form factor in a dynamical model, with ingredients inspired by the infrared
properties of QCD. It is important to stress that the model has limitations and the kernel has
to be improved to take into account the dressings of the quarks, gluon and quark-gluon vertex
function, even in ladder approximation. However, e↵ectively the parameters inspired by LQCD
takes into account most of the IR properties, once they are fine tuned to reproduce the experi-
mental decay constant. That provides a very realistic charge radius of 0.663 fm compared with
0.657±0.003 fm [34], and allowed to predict both the valence and non-valence radii of 0.71 fm
and 0.54 fm, respectively. We emphasize that the valence probability is about 70% and the
remaining probability is associated with the occupancy of states with a quark-antiquark pair
and any number of gluons. We found quantitatively, but as expected, that the quark-antiquark
pair in the higher Fock-components of the pion LF wave function are considerably more com-
pact (25%) than the valence configuration. The spin anti-parallel configuration dominates the
valence form factor, by 80% at low momentum transfers and decreasing to 10% or less at
Q

2 ⇠ 70GeV2, it is noticeable the persistence of the subleading parallel spin contribution to
the valence form factor. The experimental form factor is reasonable well reproduced, while the
valence contribution exhausts 90% of the form factor only above Q

2 ⇠ 80GeV2, which is also
a good guess for the asymptotic behavior dominance confirmed by the QCD formula compared
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Asymptotic valence form factor. First the change in integration variable from ~k? ! ~k
0
? is

done in Eq. (15), that gives:
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where instead of the modulus of transverse momenta it is used the � variables, then performing
the limit of Q ! 1, one gets:

Fval(Q
2)|Q2!1 ⇠ Nc

16⇡2

Z 1

�1

dz  "#

✓
(1� z)2

4
Q

2
, z

◆ Z 1

0

d�  "#(�, z) , (22)

where the contribution of the parallel spin wave function is subleading with respect to the
antiparallel one. A nice feature of the approximate formula is that one can understand the
origin of the asymptotic form factor, where essentially the integral in z receives contributions
for large Q’s, concentrated close to z = 1 or ⇠ = 0, from the competition of the wave function
dependence in � = |~k?|2, that prefers small arguments for (1�z)2

4 Q
2 and the damping of the wave

function at the end-points. This will be illustrated when presenting our results. The integral
over � of the spin antiparallel wave function, is the distribution amplitude, with normalization
following from the valence probability.

Model parameters. In the present work Eq. (6) was solved for the coupling strength g
2 and

the Nakanishi weight functions gi(�, z) by using a bi-orthogonal basis, i.e. Laguerre polynomials
for the non-compact variable (�) and Gegenbauer polynomials for the compact one (z). For
more details on the numerical method, see e.g. Ref. [28]. As inputs were used the binding
energy B, the exchanged mass µ and the scaling parameter ⇤. The di↵erent parameter sets
considered in this work are listed in Table 1 and correspond to values of f⇡ in the range 77�130
MeV. The gluon mass µ is chosen to be between 30 to 660 MeV, and the latter value chosen
to encompass LQCD results for the dressing function in the IR region (Landau gauge) [22].
The constituent quark mass around 250 MeV to be close to the IR value of the running mass
in LQCD [33]. The form factor parameter is around ⇤QCD [20] while the coupling constant is
obtained by fitting the binding energy of the pion.

The nonvalence probability has a close correlation with the values of the dimensionless ratio
f⇡/m that is associated in the valence wave function at the origin. As it decreases the valence
probability Pval decreases and the probability to populate higher Fock-components increases.
One should note that higher Fock components of the wave function are states with higher
virtuality and therefore more compact, as our extraction of the pion valence and nonvalence
charge radius confirms. It will be discussed in what follows.

Pion valence and nonvalence charge radius. For some particular cases, we computed the
valence charge and nonvalence radii as given in Table 1. To obtain the nonvalence contribution
to the pion radius, namely the contribution of the higher Fock-components of the pion LF wave
function, we used that:

r
2
⇡ = Pval r

2
val + (1� Pval) r

2
nval ,
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Valence form factor

Asymp. form factor

where the higher Fock state contributions to the form factor are summed up in the nonvalence
form factor, with Fnval(0) = 1 � Pval for its normalization. Therefore, once we are able to
compute the valence contribution to the form factor, the nonvalence part of the form factor
can be obtained by using (14), and the role of higher Fock-components in composing the form
factor can be accessed, as for example, the nonvalence charge radius.

Valence electromagnetic form factor. The valence contribution to the pion electromagnetic
form factor at a given momentum transfer Q2 can be written as [30] (see also [31, 32]):
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In Eq. (15) the antiparallel spin component ( "#), and the parallel one ( ""), are given by
[24]
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The decay constant is obtained from the spin antiparallel valence pion wave function, and
using the plus component of the axial-current as:
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with k
+ = p

+
z/2 (p+ = M), and where we have used that d4k = 1

2d
2
k?dk

+
dk

� and introduced
Eq. (17) for the antiparallel spin component. On the other side the decay constant can be also
written in the form:
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where the contribution of g3 from the valence wave function is exactly canceled.
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distribution, and in the high momentum behavior of the transverse momentum
distribution and form factor.

The pion form factor is a sum of the valence and nonvalence contributions,
corresponding to the higher Fock-components of the LF wave function as:

F⇡(Q
2) =

X

n

Fn(Q
2) = Fval(Q

2) + Fnval(Q
2) , (37)

where Fn(Q2) represents the contribution of the n�th Fock component of the
pion wave function to the form factor [31], Fval(Q2) is the valence contribution
having normalization Fval(0) = Pval and

Fnval(Q
2) =

X

n 6=val

Fn(Q
2) , (38)

where the higher Fock state contributions to the form factor are summed up
in the nonvalence form factor, with Fnval(0) = 1� Pval for its normalization.

For some particular cases, we computed the valence charge and nonvalence
radii as given in table 2. To obtain the nonvalence contribution to the pion
radius, namely the contribution of the higher Fock-components of the pion LF
wave function, we used that:

r2⇡ = Pval r
2
val + (1� Pval) r

2
nval , (39)

which follows from the decomposition given in Eq. (37) and the normalization
of the valence and nonvalence form factors. It is noteworthy that the higher
Fock components have a smaller size compared to the pion itself, namely
r⇡ = 0.661 fm compared to rnval = 0.537 fm, while the radius of the valence
component is rval = 0.709 fm, showing an extended valence quark charge dis-
tribution compared to the full pion state, while the higher Fock components of
the pion shows a more compact charge distribution of the quarks. The inter-
pretation is quite natural considering that the higher Fock components of the
pion composed by the two valence quarks and gluons have larger virtualities,
living less time and not allowing quarks to fly far from to the pion center,
making the charge distribution associated to these higher Fock components
more compact than the pion itself.

Table 2
Pion model with m⇡ = 138 MeV for di↵erent parameter sets, f⇡ in MeV, pion
charge radius, valence and novalence charge radii. The experimental pion charge

radius is 0.657± 0.003 fm [64] with r⇡ =
q
�6 d

dQ2F⇡(Q2)|Q2=0.

Set
p
2f⇡ (f⇡) r⇡ (fm) rval (fm) rnval (fm)

(IX) 130 (92) 0.661 0.709 0.537

We found that, the higher Fock components content of the LF pion wave
function is appreciable in this model. The ladder model has a infinite number
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[60] D. Lurié, A. J. Macfarlane and Y. Takahashi, Phys. Rev. 140 (1965) B1091.

[61] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and
2019 update.

[62] A. C. Aguilar et al., Pion and Kaon Structure at the Electron-Ion Collider,
e-Print: arXiv:1907.08218 [nucl-ex]
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distribution, and in the high momentum behavior of the transverse momentum
distribution and form factor.

The pion form factor is a sum of the valence and nonvalence contributions,
corresponding to the higher Fock-components of the LF wave function as:

F⇡(Q
2) =

X

n

Fn(Q
2) = Fval(Q

2) + Fnval(Q
2) , (37)

where Fn(Q2) represents the contribution of the n�th Fock component of the
pion wave function to the form factor [31], Fval(Q2) is the valence contribution
having normalization Fval(0) = Pval and

Fnval(Q
2) =

X

n 6=val

Fn(Q
2) , (38)

where the higher Fock state contributions to the form factor are summed up
in the nonvalence form factor, with Fnval(0) = 1� Pval for its normalization.

For some particular cases, we computed the valence charge and nonvalence
radii as given in table 2. To obtain the nonvalence contribution to the pion
radius, namely the contribution of the higher Fock-components of the pion LF
wave function, we used that:

r2⇡ = Pval r
2
val + (1� Pval) r

2
nval , (39)

which follows from the decomposition given in Eq. (37) and the normalization
of the valence and nonvalence form factors. It is noteworthy that the higher
Fock components have a smaller size compared to the pion itself, namely
r⇡ = 0.661 fm compared to rnval = 0.537 fm, while the radius of the valence
component is rval = 0.709 fm, showing an extended valence quark charge dis-
tribution compared to the full pion state, while the higher Fock components of
the pion shows a more compact charge distribution of the quarks. The inter-
pretation is quite natural considering that the higher Fock components of the
pion composed by the two valence quarks and gluons have larger virtualities,
living less time and not allowing quarks to fly far from to the pion center,
making the charge distribution associated to these higher Fock components
more compact than the pion itself.

Table 2
Pion model with m⇡ = 138 MeV for di↵erent parameter sets, f⇡ in MeV, pion
charge radius, valence and novalence charge radii. The experimental pion charge

radius is 0.657± 0.003 fm [64] with r⇡ =
q
�6 d

dQ2F⇡(Q2)|Q2=0.

