Pion structure explored in Minkowski space

\author{
Tobias Frederico
 Instituto Tecnológico de Aeronáutica São José dos Campos - Brazil tobias@ita.br
 ```
Wayne de Paula (ITA)
 Emanuel Ydrefors (ITA)
 Jorge Alvarenga Nogueira (ITA/Roma I)
 Giovanni Salmè (Roma)
 Michele Viviani (Pisa)
 Cedric Mezrag (Saclay)
 Orlando Oliveira (Coimbra)
 Bruno El-Bennich (Unicsul/SP)
 João Pacheco B C de Melo (Unicsul/SP)
 Vladimir Karmanov (Moscow)
 Jaume Carbonell (IPN/Orsay)

```
}


Perceiving the Emergence of Hadron Mass through AMBER@CERN
6-7 August 2020 online

\section*{Outline}
> Ingredients: quark-gluon vertex from LQCD data and gap equation quark-antiquark BSE for the pion (Minkowski space/LF wave function)

Pion Electromagnetic form-factor, decay constant
\(>\) DA, PDF, TMD, GPD
> Summary

\section*{The Quark-Gap Equation and the Quark-Gluon Vertex}

Spontaneous Chiral symmetry breaking \& pion as a Goldstone boson (origin of the nucleon mass - "constituent quarks", Roberts, Maris, Tandy, Cloet, Maris...)

Schwinger-Dyson eq.
Quark propagator


Quark-gluon vertex
\[
\Gamma_{\mu}^{a}\left(p_{1}, p_{2}, p_{3}\right)=g t^{a} \Gamma_{\mu}\left(p_{1}, p_{2}, p_{3}\right)
\]
\[
\Gamma_{\mu}\left(p_{1}, p_{2}, p_{3}\right)=\Gamma_{\mu}^{(L)}\left(p_{1}, p_{2}, p_{3}\right)+\Gamma_{\mu}^{(T)}\left(p_{1}, p_{2}, p_{3}\right)
\]

Longitudinal component
\[
\begin{aligned}
\Gamma_{\mu}^{\mathrm{L}}\left(p_{1}, p_{2}, p_{3}\right)= & -i\left(\lambda_{1} \gamma_{\mu}+\lambda_{2}\left(\not p_{1}-\not p_{2}\right)\left(p_{1}-p_{2}\right)_{\mu}\right. \\
& \left.+\lambda_{3}\left(p_{1}-p_{2}\right)_{\mu}+\lambda_{4} \sigma_{\mu \nu}\left(p_{1}-p_{2}\right)^{\nu}\right)
\end{aligned}
\]

Rojas, de Melo, El-Bennich, Oliveira, Frederico, JHEP 1310 (2013) 193; Oliveira, Paula, Frederico, de Melo EPJC 78(7), 553 (2018) \& EPJC 79 (2019) 116 \& Oliveira, Frederico, de Paula, EPJC 80 (2020) 484

\section*{INPUTS FROM LQCD in Landau gauge: SL momenta}

\section*{Gluon propagator}
\[
D_{\mu \nu}^{a b}(q)=-i \delta^{a b}\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) D\left(q^{2}\right)
\]

Dudal, Oliveira, Silva, Ann. Phys. 397, 351 (2018)


Ghost propagator
\[
D_{g h}\left(p^{2}\right)=\frac{F\left(p^{2}\right)}{p^{2}}
\]

Duarte, Oliveira, Silva, PRD 94 (2016) 014502


Quark propagator Oliveira, Silva, Skullerud and Sternbeck, PRD 99 (2019) 094506



Parametrizations summarized in Oliveira, de Paula, Frederico, de Melo, EPJ C 79 (2019) 116

\section*{quark-gluon vertex from factors}
> Slanov-Taylor identity \& Quark-Ghost Kernel
\(>\) Padé approximants
\(>\) Error minimization ~ 2-4\%
\(>\) simulating annealing
\[
\alpha_{s}=0.22 \text { and all propagators renormalised at } \mu=4.3 \mathrm{GeV}
\]




Oliveira, Frederico, de Paula, EPJC 80 (2020) 484

\section*{BSE quark-antiquark \& pion model}


Ladder approximation ( \(L\) ): suppression of \(X L\) for \(N c=3\)
[A. Nogueira, CR Ji, Ydrefors, TF, PLB777(2017) 207]
\(>\) constituent quark mass \(\sim 200-300 \mathrm{MeV}\)
\(>\) Vector exchange
\[
i \mathcal{K}_{V}^{(L d) \mu \nu}\left(k, k^{\prime}\right)=-i g^{2} \frac{g^{\mu \nu}}{\left(k-k^{\prime}\right)^{2}-\mu^{2}+i \epsilon}
\]