Set
p
2f⇡ (f⇡) r⇡ (fm) rval (fm) rnval (fm)

(IX) 130 (92) 0.661 0.709 0.537

We found that, the higher Fock components content of the LF pion wave
function is appreciable in this model. The ladder model has a infinite number
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higher Fock-components à large virtualityà more compact

Valence

qq+gluons

B = 1.45mq mglue= 2.5mq =1.2mq  mq=255 MeV

Set m B/m µ/m ⇤/m f⇡/m Pval f⇡ r⇡ (fm) rval (fm) rnval (fm)
I 187 1.25 0.15 2 0.414 0.64 77 1.035 1.099 0.913
II 255 1.45 1.5 1 0.433 0.65 110 0.718 0.770 0.610
III 215 1.35 2 1 0.453 0.67 98 0.835 0.895 0.703
IV 255 1.45 2 1 0.459 0.66 117 0.699 0.750 0.586
V 255 1.45 2.5 1 0.477 0.68 122 0.687 0.736 0.570
VI 255 1.45 2.5 1.1 0.498 0.69 126 0.674 0.722 0.553
VII 255 1.45 2.5 1.2 0.511 0.70 130 0.663 0.710 0.538
VIII 215 1.35 1 2 0.520 0.71 112 0.782 0.836 0.632
IX 187 1.25 1 2 0.514 0.71 96 0.913 0.975 0.742

Table 1: Pion model with m⇡ = 140 MeV for various parameter sets, valence probability, f⇡ in MeV, pion charge
radius, valence and non-valence charge radii. The experimental pion charge radius is 0.657± 0.003 fm [34] with

r⇡ =
q

�6 d
dQ2F⇡(Q2)|Q2=0. The experimental value of f⇡ is 130.50± 0.017 MeV from [35].

which follows from the decomposition given in Eq. (13) and the normalization of the valence
and nonvalence form factors.

It is noteworthy that the higher Fock components have a smaller size compared to the
pion itself, namely r⇡ = 0.661 fm compared to rnval = 0.537 fm, while the radius of the valence
component is rval = 0.709 fm, showing an extended valence quark charge distribution compared
to the full pion state, while the higher Fock components of the pion shows a more compact
charge distribution of the quarks.
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FIG. 4. Pion DA and transverse amplitudes for the two
spin components obtained with the parameter set VII.

component, as we have discussed, the same happens
for the longitudinal momentum distributions (c.f. Ta-
ble II). The corresponding properties can be observed
in the transverse amplitudes, where calculations were
presented up to about 0.3 GeV2 showing a character-
istic decrease, which expresses the IR characteristic
momentum scales of about 0.5 GeV, present in our
model parameters.

E. Evolved PDF’s

The standard evolution of the pion parton distri-
bution is done up to NLO see [29] to compare with
the E615 [33] rescaled E165 [34, 35] and JAM global
fit analysis [36]. The key issue is to determine the
initial scale for the evolution, which in our case we
evolve hxi from our model as given in Table III from
a given Q2

0 scale which match the recent Lattice data
hxilatt = 0.2075 ± 0.0106 within the quoted error at
the scale of 4 GeV2 [37]. We will allow some variation
around the obtained initial scale as we will discuss.
Our model calculations only consider the valence

wave function, while the states beyond the valence
contributes to the parton distribution at the initial
scale. To account for that, in a simply phenomenologi-
cal form, we resort to the suggestion of Ref. [38], which
included the contribution of the higher Fock compo-

Q2 hxi hx2i hx3i hx4i hx̃i hx̃2i hx̃3i hx̃4i
0.25 0.35 0.20 0.13 0.091 0.424 0.234 0.147 0.100

1.69 0.209 0.095 0.051 0.031 0.254 0.108 0.057 0.034

4.0 0.208 0.094 0.051 0.031 0.254 0.108 0.057 0.033

5.76 0.184 0.078 0.040 0.023 0.224 0.089 0.045 0.025

27.0 0.167 0.067 0.033 0.019 0.203 0.077 0.037 0.021

49.0 0.155 0.060 0.029 0.016 0.189 0.069 0.032 0.018

TABLE IV. Evolved Mellin moments at NLO for di↵erent
final scales, starting from the initial scale Q2

0 = 0.25 GeV2

and using ↵s(Q
2
0) = 1.732. The parameter set (VII) was

adopted for the calculations of hxni and hx̃ni, where for
the latter Eq. (49) was used to set the distribution function
at the initial scale.

nents of the wave function, by assuming an equal prob-
ability of populating these components expressed by
the convolution with the valence distribution as given
below

�̃(⇠) = �(⇠) + (1� Pval)

Z 1

⇠

dy

y

�(⇠/y)

Pval
, (49)

where in addition the valence distribution is added.
The second term has normalization of 1� Pval corre-
sponding to the model probability of populating states
beyond the valence, and the normalization is:

Z 1

0
d⇠ �̃(⇠) = 1 . (50)

The phenomenological formula (49) has no further pa-
rameters. In the original discussion of this model
thiethe higher Fock components was attributed to
the constituent quark structure, while in the present
model the dynamics in the Minkowski space brings
already implicitly an infinite number of Fock compo-
nents as part of the pion state, in this sense the phe-
nomenological model from [38] is used here.

We define the moments of the distribution at the
initial scale according to Eq. (49) as

hx̃ni =
Z 1

0
d⇠ ⇠n�̃(⇠) and hxni =

Z 1

0
d⇠ ⇠n�(⇠) . (51)

The evolved moments at NLO starting with �̃(⇠) at
the initial scale of 0.25 GeV2 are shown in Table IV
for the parameter set (VII), compared to the results
obtained with the corresponding �(⇠) at the same ini-
tial scale obtained to reproduce hxilatt = 0.2075 ±
0.0106 [37] within the quoted error. The phenomeno-
logical ansatz provided by Eq. (49) push the distri-
bution function towards lower values of ⇠, as the mo-
mentum of the valence state is shared with the higher
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FIG. 2. From top to bottom: anti-parallel, parallel and
total pion transverse momentum distributions for di↵erent
e↵ective gluon masses and regulator parameter taken from
Table I.

D. Distribution and transverse amplitudes

The distribution amplitudes (DA) [14, 30–32] intro-
duced through the factorization of exclusive processes
amplitudes, for the LF wave function are expressed by
the antiparalell and parallel spin components as:

'"#(⇠) =

R1
0 d�  "#(�, z)

R 1
0 d⇠

R1
0 d� "#(�, z)

,

'""(⇠) =

R1
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0 d� ""(�, z)

. (47)

The transverse amplitude is introduced as the fol-

FIG. 3. 3D-valence momentum distribution as a function
of ⇠ and � = k2

?. Panels from top to bottom represent
the results for the parameter sets (II), (IV) and (VII),
respectively.

lowing integral of the valence LF wave function:

'T
"#(�) =

R 1
0 d⇠  "#(�, z)

R 1
0 d⇠

R1
0 d�  "#(�, z)

,

'T
""(�) =

R 1
0 d⇠  ""(�, z)

R 1
0 d⇠

R1
0 d�  ""(�, z)

, (48)

which is the Fourier transform of Eq. (45), namely the
transverse amplitude in the impact parameter space.
The transverse amplitude can be obtained also from
Euclidean space calculations [28]. We remind that
z = 2⇠ � 1 gives the relation with the momentum
fraction variable.

The results for the DA and the transverse ampli-
tude for the parameter set VII are shown in Fig. 4,
where results for the two spin components are pro-
vided. It is interesting to observe that the parallel
component in DA is wider, and decreases slower at
the end points, in comparison with the antiparallel
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The transverse amplitude can be obtained also from
Euclidean space calculations [28]. We remind that
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The distribution amplitudes (DA) [14, 30–32] intro-
duced through the factorization of exclusive processes
amplitudes, for the LF wave function are expressed by
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which is the Fourier transform of Eq. (45), namely the
transverse amplitude in the impact parameter space.
The transverse amplitude can be obtained also from
Euclidean space calculations [28]. We remind that
z = 2⇠ � 1 gives the relation with the momentum
fraction variable.

The results for the DA and the transverse ampli-
tude for the parameter set VII are shown in Fig. 4,
where results for the two spin components are pro-
vided. It is interesting to observe that the parallel
component in DA is wider, and decreases slower at
the end points, in comparison with the antiparallel
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D. Distribution and transverse amplitudes

The distribution amplitudes (DA) [14, 30–32] intro-
duced through the factorization of exclusive processes
amplitudes, for the LF wave function are expressed by
the antiparalell and parallel spin components as:

'"#(⇠) =

R1
0 d�  "#(�, z)

R 1
0 d⇠

R1
0 d� "#(�, z)

,

'""(⇠) =

R1
0 d� ""(�, z)

R 1
0 d⇠

R1
0 d� ""(�, z)

. (47)

The transverse amplitude is introduced as the fol-
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?. Panels from top to bottom represent
the results for the parameter sets (II), (IV) and (VII),
respectively.

lowing integral of the valence LF wave function:

'T
"#(�) =

R 1
0 d⇠  "#(�, z)

R 1
0 d⇠

R1
0 d�  "#(�, z)

,

'T
""(�) =

R 1
0 d⇠  ""(�, z)

R 1
0 d⇠

R1
0 d�  ""(�, z)

, (48)

which is the Fourier transform of Eq. (45), namely the
transverse amplitude in the impact parameter space.
The transverse amplitude can be obtained also from
Euclidean space calculations [28]. We remind that
z = 2⇠ � 1 gives the relation with the momentum
fraction variable.

The results for the DA and the transverse ampli-
tude for the parameter set VII are shown in Fig. 4,
where results for the two spin components are pro-
vided. It is interesting to observe that the parallel
component in DA is wider, and decreases slower at
the end points, in comparison with the antiparallel
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FIG. 1. From top to bottom: anti-parallel, parallel and
total pion valence structure functions for di↵erent e↵ective
gluon masses and regulator parameter taken from Table I.

of the longitudinal distribution, and in the high mo-
mentum behavior of the transverse momentum dis-
tribution and form factor. These characteristics will
be evidenced when exploring in detail the momentum
distributions in the following subsections.

B. Longitudinal momentum distributions

The longitudinal momentum distribution �(⇠) as a
function of the quark momentum fraction ⇠, defined
by Eq. (27), and its antiparallel and parallel compo-
nents, are shown in Fig. 1 for several cases with pa-
rameters given in Table I. The values for the gluon
mass are taken between 28 MeV (µ/m = 0.15) and
638 MeV (µ/m = 2.5) and the form factor parameter

from 255 MeV (⇤/m = 1) to 430 MeV (⇤/m = 2).
For the figure the momentum distributions are nor-
malized such that their integration is 1, namely we
divided each one by the respective probability.

Fig. 1 shows that the decrease of e↵ective dimen-
sionless strength of the kernel, ↵̄s broadens the mo-
mentum distribution, independently of the variations
of the gluon mass and vertex parameter with 1 to 2.5
times the constituent quark mass. As �(⇠) and ⇠ are
dimensionless quantities, what matters are the dimen-
sionless ratio between the di↵erent quantities with a
strongly bound pion. For this set of parameters, even
with a very light gluon the valence distribution func-
tion, does not present dramatic variations, although
visible. In the figure we have chosen to present the
spin components of the valence distribution normal-
ized to their respective probabilities. Reminding that
the parallel component represents only about 10% of
the normalization.

Set f⇡/m ⌘"# ⌘"" ⌘

I 0.414 1.81 1.61 1.77

II 0.433 1.71 1.50 1.66

III 0.453 1.66 1.47 1.62

IV 0.477 1.61 1.42 1.57

VII 0.511 1.44 1.26 1.40

VIII 0.520 1.45 1.28 1.40

TABLE II. Exponent of the fit function (1�⇠)⌘ (⇠ ! 1) for
the antiparallel, parallel and total valence distributions.

The broadening of the momentum distribution is
reflected in a slower damping of the momentum dis-
tribution at the end points, as seen in Fig. 1, in di-
rect correspondence to an increasing f⇡/m ratio and
a valence state having the quark-antiquark pair more
likely closer to the pion center. The Table II illustrates
quantitatively, for a few examples, the correspondence
between the f⇡/m ratio and the exponent of the func-
tion (1 � x)⌘ fitted from the momentum distribution
close to the end point. The increase of the power ⌘
depletes the quark distribution in the UV region, im-
plying a suppression of configurations with the valence
quark and antiquark close together, and in relation to
a decrease of the f⇡/m ratio.

The parallel longitudinal momentum distribution is
broader than the antiparallel as can be verified in Fig.
1, presenting softer end-point behaviour with expo-
nents systematically smaller than the antiparallel ones

4

and

 ""(##)(�, z) =
kL(R)

p
2

M
 4(�, z) . (18)

The arrows in the brackets correspond to � = �1 and

 i(�, z) = � i

M

⇥
Z 1

0
d�0

gi(�0, z)

[� + �0 +m2z2 + (1� z2)2 � i✏]2
. .(19)

After inserting Eq. (16) into Eq. (15) the valence
probability can be written in terms of the valence
momentum-distribution density, Pval(�, z), i.e.

Pval =

Z 1

�1
dz

Z 1

0
d� Pval(�, z) (20)

where

Pval(�, z) = P"#(�, z) + P""(�, z)
i

, (21)

with the anti-aligned and aligned probability densities
defined by

P"#(�, z) = P#"(�, z) =
Nc

16⇡2
| "#(�, z)|2 , (22)

and

P""(�, z) = P##(�, z) =
Nc

16⇡2
| ""(�, z)|2 =

=
Nc

16⇡2

�

M2
| 4(�, z)|2 . (23)

Recall that |kL(R)

p
2|2 = |k?|2 = �.

The valence longitudinal and transverse LF momen-
tum distribution densities are obtained by properly
integrating the valence probability density Pval(�, z).
In particular, the longitudinal distribution, with its
spin decomposition, is given by

�(⇠) = �"#(⇠) + �""(⇠) =

Z 1

0
d� Pval(�, z) (24)

with

�"#("")(⇠) =

Z 1

0
d� P"#("")(�, z) . (25)

For the transverse distribution one has

P (�) = P"#(�) + P""(�) =

Z 1

�1
dz Pval(�, z) ,(26)

with

P"#("")(�) =

Z 1

�1
dzP"#("")(�, z) . (27)

It should be pointed out that �(⇠) is the unpolarized
structure function, one can access in the deep inelastic
limit of the virtual photon absorption process, illus-
trated by diagram on the left side of Fig. ??. It is
an inclusive distribution and therefore one has to sum
over the whole set of final states.

IT IS UNCLEAR HOW TO CONNECT THIS RE-
MARKWITH THE ABOVEMATTER: The diagram
on the right side of Fig. ?? includes the final state in-
teraction, namely the one gluon exchange, from the
Wilson line, which is required for assuring the color
gauge invariance of the associated quark correlator
(see e.g. [17]). The contribution of the final state in-
teraction is necessary for non-vanishing T-odd TMDs
[18].

III. DECAY CONSTANT

A basic observable that one has to reproduce for
assessing a given approach is surely the pion decay
constant, f⇡. It is defined in terms of the BS ampli-
tude by (see, e.g., Ref. [19] for details)

i pµf⇡ = Nc

Z
d4k

(2⇡)4
Tr[ �µ �5 �(p, k)] , (28)

I moved these words below (11): where Nc is the num-
ber of colors. Contracting with pµ (p2 = M2) and
using the decomposition of BS amplitude given by
Eq. (5), one can perform the trace and obtain

iM2f⇡ = �4M Nc

Z
d4k

(2⇡)4
�2(k, p). (29)

It is worth noting that the decay constant is deter-
mined only by one component (even under the ex-
change 1 ! 2) of the BS amplitude.

By using LF variables, one can exploit Eq. (19) and
get

iM2f⇡ = �4 M Nc
1

2

Z
dk?
(2⇡)2

Z
dk+

2⇡
 2(�, z) =

= � ⇡M2

(2⇡)3
Nc

Z
d�

Z 1

�1

dz

2⇡
 2(�, z) =

= i
NcM

8⇡2

Z 1

0
d�

Z 1

�1
dz

Z 1

0
d�0

⇥ g2(�0, z)

[� + �0 +m2z2 + (1� z2)2 � i✏]2
. (30)
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FIG. 1. From top to bottom: anti-parallel, parallel and
total pion valence structure functions for di↵erent e↵ective
gluon masses and regulator parameter taken from Table I.

of the longitudinal distribution, and in the high mo-
mentum behavior of the transverse momentum dis-
tribution and form factor. These characteristics will
be evidenced when exploring in detail the momentum
distributions in the following subsections.

B. Longitudinal momentum distributions

The longitudinal momentum distribution �(⇠) as a
function of the quark momentum fraction ⇠, defined
by Eq. (27), and its antiparallel and parallel compo-
nents, are shown in Fig. 1 for several cases with pa-
rameters given in Table I. The values for the gluon
mass are taken between 28 MeV (µ/m = 0.15) and
638 MeV (µ/m = 2.5) and the form factor parameter

from 255 MeV (⇤/m = 1) to 430 MeV (⇤/m = 2).
For the figure the momentum distributions are nor-
malized such that their integration is 1, namely we
divided each one by the respective probability.

Fig. 1 shows that the decrease of e↵ective dimen-
sionless strength of the kernel, ↵̄s broadens the mo-
mentum distribution, independently of the variations
of the gluon mass and vertex parameter with 1 to 2.5
times the constituent quark mass. As �(⇠) and ⇠ are
dimensionless quantities, what matters are the dimen-
sionless ratio between the di↵erent quantities with a
strongly bound pion. For this set of parameters, even
with a very light gluon the valence distribution func-
tion, does not present dramatic variations, although
visible. In the figure we have chosen to present the
spin components of the valence distribution normal-
ized to their respective probabilities. Reminding that
the parallel component represents only about 10% of
the normalization.

Set f⇡/m ⌘"# ⌘"" ⌘

II 0.433 1.71 1.50 1.66

IV 0.477 1.61 1.42 1.57

VII 0.511 1.44 1.26 1.40

TABLE II. Exponent of the fit function (1�⇠)⌘ (⇠ ! 1) for
the antiparallel, parallel and total valence distributions.

The broadening of the momentum distribution is
reflected in a slower damping of the momentum dis-
tribution at the end points, as seen in Fig. 1, in di-
rect correspondence to an increasing f⇡/m ratio and
a valence state having the quark-antiquark pair more
likely closer to the pion center. The Table II illustrates
quantitatively, for a few examples, the correspondence
between the f⇡/m ratio and the exponent of the func-
tion (1 � x)⌘ fitted from the momentum distribution
close to the end point. The increase of the power ⌘
depletes the quark distribution in the UV region, im-
plying a suppression of configurations with the valence
quark and antiquark close together, and in relation to
a decrease of the f⇡/m ratio.

The parallel longitudinal momentum distribution is
broader than the antiparallel as can be verified in Fig.
1, presenting softer end-point behaviour with expo-
nents systematically smaller than the antiparallel ones
with ⌘"# � ⌘"" ⇠ 0.2, as displayed in Table II.

To close this subsection the results for the moments
of the valence longitudinal momentum distribution
function are shown in Table III, with the contribution
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FIG. 5. Pion parton distribution ⇠�(⇠) at Q2 = 27 GeV2

compared to the experimental data (E615 original) from
Conway et al., Table II of Ref. [33], and the resummed
one (E615 rescaled) from Refs. [34, 35]. Upper panel:
Evolution at LO for two di↵erent values of ↵(Q2

0) (solid
lines) , namely (I) ↵(Q2

0) = 1.749 and (II) ↵(Q2
0) = 1.884,

and NLO for two di↵erent values of ↵s(Q
2
0) (dashed and

dash-dotted lines), i.e. (I) 1.524 and (II) 1.732, using the
parameter set (VII). Middle panel: NLO evolved results
for some of the parameters sets for Q2

0 = 0.25 GeV2 and
↵(Q2

0) = 1.884. Bottom panel: NLO evolution with the
initial distribution ⇠�̃(⇠) from Eq. (49) for ↵(Q2

0) = 1.884.

Fock components, and therefore it is expected that
hx̃ni > hxni (n � 1), if the same initial scale is kept
in both calculations.

In Fig. 5, we present a study of the di↵erent models
results for the PDF, including the set VII, which fits
the decay constant. In the upper panel of the figure,
we present the evolution of ⇠�(⇠) for the parameter
set VII to Q2 = 27 GeV2 at LO for ↵(Q2

0) = 1.749

and ↵(Q2
0) = 1.884, these coupling strengths corre-

sponds to ⇤(3) = 0.300 GeV and ⇤(3) = 0.33 GeV,
respectively. That is, roughly the values given in Eq.
(9.24d) of PDG 2018, and also at NLO for two dif-
ferent ↵s(Q2

0) = 1.524 and 1.732. For a given initial
scale Q2

0, the coupling strength ↵s(Q2) at NLO was
obtained by backward evolution from the values of ↵s

at either Q2 = M2
Z (NLO I) or Q2 = 1.0GeV2 (NLO

II) from Ref. [45]. As already mentioned, the scale Q2
0

was obtained by comparing the evolved moment hxi
at 4GeV2 with the LQCD results from [37].