M~ 500 MeV
\(\begin{gathered}>\text { quark-gluon vertex form-factor } \\ \Lambda \sim 300 \mathrm{MeV}\end{gathered} \lambda_{1} \gamma_{\mu} \quad F(q)=\frac{\mu^{2}-\Lambda^{2}}{q^{2}-\Lambda^{2}+i \epsilon}\)

SOLUTION IN MINKOWSKI SPACE
[pion mass \(\rightarrow \mathrm{g}\) ]

\section*{Pion BS amplitude}
\[
\begin{gathered}
\Phi(k, p)=S_{1} \phi_{1}+S_{2} \phi_{2}+S_{3} \phi_{3}+S_{4} \phi_{4} \\
S_{1}=\gamma_{5} \quad S_{2}=\frac{1}{M} p p \gamma_{5} \quad S_{3}=\frac{k \cdot p}{M^{3}} p \gamma_{5}-\frac{1}{M} \not k \gamma_{5} \quad S_{4}=\frac{i}{M^{2}} \sigma_{\mu \nu} p^{\mu} k^{\nu} \gamma_{5}
\end{gathered}
\]

\section*{Main Tool: Nakanishi Integral Representation (NIR)}
(Nakanishi 1962)
Each BS amplitude component:
\[
\begin{array}{r}
\Phi(k, p)=\int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g\left(\gamma^{\prime}, z^{\prime}\right)}{\left(\gamma^{\prime}+\kappa^{2}-k^{2}-p \cdot k z^{\prime}-i \epsilon\right)^{3}} \\
\kappa^{2}=m^{2}-\frac{M^{2}}{4}
\end{array}
\]

Bosons: Kusaka and Williams, PRD 51 (1995) 7026;
Light-front projection: integration in \(k\) Carbonell\&Karmanov EPJA27(2006)1;EPJA27(2006)11;
TF, Salme, Viviani PRD89(2014) 016010,...
Fermions ( \(0^{-}\)): Carbonell and Karmanov EPJA 46 (2010) 387;
de Paula, TF,Salmè, Viviani PRD 94 (2016) 071901;
de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764

Generalized Stietjes transform and the LF valence wave function
Carbonell, TF, Karmanov PLB769 (2017) 418 (bosons)
\[
\Psi_{i}\left(\gamma, z ; \kappa^{2}\right)=\int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z ; \kappa^{2}\right)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}
\]
\[
\gamma=k_{\perp}^{2} \quad z=2 x-1
\]


\section*{UNIQUENESS OF THE NAKANISHI REPRESENTATION}

PHENOMENOLOGICAL APPLICATIONS from the valence wf \(\rightarrow\) BSA!

\section*{Light-front amplitudes}
\begin{tabular}{|l|r|r|r|r||r||c|}
\hline\(B / m\) & \(M_{\pi}(\mathrm{MeV})\) & \(g^{2}\) & \(\mu(\mathrm{MeV})\) & \(\Lambda / m\) & \(m(\mathrm{MeV})\) & \(p_{v a l}\) \\
\hline 1.35 & 140 & 26.718 & 430 & 1.0 & 215 & 0.68 \\
\hline
\end{tabular}

Kernel has similar magnitude with LQCD form-factor \(\sim \mathbf{5 0 \%}\)


\section*{BS norm, valence wave function, decay constant}

Normalization: \(\quad i N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}}\left[\phi_{1} \phi_{1}+\phi_{2} \phi_{2}+b \phi_{3} \phi_{3}+b \phi_{4} \phi_{4}-4 b \phi_{1} \phi_{4}-4 \frac{m}{M} \phi_{2} \phi_{1}\right]=-1\)

Valence wf: \(\left\{\begin{aligned} \psi_{\uparrow \downarrow}(\gamma, z) & =-i \frac{M}{4 p^{+}} \int \frac{d k^{-}}{2 \pi} \operatorname{Tr}\left[\gamma^{+} \gamma_{5} \Phi(k ; p)\right] \\ & =\psi_{2}(\gamma, z)+\frac{z}{2} \psi_{3}(\gamma, z)+\int_{0}^{\infty} \frac{d \gamma^{\prime}}{M^{3}} \frac{\partial g_{3}\left(\gamma^{\prime}, z\right) / \partial z}{\left[\gamma+\gamma^{\prime}+z^{2} m^{2}+\left(1-z^{2}\right) \kappa^{2}\right]} \\ \psi_{\uparrow \uparrow}(\gamma, z) & =\frac{\sqrt{\gamma} M}{4 i p^{+}} \int \frac{d k^{-}}{2 \pi} \operatorname{Tr}\left[\sigma^{+i} \gamma_{5} \Phi(k ; p)\right]=\frac{\sqrt{\gamma}}{M} \psi_{4}(\gamma, z)\end{aligned}\right.\)
\[
\gamma=k_{\perp}^{2} \text { and } z=2 \xi-1
\]
\[
\Psi_{i}\left(\gamma, z ; \kappa^{2}\right)=\int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z ; \kappa^{2}\right)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}
\]