We compared our results to the experimental data
(E615 original) from Conway et al., Table II of
Ref. [33], and the re-summed one (E615 rescaled) from
Refs. [34, 35]. We found that the model cannot repro-
duce the whole region of data, having our results a
preference for the E615 rescaled data, mainly close to
⇠ ⇠ 1. In the middle panel we checked for the pdf
for several model parameters, as indicated in the fig-
ure, with ↵(Q2

0) = 1.884 and with the initial scale of
Q2

0 = 0.25 GeV2 the lattice first moment quoted above
is reproduced within the given error. In the middle
panel of Fig. 5 we present the result of computing the
evolved pdf at NLO with ↵(Q2

0) = 1.884 for di↵erent
sets of model parameters which reproduce the lattice
average value of hxilatt [37] at 4 GeV2. The disper-
sion of the results is small and are within the error
of the E615 rescaled data for ⇠ > 0.6. For ⇠ < 0.6
the model misses the height of the pdf, and the model
dispersion is not enough to bring agreement with the
data. In the bottom panel of the figure, the PDF at
the initial scale is computed through Eq. (49), the evo-
lution is performed at NLO with ↵(Q2

0) = 1.884 for
the value of the initial scale Q2

0 = 0.3 GeV2 giving the
quoted lattice value for hxilatt at 4 GeV2 within the
quoted error, while using Q2

0 =0.25 GeV2 a good re-
production of the E615 rescaled data is found. There-
fore, this data suggests the necessity of inclusion of
the contribution from the higher Fock components of
the pion LF wave function. The two first moments
from this last calculation given in Table IV, are consis-
tent with the JAM global fit, hxiJAM = 0.245± 0.005
and hx2iJAM = 0.108 ± 0.003 at 4 GeV2 [36], as can
be checked in Fig. 6. This figure presents the com-
parison of the first moments obtained for model VII,
considering also Eq. (49), with other models, lattice
results and the JAM global fit. In the light of this
comparison for the moments, and the evolved PDF in
Fig. 5, we point out that our model VII have similar
discrepancies as other theoretical results against the
experimental PDFs.
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FIG. 5. Pion parton distribution ⇠�(⇠) at Q2 = 27 GeV2

compared to the experimental data (E615 original) from
Conway et al., Table II of Ref. [33], and the resummed
one (E615 rescaled) from Refs. [34, 35]. Upper panel:
Evolution at LO for two di↵erent values of ↵(Q2

0) (solid
lines) , namely (I) ↵(Q2

0) = 1.749 and (II) ↵(Q2
0) = 1.884,

and NLO for two di↵erent values of ↵s(Q
2
0) (dashed and

dash-dotted lines), i.e. (I) 1.524 and (II) 1.732, using the
parameter set (VII). Middle panel: NLO evolved results
for some of the parameters sets for Q2

0 = 0.25 GeV2 and
↵(Q2

0) = 1.884. Bottom panel: NLO evolution with the
initial distribution ⇠�̃(⇠) from Eq. (49) for ↵(Q2

0) = 1.884.

Fock components, and therefore it is expected that
hx̃ni > hxni (n � 1), if the same initial scale is kept
in both calculations.

In Fig. 5, we present a study of the di↵erent models
results for the PDF, including the set VII, which fits
the decay constant. In the upper panel of the figure,
we present the evolution of ⇠�(⇠) for the parameter
set VII to Q2 = 27 GeV2 at LO for ↵(Q2

0) = 1.749

and ↵(Q2
0) = 1.884, these coupling strengths corre-

sponds to ⇤(3) = 0.300 GeV and ⇤(3) = 0.33 GeV,
respectively. That is, roughly the values given in Eq.
(9.24d) of PDG 2018, and also at NLO for two dif-
ferent ↵s(Q2

0) = 1.524 and 1.732. For a given initial
scale Q2

0, the coupling strength ↵s(Q2) at NLO was
obtained by backward evolution from the values of ↵s

at either Q2 = M2
Z (NLO I) or Q2 = 1.0GeV2 (NLO

II) from Ref. [45]. As already mentioned, the scale Q2
0

was obtained by comparing the evolved moment hxi
at 4GeV2 with the LQCD results from [37].

We compared our results to the experimental data
(E615 original) from Conway et al., Table II of
Ref. [33], and the re-summed one (E615 rescaled) from
Refs. [34, 35]. We found that the model cannot repro-
duce the whole region of data, having our results a
preference for the E615 rescaled data, mainly close to
⇠ ⇠ 1. In the middle panel we checked for the pdf
for several model parameters, as indicated in the fig-
ure, with ↵(Q2

0) = 1.884 and with the initial scale of
Q2

0 = 0.25 GeV2 the lattice first moment quoted above
is reproduced within the given error. In the middle
panel of Fig. 5 we present the result of computing the
evolved pdf at NLO with ↵(Q2

0) = 1.884 for di↵erent
sets of model parameters which reproduce the lattice
average value of hxilatt [37] at 4 GeV2. The disper-
sion of the results is small and are within the error
of the E615 rescaled data for ⇠ > 0.6. For ⇠ < 0.6
the model misses the height of the pdf, and the model
dispersion is not enough to bring agreement with the
data. In the bottom panel of the figure, the PDF at
the initial scale is computed through Eq. (49), the evo-
lution is performed at NLO with ↵(Q2

0) = 1.884 for
the value of the initial scale Q2

0 = 0.3 GeV2 giving the
quoted lattice value for hxilatt at 4 GeV2 within the
quoted error, while using Q2

0 =0.25 GeV2 a good re-
production of the E615 rescaled data is found. There-
fore, this data suggests the necessity of inclusion of
the contribution from the higher Fock components of
the pion LF wave function. The two first moments
from this last calculation given in Table IV, are consis-
tent with the JAM global fit, hxiJAM = 0.245± 0.005
and hx2iJAM = 0.108 ± 0.003 at 4 GeV2 [36], as can
be checked in Fig. 6. This figure presents the com-
parison of the first moments obtained for model VII,
considering also Eq. (49), with other models, lattice
results and the JAM global fit. In the light of this
comparison for the moments, and the evolved PDF in
Fig. 5, we point out that our model VII have similar
discrepancies as other theoretical results against the
experimental PDFs.
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component, as we have discussed, the same happens
for the longitudinal momentum distributions (c.f. Ta-
ble II). The corresponding properties can be observed
in the transverse amplitudes, where calculations were
presented up to about 0.3 GeV2 showing a character-
istic decrease, which expresses the IR characteristic
momentum scales of about 0.5 GeV, present in our
model parameters.

E. Evolved PDF’s

The standard evolution of the pion parton distri-
bution is done up to NLO see [29] to compare with
the E615 [33] rescaled E165 [34, 35] and JAM global
fit analysis [36]. The key issue is to determine the
initial scale for the evolution, which in our case we
evolve hxi from our model as given in Table III from
a given Q2

0 scale which match the recent Lattice data
hxilatt = 0.2075 ± 0.0106 within the quoted error at
the scale of 4 GeV2 [37]. We will allow some variation
around the obtained initial scale as we will discuss.
Our model calculations only consider the valence

wave function, while the states beyond the valence
contributes to the parton distribution at the initial
scale. To account for that, in a simply phenomenologi-
cal form, we resort to the suggestion of Ref. [38], which
included the contribution of the higher Fock compo-

Q2 hxi hx2i hx3i hx4i hx̃i hx̃2i hx̃3i hx̃4i
0.25 0.35 0.20 0.13 0.091 0.424 0.234 0.147 0.100

1.69 0.209 0.095 0.051 0.031 0.254 0.108 0.057 0.034

4.0 0.208 0.094 0.051 0.031 0.254 0.108 0.057 0.033

5.76 0.184 0.078 0.040 0.023 0.224 0.089 0.045 0.025

27.0 0.167 0.067 0.033 0.019 0.203 0.077 0.037 0.021

49.0 0.155 0.060 0.029 0.016 0.189 0.069 0.032 0.018

TABLE IV. Evolved Mellin moments at NLO for di↵erent
final scales, starting from the initial scale Q2

0 = 0.25 GeV2

and using ↵s(Q
2
0) = 1.732. The parameter set (VII) was

adopted for the calculations of hxni and hx̃ni, where for
the latter Eq. (49) was used to set the distribution function
at the initial scale.

nents of the wave function, by assuming an equal prob-
ability of populating these components expressed by
the convolution with the valence distribution as given
below

�̃(⇠) = �(⇠) + (1� Pval)

Z 1

⇠

dy

y

�(⇠/y)

Pval
, (49)

where in addition the valence distribution is added.
The second term has normalization of 1� Pval corre-
sponding to the model probability of populating states
beyond the valence, and the normalization is:

Z 1

0
d⇠ �̃(⇠) = 1 . (50)

The phenomenological formula (49) has no further pa-
rameters. In the original discussion of this model
thiethe higher Fock components was attributed to
the constituent quark structure, while in the present
model the dynamics in the Minkowski space brings
already implicitly an infinite number of Fock compo-
nents as part of the pion state, in this sense the phe-
nomenological model from [38] is used here.

We define the moments of the distribution at the
initial scale according to Eq. (49) as

hx̃ni =
Z 1

0
d⇠ ⇠n�̃(⇠) and hxni =

Z 1

0
d⇠ ⇠n�(⇠) . (51)

The evolved moments at NLO starting with �̃(⇠) at
the initial scale of 0.25 GeV2 are shown in Table IV
for the parameter set (VII), compared to the results
obtained with the corresponding �(⇠) at the same ini-
tial scale obtained to reproduce hxilatt = 0.2075 ±
0.0106 [37] within the quoted error. The phenomeno-
logical ansatz provided by Eq. (49) push the distri-
bution function towards lower values of ⇠, as the mo-
mentum of the valence state is shared with the higher
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M. Viviani, and L. Tomio, Bethe-Salpeter bound-state
structure in Minkowski space, Phys. Lett. B 759, 131
(2016), arXiv:1605.08837 [hep-ph].

[29] K. A. Olive et al. (Particle Data Group), Review of

Particle Physics, Chin. Phys. C38, 090001 (2014).
[30] G. Lepage and S. J. Brodsky, Exclusive Processes in

Quantum Chromodynamics: Evolution Equations for
Hadronic Wave Functions and the Form-Factors of
Mesons, Phys. Lett. B 87, 359 (1979).

[31] A. Efremov and A. Radyushkin, Factorization and
Asymptotical Behavior of Pion Form-Factor in QCD,
Phys. Lett. B 94, 245 (1980).

[32] G. Lepage and S. J. Brodsky, Exclusive Processes in
Perturbative Quantum Chromodynamics, Phys. Rev.
D 22, 2157 (1980).

[33] J. Conway et al., Experimental Study of Muon Pairs
Produced by 252-GeV Pions on Tungsten, Phys. Rev.
D 39, 92 (1989).

[34] L. Chang, K. Raya, and X. Wang, Pion Parton Dis-
tribution Function in Light-Front Holographic QCD,
(2020), arXiv:2001.07352 [hep-ph].
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FIG. 5. Pion parton distribution ⇠�(⇠) at Q2 = 27 GeV2

compared to the experimental data (E615 original) from
Conway et al., Table II of Ref. [33], and the resummed
one (E615 rescaled) from Refs. [34, 35]. Upper panel:
Evolution at LO for two di↵erent values of ↵(Q2

0) (solid
lines) , namely (I) ↵(Q2

0) = 1.749 and (II) ↵(Q2
0) = 1.884,

and NLO for two di↵erent values of ↵s(Q
2
0) (dashed and

dash-dotted lines), i.e. (I) 1.524 and (II) 1.732, using the
parameter set (VII). Middle panel: NLO evolved results
for some of the parameters sets for Q2

0 = 0.25 GeV2 and
↵(Q2

0) = 1.884. Bottom panel: NLO evolution with the
initial distribution ⇠�̃(⇠) from Eq. (49) for ↵(Q2

0) = 1.884.

Fock components, and therefore it is expected that
hx̃ni > hxni (n � 1), if the same initial scale is kept
in both calculations.

In Fig. 5, we present a study of the di↵erent models
results for the PDF, including the set VII, which fits
the decay constant. In the upper panel of the figure,
we present the evolution of ⇠�(⇠) for the parameter
set VII to Q2 = 27 GeV2 at LO for ↵(Q2

0) = 1.749

and ↵(Q2
0) = 1.884, these coupling strengths corre-

sponds to ⇤(3) = 0.300 GeV and ⇤(3) = 0.33 GeV,
respectively. That is, roughly the values given in Eq.
(9.24d) of PDG 2018, and also at NLO for two dif-
ferent ↵s(Q2

0) = 1.524 and 1.732. For a given initial
scale Q2

0, the coupling strength ↵s(Q2) at NLO was
obtained by backward evolution from the values of ↵s

at either Q2 = M2
Z (NLO I) or Q2 = 1.0GeV2 (NLO

II) from Ref. [45]. As already mentioned, the scale Q2
0

was obtained by comparing the evolved moment hxi
at 4GeV2 with the LQCD results from [37].

We compared our results to the experimental data
(E615 original) from Conway et al., Table II of
Ref. [33], and the re-summed one (E615 rescaled) from
Refs. [34, 35]. We found that the model cannot repro-
duce the whole region of data, having our results a
preference for the E615 rescaled data, mainly close to
⇠ ⇠ 1. In the middle panel we checked for the pdf
for several model parameters, as indicated in the fig-
ure, with ↵(Q2

0) = 1.884 and with the initial scale of
Q2

0 = 0.25 GeV2 the lattice first moment quoted above
is reproduced within the given error. In the middle
panel of Fig. 5 we present the result of computing the
evolved pdf at NLO with ↵(Q2

0) = 1.884 for di↵erent
sets of model parameters which reproduce the lattice
average value of hxilatt [37] at 4 GeV2. The disper-
sion of the results is small and are within the error
of the E615 rescaled data for ⇠ > 0.6. For ⇠ < 0.6
the model misses the height of the pdf, and the model
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data. In the bottom panel of the figure, the PDF at
the initial scale is computed through Eq. (49), the evo-
lution is performed at NLO with ↵(Q2

0) = 1.884 for
the value of the initial scale Q2

0 = 0.3 GeV2 giving the
quoted lattice value for hxilatt at 4 GeV2 within the
quoted error, while using Q2

0 =0.25 GeV2 a good re-
production of the E615 rescaled data is found. There-
fore, this data suggests the necessity of inclusion of
the contribution from the higher Fock components of
the pion LF wave function. The two first moments
from this last calculation given in Table IV, are consis-
tent with the JAM global fit, hxiJAM = 0.245± 0.005
and hx2iJAM = 0.108 ± 0.003 at 4 GeV2 [36], as can
be checked in Fig. 6. This figure presents the com-
parison of the first moments obtained for model VII,
considering also Eq. (49), with other models, lattice
results and the JAM global fit. In the light of this
comparison for the moments, and the evolved PDF in
Fig. 5, we point out that our model VII have similar
discrepancies as other theoretical results against the
experimental PDFs.

E615: Conway et al. PRD39 (1989) 92

E615 rescaled: Aicher, Schäfer, Volgesang
PRL105 (2010) 252003



18

14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

<x> <x2> <x3> <x4>

This work <xn> <x~n>
4 GeV2

5.76 GeV2

27.0 GeV2

49.0 GeV2

<
xn

>

BLFQ−NJL 4 GeV2

BLFQ−NJL 5.76 GeV2

BLFQ−NJL 27 GeV2

BLFQ−NJL 49 GeV2

LQCD (Brommel 2007) 4 GeV2

LQCD (DESY 2016) 4 GeV2

LQCD (ETM 2018) 4 GeV2

LQCD (Detmold 2003) 5.76 GeV2

LQCD (Martinell 1988) 49 GeV2

JAM

FIG. 6. Moments of the pion parton distribution for the parameter set VII at several scales Q2 compared to di↵erent
models, Lattice and the JAM global fit at 4 GeV2[36]. Results are shown both for the original �(⇠) (solid lines) and using
the phenomenological treatment given by Eq. (49) (dashed lines). The results are compared with BLFQ NJL calculations
of [39, 40]. The lattice results are from Brommel et al [41], DESY [42], ETM [37], Detmold [43] and Martinell [44].

F. 3D image of the pion on the null-plane

The 3D image of the pion along the LF direction
and impact parameter space is studied for the two
spin components of the valence wave function. The
corresponding equations are (44) for these quantities.
We also study the transverse amplitudes in the impact
parameter space, Eq. (45), designated by '̃T

"#(b) and

'̃T
""(b) for the spin states. These calculations will be

shown for the parameter set VII (see Table I) which
presents the fit of the pion decay constant.

We first present the transverse amplitude in the
impact parameter space for each spin component in
Fig. 7 for the parameter set VII. The amplitudes are
multiplied by b for convenience to avoid the soft log-
arithmic singularity at the origin of the Bessel func-
tion K0 entering the formulas for the Fourier trans-
forms. The characteristic exponential decay at large
distances is dominated by exp(�b), which reflects the
continuum cut for  < 0. It is interesting to find out
how this tail should be modified in QCD due to the
confinement of quarks and gluons, which in nonper-
turbative QCD colored states presumably does not
present the standard continuum cut associated with
the existence of asymptotic free states.

The 3D image of the pion spin components onto the

10−5

10−4

10−3

10−2

10−1

 0  2  4  6  8  10

b
φT

(b
)

b m

bφT
↑↓

bφT
↑↑

FIG. 7. Transverse amplitudes for antiparallel and paral-
lel spin components of the pion valence wave function as
a function of the impact parameter coordinate b for the
parameter set VII.

null-plane is provided in Fig. 8, expressed by the prob-
ability density (apart an exponential factor e� b) as a
function of the impact parameter and the dimension-
less rescaled longitudinal position z̃ for the parameter
set VII. The antiparallel component is multiplied by
the transverse coordinate b, for the purpose of the fig-
ure, as it presents a log-type singularity at b = 0 from
the Bessel function K0. This singularity enhances the
probability density of the antiparallel spin component
at short distances close to b = 0 with respect to the
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parallel one, which cannot be seen in the figure.
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FIG. 8. 3D image of the probability density of the va-
lence quark-antiquark state in the pion as a function of the
rescaled longitudinal and transverse (bm) positions for the
antiparallel and parallel spin components.

We observe the enhancement of the probability den-
sity along the light-like distance vanishing, in both
spin components. This probability density has an os-
cillatory behaviour quite similar for both spin com-
ponents, which can be appreciated by the projection
shown in Fig. 9. The zeros in z̃ are roughly 2⇡, as
one could anticipate by looking to the explicit inte-
gral forms of �"# and �"", and the peak at z̃ at zero,
is already seen in the 3D plot of the density.
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dotted line:  ̃""(z̃) =
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VI. CONCLUSION

We studied the strongly bound pion valence light
front wave function and the associated momentum
distributions within a dynamical model, from the nu-
merical solution of the ladder Bethe-Salpeter equa-
tion in Minkowski space, resorting to the Nakanishi
integral representation and LF projection. The kernel
is simplified to a ladder approximation in the Feyn-
man gauge where constituent quarks interacts by an
e↵ective massive gluon exchange. An e↵ective quark-
gluon vertex function representing the extension of the
quark gluon coupling is introduced as a form factor
containing a single scale parameter. The quantitative
value of the e↵ective masses and form factor parame-
ter are inspired by Lattice QCD results and are of the
order of the infrared (IR) scale ⇤QCD. We tuned the
parameters around such scale to reproduce f⇡.

We computed both the dominant spin antiparallel
and parallel components of the valence wave func-
tion, which as expected reacts dynamically when the
model parameters are changed. We found that within
a good approximation the model results can be orga-
nized by the dimensionless ratio of f⇡ with the con-
stituent quark mass. For our choice of e↵ective gluon,
constituent quark mass and quark-gluon form factor
parameter, the occupation of the valence state in the
pion was found to be between 60 to 70%, even when
the e↵ective gluon mass changes from about 30 to 600
MeV. The scale parameter of the quark-gluon ver-
tex ranged from about 200 to 400 MeV, such vari-
ations kept the correlation of the valence wave func-
tion momentum distribution with f⇡/m, which is as-
sociated with the antiparallel wave function at the
origin. The probability of the spin antiparallel com-
ponent was found around 50% while the parallel one
about 10%. The pion model has an infinite number
of Fock-components built by a qq̄ pair and any arbi-
trary number of e↵ective gluons, which accounts for
the remaining 30% of probability. The enhancement
of the occupancy of the Fock components beyond the
valence state comes with by depleting the f⇡/m ra-
tio, which drains valence probability from the short
distances to populate higher Fock-states with higher
virtuality and in a more compact configuration. The
Mellin moments of the longitudinal momentum distri-
bution for the two spin components of the valence pion
wave function, also evolves in correspondence to the
f⇡/m ratio, and the average momentum fraction car-
ried by the quark-antiquark pair in the valence state
at the constituent quark model scale ranges from 0.66
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e
�b

r
�0+2+z2 M2

4 (as seen from Eq. 41) with �0 close
to 0 and z ⇠ 0, namely I Aadded the missing depen-
dence upon gamma’ and b�1/2 to F 0

0

F0(z ⇠ 0, �0 ⇠ 0, b)|b!1 =

= b�1/2F 0
0((z ⇠ 0, �0 ⇠ 0, b)|b!1 =

= b�1F1((z ⇠ 0, �0 ⇠ 0, b)|b!1 ⇠ e�b . (42)

I do not see the source of this term e
i
2 z̃ in F0, F 0

0 and
F1 and for the present I cut it.
Collecting the above results, it is convenient to write

the Fourier transform of the two spin components of
the valence wave function in terms of auxiliary am-
plitudes, where the leading asymptotic behaviour for
large b is factored out, i.e. notice the change of sign
in e�

i
2 z̃ according to what I wrote above Eq. (36)

 ̃"#(z̃, b) = e�be�
i
2 z̃�"#(z̃, b) ,

 ̃""(z̃, b) = e�be�
i
2 z̃�""(z̃, b) , (43)

where, recalling that z g3(�0, z) is even in z, one has

�"#(z̃, b) = � i

M

eb

4(2⇡)2

Z 1

0
d�0

Z 1

�1
dz cos( zz̃2 )

⇥
(
F 0
0(z, �

0, b) g2(�
0, z) + F 0

0(z, �
0, b )

z

2
g3(�

0, z)

� 1

M2
F0(z, �

0, b)
@

@z
g3(�

0, z)

)
,

�""(z̃, b) = � i

M2

eb

4(2⇡)2

Z 1

0
d�0

Z 1

�1
dz cos( zz̃2 )

⇥F1(z, �
0, b) g4(�

0, z) , (44)

Notice that �"# and �"" are symmetric by z̃ ! �z̃,
i.e. the inversion of the light-like axis.
We will provide results for the amplitudes �"#(z̃, b)

and �""(z̃, b), where the exponential fall-o↵ in b is fac-
tored out, instead of giving directly spin components
of the valence wave functions for the purpose of the
presentation.
Finally, we observe that the null-plane components

in Eq. (43) at z̃ = 0 can be directly obtained from
Euclidean space calculations, once we define two spin
components of the transverse amplitude as follows

'̃T
"#(b) =  ̃"#(0, b) and '̃T

""(b) =  ̃""(0, b) . (45)

These quantities come from the integration over
1
2 dk+dk� of the BS amplitude (leading to x+ =
x� = 0). Notably, given the analytic properties of

the NIR, an equal result can be obtained if one inte-
grates on ı dk0Edk

3, with k0E the Euclidean momentum
component (see Ref. [28] for the analytical details).
Thus, it could be of some interest to compare these
transverse functions obtained by direct calculations in
the Euclidean space the pion BS amplitude, and the
ones evaluated by solving the BSE in Minkowski space
through the NIR.

V. RESULTS

We solve the Bethe-Salpeter equation for a con-
stituent quark-antiquark model of the pion with one-
gluon exchange in the Feynman gauge. The solution
of the dynamical equation is done in the Minkowski
space resorting to the Nakanishi Integral Representa-
tion of the BS amplitude. After projection to the LF,
the set of coupled integral equations for the Nakanishi
weight functions (8) is solved numerically by using
a basis function expansion (for details see [2]). The
choice of parameters, namely the constituent quark
(m) and gluon (µ) e↵ective masses, and the cuto↵
(⇤), are made inspired by Lattice QCD results. In our
calculations of the pion structure we fit quark-gluon
coupling constant for a pion mass of 140 MeV for the
parameters given in Table I, and compute the valence
probability and decay constant. The last one is to be
compared to the Lattice QCD (LQCD) average value
of 130.2(1.7) MeV and the quoted experimental value
of

p
2f“exp”

⇡� =130.50(1)(3)(13) MeV [29]. We have
taken constituent quark masses from 187 to 255 MeV
in the calculations, and found a suitable set of pa-
rameters, which fits the pion decay constant close to
the quoted experimental value. For ⇤, we took val-
ues between m and 2m, chosen to be about ⇤QCD as
suggested in [6, 7], and the gluon masses ranging from
about 30 to 600 MeV.

A. Valence Probability: spin decomposition

In this study we present results for the valence prob-
ability, decay constant, transverse and longitudinal
momentum distribution of the pion wave function, and
3D image of the nucleon with the choice of parame-
ters provided in Table I. We start by showing results
for the valence probabilities and decay constant for
nine cases presented in Table I, where we explore the
variations of these quantities with the parameters of
the kernel. We have cases where Pval runs from 0.64
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in the target frame, when the DIS regime is reached,
the Io↵e-time measures the light-like distance between
the production of a quark pair by the virtual photon
and its interaction inside the hadron. Moreover, one
can quickly realizes that the Bjorken xBj , or better
the longitudinal fraction ⇠ = p+1 /p

+, is the variable
conjugated to the Io↵e-time, once the Fourier trans-
form of the matrix elements of em current correla-
tor is analyzed for obtaining DIS structure functions.
As suggested by phenomenological analyses (see, e.g.,
Refs. [26, 27]), one realizes that the Io↵e-time (also
indicated as the coherence length of the quark pair) is
/ 1/MxBj . This follows from the energy-time uncer-
tainty, involving the quark-pair o↵-shell energy and
the time interval between its production and interac-
tion with the hadronic medium, in the target frame.
Hence, longer and longer coherence lenghts pertain to
smaller and smaller values of xBj , making more and
more unlikely the interference between di↵erent dy-
namical regimes. This enforces the relevance of quan-
tities that depends upon the Io↵e-time, when we aim
at disentanling the di↵erent light-like distances that
the virtual photon probes, and eventually shedding
light on, e.g., higher Fock states production, onset of
the confinement, valence structure, etc.
In the previous Sect. II, the valence wave func-

tion, '2, has been introduced by considering its de-
pendence upon the momentum-space variables, i.e.
{⇠ = k+/p+,k?}. Of course, one can study the va-
lence amplitude also in the configuration space, where
the dependence results to be upon the coordinates
{z̃ = p+x�/2,b} [23] (one can recognize the co-
variant definition of the Io↵e-time, given above), The
Fourier transform of '2(⇠,k?,�i;M,J⇡, Jz) is given
by I am assuming that the FT is done by using the
phase exp � (k · x) and putting x+ = 0 in order to
have the plus sign in front of k? · b

'̃2(z̃,b,�i;M,J⇡, Jz) = p+
Z 1

0

d⇠

2⇡

Z
d2k?
(2⇡)2

⇥  (⇠,k?) e
�i⇠ z̃ eik?·b

= e�
i
2 z̃

Z 1

�1

dz

4⇡

Z
d2k?
(2⇡)2

 (⇠,k?)e
ik?·be

i
2 z z̃ (36)

where  (⇠,k?)'2(⇠,k?,�i;M,J⇡, Jz) and for x+ = 0,
the scalar product x · k reduces to x · k = x�k+/2 �
b? ·k? (in our convention). The decomposition of the
transverse-plane distances, allows one to separate the
components with di↵erent orbital angular momentum
on the null-plane and fixed number of constituents
????? otherwise we get in trouble with the LF ro-
tations in the transverse plane. This can be accom-

plished by recalling that

eix cos ✓ =
m=1X

m=�1
imJm(x)eim ✓ , (37)

where Jm(x) is the Bessel function of integer order.
Notice that the Fourier transform of the spin anti-
aligned and aligned components of the valence wave
function (cf Eq. (16)), are associated with integrals of
J0 and J1 respectively.

By adopting the NIR of the valence wave function,
one can readily obtain its expression in configuration
space. It is useful to take into account the follow-
ing integrals, suggested by Eqs. (19), (17) and (18).
The first one is (To avoid dangerous misleading I ex-
changed gamma with gamma’, in order to follow the
previous equations)

F0(z, �
0, b) =

Z 1

0
d�

J0(b
p
�)

� + �0 + 2 + z2M2

4

= 2K0

✓
b
q
�0 + 2 + z2M2

4

◆
, (38)

where Kn(x) is the modified Bessel function of the
second kind. The other required integrals are

F 0
0(z, �

0, b) =

Z 1

0
d�

J0(b
p
�)

(� + �0 + 2 + z2M2

4 )2

=

bK1

✓
b
q
�0 + 2 + z2M2

4

◆

q
�0 + 2 + z2M2

4

, (39)

and

F1(z, �
0, b) =

Z 1

0
d�

p
�J1(b

p
�)

[� + �0 + 2 + z2M2

4 ]2

= bK0

✓
b
q
�0 + 2 + z2M2

4

◆
. (40)

Notice that F0, F 0
0 and F1 depend upon z2, and this is

allows one to eliminate odd functions when integrating
on z in Eq. (36). The driving exponential fall-o↵ of
F0, F 0

0 and F1 in the asymptotic limit b ! 1 comes
from Km(x), which reads:

Km(x)|x!1 !
⇣ ⇡

2x

⌘ 1
2
e�x . (41)

Hence, the leading exponential behavior in the in-
tegrals (38), (39) and (40) comes from values of

6

in the target frame, when the DIS regime is reached,
the Io↵e-time measures the light-like distance between
the production of a quark pair by the virtual photon
and its interaction inside the hadron. Moreover, one
can quickly realizes that the Bjorken xBj , or better
the longitudinal fraction ⇠ = p+1 /p

+, is the variable
conjugated to the Io↵e-time, once the Fourier trans-
form of the matrix elements of em current correla-
tor is analyzed for obtaining DIS structure functions.
As suggested by phenomenological analyses (see, e.g.,
Refs. [26, 27]), one realizes that the Io↵e-time (also
indicated as the coherence length of the quark pair) is
/ 1/MxBj . This follows from the energy-time uncer-
tainty, involving the quark-pair o↵-shell energy and
the time interval between its production and interac-
tion with the hadronic medium, in the target frame.
Hence, longer and longer coherence lenghts pertain to
smaller and smaller values of xBj , making more and
more unlikely the interference between di↵erent dy-
namical regimes. This enforces the relevance of quan-
tities that depends upon the Io↵e-time, when we aim
at disentanling the di↵erent light-like distances that
the virtual photon probes, and eventually shedding
light on, e.g., higher Fock states production, onset of
the confinement, valence structure, etc.
In the previous Sect. II, the valence wave func-

tion, '2, has been introduced by considering its de-
pendence upon the momentum-space variables, i.e.
{⇠ = k+/p+,k?}. Of course, one can study the va-
lence amplitude also in the configuration space, where
the dependence results to be upon the coordinates
{z̃ = p+x�/2,b} [23] (one can recognize the co-
variant definition of the Io↵e-time, given above), The
Fourier transform of '2(⇠,k?,�i;M,J⇡, Jz) is given
by I am assuming that the FT is done by using the
phase exp � (k · x) and putting x+ = 0 in order to
have the plus sign in front of k? · b

'̃2(z̃,b,�i;M,J⇡, Jz) = p+
Z 1

0

d⇠

2⇡

Z
d2k?
(2⇡)2

⇥  (⇠,k?) e
�i⇠ z̃ eik?·b

= e�
i
2 z̃

Z 1

�1

dz

4⇡

Z
d2k?
(2⇡)2

 (⇠,k?)e
ik?·be

i
2 z z̃ (36)

where  (⇠,k?)'2(⇠,k?,�i;M,J⇡, Jz) and for x+ = 0,
the scalar product x · k reduces to x · k = x�k+/2 �
b? ·k? (in our convention). The decomposition of the
transverse-plane distances, allows one to separate the
components with di↵erent orbital angular momentum
on the null-plane and fixed number of constituents
????? otherwise we get in trouble with the LF ro-
tations in the transverse plane. This can be accom-

plished by recalling that

eix cos ✓ =
m=1X

m=�1
imJm(x)eim ✓ , (37)

where Jm(x) is the Bessel function of integer order.
Notice that the Fourier transform of the spin anti-
aligned and aligned components of the valence wave
function (cf Eq. (16)), are associated with integrals of
J0 and J1 respectively.

By adopting the NIR of the valence wave function,
one can readily obtain its expression in configuration
space. It is useful to take into account the follow-
ing integrals, suggested by Eqs. (19), (17) and (18).
The first one is (To avoid dangerous misleading I ex-
changed gamma with gamma’, in order to follow the
previous equations)

F0(z, �
0, b) =

Z 1

0
d�

J0(b
p
�)

� + �0 + 2 + z2M2

4

= 2K0

✓
b
q
�0 + 2 + z2M2

4

◆
, (38)

where Kn(x) is the modified Bessel function of the
second kind. The other required integrals are

F 0
0(z, �

0, b) =

Z 1

0
d�

J0(b
p
�)

(� + �0 + 2 + z2M2

4 )2
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, (39)

and

F1(z, �
0, b) =

Z 1

0
d�

p
�J1(b

p
�)

[� + �0 + 2 + z2M2

4 ]2

= bK0

✓
b
q
�0 + 2 + z2M2

4

◆
. (40)

Notice that F0, F 0
0 and F1 depend upon z2, and this is

allows one to eliminate odd functions when integrating
on z in Eq. (36). The driving exponential fall-o↵ of
F0, F 0

0 and F1 in the asymptotic limit b ! 1 comes
from Km(x), which reads:

Km(x)|x!1 !
⇣ ⇡

2x

⌘ 1
2
e�x . (41)

Hence, the leading exponential behavior in the in-
tegrals (38), (39) and (40) comes from values of

F.T.

6

in the target frame, when the DIS regime is reached,
the Io↵e-time measures the light-like distance between
the production of a quark pair by the virtual photon
and its interaction inside the hadron. Moreover, one
can quickly realizes that the Bjorken xBj , or better
the longitudinal fraction ⇠ = p+1 /p

+, is the variable
conjugated to the Io↵e-time, once the Fourier trans-
form of the matrix elements of em current correla-
tor is analyzed for obtaining DIS structure functions.
As suggested by phenomenological analyses (see, e.g.,
Refs. [26, 27]), one realizes that the Io↵e-time (also
indicated as the coherence length of the quark pair) is
/ 1/MxBj . This follows from the energy-time uncer-
tainty, involving the quark-pair o↵-shell energy and
the time interval between its production and interac-
tion with the hadronic medium, in the target frame.
Hence, longer and longer coherence lenghts pertain to
smaller and smaller values of xBj , making more and
more unlikely the interference between di↵erent dy-
namical regimes. This enforces the relevance of quan-
tities that depends upon the Io↵e-time, when we aim
at disentanling the di↵erent light-like distances that
the virtual photon probes, and eventually shedding
light on, e.g., higher Fock states production, onset of
the confinement, valence structure, etc.
In the previous Sect. II, the valence wave func-

tion, '2, has been introduced by considering its de-
pendence upon the momentum-space variables, i.e.
{⇠ = k+/p+,k?}. Of course, one can study the va-
lence amplitude also in the configuration space, where
the dependence results to be upon the coordinates
{z̃ = p+x�/2,b} [23] (one can recognize the co-
variant definition of the Io↵e-time, given above), The
Fourier transform of '2(⇠,k?,�i;M,J⇡, Jz) is given
by I am assuming that the FT is done by using the
phase exp � (k · x) and putting x+ = 0 in order to
have the plus sign in front of k? · b

'̃2(z̃,b,�i;M,J⇡, Jz) = p+
Z 1

0

d⇠

2⇡

Z
d2k?
(2⇡)2

⇥  (⇠,k?) e
�i⇠ z̃ eik?·b

= e�
i
2 z̃

Z 1

�1

dz

4⇡

Z
d2k?
(2⇡)2

 (⇠,k?)e
ik?·be

i
2 z z̃ (36)

where  (⇠,k?)'2(⇠,k?,�i;M,J⇡, Jz) and for x+ = 0,
the scalar product x · k reduces to x · k = x�k+/2 �
b? ·k? (in our convention). The decomposition of the
transverse-plane distances, allows one to separate the
components with di↵erent orbital angular momentum
on the null-plane and fixed number of constituents
????? otherwise we get in trouble with the LF ro-
tations in the transverse plane. This can be accom-

plished by recalling that

eix cos ✓ =
m=1X

m=�1
imJm(x)eim ✓ , (37)

where Jm(x) is the Bessel function of integer order.
Notice that the Fourier transform of the spin anti-
aligned and aligned components of the valence wave
function (cf Eq. (16)), are associated with integrals of
J0 and J1 respectively.

By adopting the NIR of the valence wave function,
one can readily obtain its expression in configuration
space. It is useful to take into account the follow-
ing integrals, suggested by Eqs. (19), (17) and (18).
The first one is (To avoid dangerous misleading I ex-
changed gamma with gamma’, in order to follow the
previous equations)

F0(z, �
0, b) =

Z 1

0
d�

J0(b
p
�)

� + �0 + 2 + z2M2

4

= 2K0

✓
b
q
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where Kn(x) is the modified Bessel function of the
second kind. The other required integrals are

F 0
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and
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Notice that F0, F 0
0 and F1 depend upon z2, and this is

allows one to eliminate odd functions when integrating
on z in Eq. (36). The driving exponential fall-o↵ of
F0, F 0

0 and F1 in the asymptotic limit b ! 1 comes
from Km(x), which reads:

Km(x)|x!1 !
⇣ ⇡

2x

⌘ 1
2
e�x . (41)

Hence, the leading exponential behavior in the in-
tegrals (38), (39) and (40) comes from values of
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• QCD inspired fermionic BSE model

• Solution in Minkowski space via Nakanishi Int. Representation;

• pion: LF amplitudes, SL FF, Valence: GPD, TMD,PDF

• Image of the pion (Ioffe-time & impact parameter)

Future ...
• Self-energies, Landau gauge,  quark-gluon vertex: ingredients from LQCD

• Confinement &  quark-gluon vertex? 

• Beyond the pion, kaon, D, B, rho…, and the nucleon

• TL FF, GPDs (DGLAP&ERBL), 
• GTMDs (DGLAP&ERBL), 
• Fragmentation Functions...

Summary
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LIA/CNRS - SUBATOMIC PHYSICS: FROM THEORY TO APPLICATIONS
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Observables associated with the hadron structure

Lorcé, Pasquini, Vanderhaeghen JHEP05(2011)041

l TMD, PDFs, SL and TL form factors (pion) …

JHEP05(2011)041

FF(�)

GTMD(x,~k?, �)

GPD(x, �)TMD(x,~k?)

PDF(x)TMSD(~k?)

TMFF

Charge

� = 0R
dx

R
d2k?

(~k?, �)

Figure 1. Representation of the projections of the GTMDs into parton distributions and form
factors. The arrows correspond to di↵erent reductions in the hadron and quark momentum space:
the solid (red) arrows give the forward limit in the hadron momentum, the dotted (black) arrows
correspond to integrating over the quark transverse-momentum and the dashed (blue) arrows project
out the longitudinal momentum of quarks. The di↵erent objects resulting from these links are
explained in the text.

on the 4-momentum � which is transferred by the probe to the hadron; for a classification
see refs. [1, 2]. They have a direct connection with the Wigner distributions of the parton-
hadron system [3–5], which represent the quantum-mechanical analogues of the classical
phase-space distributions.

When integrating the GPCFs over the light-cone energy component of the quark mo-
mentum one arrives at generalized transverse-momentum dependent parton distributions
(GTMDs) which contain the most general one-body information of partons, corresponding
to the full one-quark density matrix in momentum space. The GTMDs reduce to di↵erent
parton distributions and form factors as is shown in figure 1. The di↵erent arrows in this
figure represent particular projections in the hadron and quark momentum space, and give
the links between the matrix elements of di↵erent reduced density matrices.

Such matrix elements can in turn be parametrized in terms of generalized parton
distributions (GPDs), transverse-momentum dependent parton distributions (TMDs) and
generalized form factors (FFs). These are the quantities which enter the description of
various exclusive (GPDs), semi-inclusive (TMDs), and inclusive (PDFs) deep inelastic scat-
tering processes, or parameterize elastic scattering processes (FFs). At leading twist, there
are sixteen complex GTMDs, which are defined in terms of the independent polarization
states of quarks and hadron. In the forward limit � = 0, they reduce to eight real TMDs
which depend on the longitudinal momentum fraction x and transverse momentum ~k?
of quarks, and therefore give access to the three-dimensional picture of the hadrons in
momentum space.

– 2 –
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>

BLFQ−NJL 4 GeV2

BLFQ−NJL 5.76 GeV2

BLFQ−NJL 27 GeV2

BLFQ−NJL 49 GeV2

LQCD (Brommel 2007) 4 GeV2

LQCD (DESY 2016) 4 GeV2

LQCD (ETM 2018) 4 GeV2

LQCD (Detmold 2003) 5.76 GeV2

LQCD (Martinell 1988) 49 GeV2

JAM

FIG. 6. Moments of the pion parton distribution for the parameter set VII at several scales Q2 compared to di↵erent
models, Lattice and the JAM global fit at 4 GeV2[36]. Results are shown both for the original �(⇠) (solid lines) and using
the phenomenological treatment given by Eq. (49) (dashed lines). The results are compared with BLFQ NJL calculations
of [39, 40]. The lattice results are from Brommel et al [41], DESY [42], ETM [37], Detmold [43] and Martinell [44].

F. 3D image of the pion on the null-plane

The 3D image of the pion along the LF direction
and impact parameter space is studied for the two
spin components of the valence wave function. The
corresponding equations are (44) for these quantities.
We also study the transverse amplitudes in the impact
parameter space, Eq. (45), designated by '̃T

"#(b) and

'̃T
""(b) for the spin states. These calculations will be

shown for the parameter set VII (see Table I) which
presents the fit of the pion decay constant.

We first present the transverse amplitude in the
impact parameter space for each spin component in
Fig. 7 for the parameter set VII. The amplitudes are
multiplied by b for convenience to avoid the soft log-
arithmic singularity at the origin of the Bessel func-
tion K0 entering the formulas for the Fourier trans-
forms. The characteristic exponential decay at large
distances is dominated by exp(�b), which reflects the
continuum cut for  < 0. It is interesting to find out
how this tail should be modified in QCD due to the
confinement of quarks and gluons, which in nonper-
turbative QCD colored states presumably does not
present the standard continuum cut associated with
the existence of asymptotic free states.

The 3D image of the pion spin components onto the

10−5

10−4

10−3

10−2

10−1

 0  2  4  6  8  10

b
φT

(b
)

b m

bφT
↑↓

bφT
↑↑

FIG. 7. Transverse amplitudes for antiparallel and paral-
lel spin components of the pion valence wave function as
a function of the impact parameter coordinate b for the
parameter set VII.

null-plane is provided in Fig. 8, expressed by the prob-
ability density (apart an exponential factor e� b) as a
function of the impact parameter and the dimension-
less rescaled longitudinal position z̃ for the parameter
set VII. The antiparallel component is multiplied by
the transverse coordinate b, for the purpose of the fig-
ure, as it presents a log-type singularity at b = 0 from
the Bessel function K0. This singularity enhances the
probability density of the antiparallel spin component
at short distances close to b = 0 with respect to the
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Schematic view: TMDs  &  PDFs 
FSI gluon exchange: T-odd

Bethe-Salpeter
Amplitude @ x+=0 

q+ = q0+q3 q- = q0-q3

q2 = q+q- - q2
T

q-→infty   
DIS 

TF & Miller PRD 50 (1994)210



24Bethe-Salpeter amplitude: beyond the valence states
Light-front projection

Ø higher Fock-components 
Ø gluon radiation = initial state interaction (ISI)
Ø gluon radiation in the final state (FSI)

Sales, TF, Carlson,Sauer, PRC 63, 064003 (2001); Marinho, TF, Pace,Salme,Sauer,  PRD 77, 116010 (2008)
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Generalized Stietjes transform and the LF  valence wave function II 
Carbonell, TF,  Karmanov PLB769 (2017) 418



End-point singularities– more intuitive: can be treated by the pole-dislocation method 
de Melo et al. NPA631 (1998) 574C, PLB708 (2012) 87

3

It is easily seen that the analytical integration on k� of

(8) involves integrals like

Cj =
Z 1

�1

dk�

2⇡
(k�)j S(k�, v, z, z0, �, �0

) (11)

with j = 0, 1, 2, 3, as dictated by the content in kµ

of cij(k, k00, p). For k+D 6= 0 and j  3, one can safely

close the arc at infinity, in the complex plane, and get

the non singular contribution to Lij , namely the only

part considered in Ref. [8] (i.e. Eq. (18)).

For describing a two-fermion system or for generaliz-

ing NIR to massive vector constituents, one has to fully

evaluate Cj , carefully analyzing the case when k+D = 0.

One can recognize through a simple counting rule that

the tricky powers are j = 2, 3, even if n > 3 is cho-

sen in (5). In Ref. [13], singularities appearing in the

infinite-momentum-frame quantum field theory are in-

vestigated in details, singling out the following singular

integral, suitable for our purposes,

I(�, y) =
Z 1

�1

dx
h
�x� y ⌥ i✏

i2 = ± 2⇡i �(�)h
�y ⌥ i✏

i (12)

We also need (1/2) @I(�, y)/@y, easily deduced from Eq.

(12). Then, one gets our main result (details in [12]),

namely the singular contribution to Lij , given by

LS
ij = � i

M

1

8⇡2

(µ2 � ⇤
2
)
2

2 (1� z2)

Z 1

0
dv v (1� v)

⇥
n �(z0 � z)
⇣
˜̀
D + Fv

⌘2
˜̀
D

h
a2ij(v) + (1� v)

⇣
d0ij +

M2

4
z d1ij

+
2z(� +m2

)

(1� z2)
d1ij

⌘i
+

d1ij
v

h @

@z0
�(z0 � z)

i
DS

3

o
(13)

where we used �(x)/x = �d�(x)/dx and

˜̀
D = �(1� v) (v� + µ2

)� v
h
�0

+ z2m2
+ (1� z2)2

i

DS
3 =

1

F 2
v

h Fv

`D + Fv
+ ln

⇣ `D
`D + Fv

⌘i
(14)

The derivative of the Dirac delta-function is not an issue,

since in our numerical method for solving the coupled in-

tegral equations (6), after taking into account Eqs. (7),

(13), and the non singular contribution to Lij we expand

the Nakanishi weight functions gi(�0, z.;2
) on a suitable

basis. As in Ref. [5] for two-scalar bound states, the

basis is composed by Laguerre and Gegenbauer polyno-

mials (with the needed weights). It turns out that one

can safely integrate @�(z0 � z)/@z0 by part [12], given

the smoothness of our basis and the boundary property

gi(�0, z0 = ±1;2
) = 0. Then one can obtain an eigen-

problem of the type B v = g2 A v, (with B and A suitable

matrices). In our basis, we have up to 44 Laguerre poly-

nomials (with the same parameters as in Ref. [5]) and 44

TABLE I: The squared scalar coupling constant vs the bind-

ing energy for two masses of the exchanged particle µ/m =

0.15 and µ/m = 0.50. First column: binding energy. Second

column: coupling constant g2 for µ/m = 0.15, obtained by

taking analytically into account the fermionic singularities,

(see text). Third column: results for µ/m = 0.15, from Ref.

[8] with a numerical treatment of the singularities. Fourth

column: the same as the second one, but for µ/m = 0.50.
Fifth column: the same as the third one, but for µ/m = 0.50.
Sixth column: results in Euclidean space from Ref. [10]. In

the vertex form factor it is taken ⇤ = 2, as in [8] and [10].

µ/m = 0.15 µ/m = 0.50

B/m g2dFSV (full) g2CK g2dFSV (full) g2CK g2E
0.01 7.844 7.813 25.327 25.23 -

0.02 10.040 10.05 29.487 29.49 -

0.04 13.675 13.69 36.183 36.19 36.19

0.05 15.336 15.35 39.178 39.19 39.18

0.10 23.122 23.12 52.817 52.82 -

0.20 38.324 38.32 78.259 78.25 -

0.40 71.060 71.07 130.177 130.7 130.3

0.50 88.964 86.95 157.419 157.4 157.5

1.00 187.855 - 295.61 - -

1.40 254.483 - 379.48 - -

1.80 288.31 - 421.05 - -

Gegenbauer ones, with indexes equal to 5/2, 7/2, 7/2, 7/2
for gi(�0, z.;2

) with i = 1, 2, 3, 4, respectively. Moreover,

the small quantity to be added to Aii holds ✏ = 10
�7

, and

the number of Gaussian points is 120, that becomes 180

for analyzing the case when the binding energy, in unit

of m, B/m = 2�M/m is equal to 0.01.
In the studies of BSE, it is customary to assign a value

to the binding energy B/m, and, in correspondence, look

for an eigenvalue g2. If the eigenvalue exists then the

whole procedure is validated. Tables I (scalar coupling)

and II (pseudoscalar coupling) show the comparison be-

tween the values of g2 obtained within our approach,

where the singularities have been singled out and analyt-

ically evaluated, and both (i) the calculations by Ref. [8],

where a non trivial numerical treatment of the singular

behaviors was introduced (without recognizing the pos-

sibility of a systematic analysis of the singularities as in

[13]) and (ii) the available numerical results in Euclidean

space [10], with a suitable number of digits.

Notably, we were also able to extend our calculation

up to B/m ⇠ 2, namely when the expected critical be-

havior of a �3
theory manifests itself [14], i.e. where

@B/@g2 ! 1. This is well illustrated in Fig. 1, where

the comparison between our calculations for the vector

coupling and the ones by [8] is also shown.

The achieved full agreement, within the adopted nu-

merical accuracy, strongly supports the validity of our an-

alytical method for treating the singularities that plague
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[7] T. Frederico, G. Salmè and M. Viviani, Eur. Phys. J. C
75, 398 (2015).

[8] J. Carbonell and V. A. Karmanov, Eur. Phys. J. A 46,
387 (2010).

[9] J. Carbonell, V. A. Karmanov, Eur. Phys. Jou. A 27, 11
(2006).

[10] S. M. Dorkin, M. Beyer, S. S. Semikh, and L. P. Kaptari,

Few-Body Sys. 42 1 (2008), and private communication.

[11] X. Ji, J.P. Ma and F. Yuan, Phys. Rev,. Lett. 90, 241601
(2003).

[12] W. de Paula, T. Frederico, R. Pimentel, G. Salmè and
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à Kernel with delta and its derivative!
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Ø Kernel of the LF projected pion BSE with NIR

Ø end-point singularities in the k- integration (zero-modes)