Valence probability: \(\quad P_{\text {val }}=\frac{N_{c}}{16 \pi^{2}} \int_{-1}^{1} d z \int_{0}^{\infty} d \gamma\left[\left|\psi^{\uparrow \downarrow}(\gamma, z)\right|^{2}+\left|\psi^{\uparrow \downarrow}(\gamma, z)\right|^{2}\right]\)
Decay constant: \(\quad f_{\pi}=-i \frac{N_{c}}{p^{+}} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma^{+} \gamma^{5} \Phi(p, k)\right]=\frac{2 N_{c}}{M} \int \frac{d^{2} k_{\perp}}{(2 \pi)^{2}} \frac{d k^{+}}{2 \pi} \psi_{\uparrow \downarrow}(\gamma, z)\)
\[
=-\frac{N_{c}}{2(2 \pi)^{2} M} \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{1} d z \int_{0}^{\infty} d \gamma \frac{g_{2}(\gamma, z)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}
\]
increasing Pval
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Set & \(m\) & \(B / m\) & \(\mu / m\) & \(\Lambda / m\) & \(\alpha_{s}\left(\bar{\alpha}_{s}\right)\) & \(P_{\text {val }}\) & \(P_{\uparrow \downarrow}\) & \(P_{\uparrow \uparrow}\) & \(f_{\pi} / m\) & \(f_{\pi}\) \\
\hline I & 187 & 1.25 & 0.15 & 2 & \(5.146(23.13)\) & 0.64 & 0.55 & 0.09 & 0.414 & 77 \\
II & 255 & 1.45 & 1.5 & 1 & \(52.78(21.54)\) & 0.65 & 0.55 & 0.10 & 0.433 & 112 \\
III & 215 & 1.35 & 2 & 1 & \(76.28(18.16)\) & 0.67 & 0.57 & 0.11 & 0.453 & 98 \\
IV & 255 & 1.45 & 2 & 1 & \(78.01(18.57)\) & 0.66 & 0.56 & 0.11 & 0.459 & 117 \\
V & 255 & 1.45 & 2.5 & 1 & \(108.87(16.87)\) & 0.68 & 0.56 & 0.11 & 0.477 & 122 \\
VI & 255 & 1.45 & 2.5 & 1.1 & \(87.66(13.59)\) & 0.69 & 0.56 & 0.12 & 0.498 & 127 \\
VII & 255 & 1.45 & 2.5 & 1.2 & \(72.32(11.21)\) & 0.70 & 0.57 & 0.13 & 0.511 & 130 \\
VIII & 215 & 1.35 & 1 & 2 & \(10.20(8.50)\) & 0.71 & 0.57 & 0.14 & 0.520 & 112 \\
IX & 187 & 1.25 & 1 & 2 & \(9.96(8.30)\) & 0.71 & 0.58 & 0.14 & 0.514 & 96 \\
\hline
\end{tabular}

TABLE I. Pion model with \(m_{\pi}=140 \mathrm{MeV}\) for different parameter sets, \(m\) and \(f_{\pi}\) in MeV . Calculated valence probability, total, antiparallel and parallel, and decay constant. The values of the coupling constant \(\alpha_{s}\) and the effective strength, defined in Eq. (46), are also given.
\[
\bar{\alpha}_{s}=\frac{\alpha_{s}}{\frac{\mu^{2}}{m^{2}}+0.2} \quad \text { with } \quad \alpha_{s}=\frac{g^{2}}{4 \pi}\left(1-\mu^{2} / \Lambda^{2}\right)^{2}
\]

\section*{Pion EM Form Factor}

Alvarenga Nogueira, de Paula, TF, Mezrag, Ydrefors, Salmè in preparation
\[
\begin{aligned}
F\left(Q^{2}\right)= & \frac{N_{c}}{2^{5} \pi^{2} N_{Q_{0}}} \sum_{i, j=1}^{4} \int_{0}^{\infty} d \gamma \int_{-1}^{1} d z g_{i}(\gamma, z) \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{1} d z^{\prime} g_{j}\left(\gamma^{\prime}, z^{\prime}\right) \int_{0}^{1} d v v^{2}(1-v)^{2} c_{i j} \\
& \begin{array}{cccccccccc} 
\\
\hline m & B / m & \mu / m & \Lambda / m & f_{\pi} / m & P_{\text {val }} & f_{\pi} & r_{\pi}(\mathrm{fm}) & r_{v a l}(\mathrm{fm}) & r_{\text {nval }}(\mathrm{fm}) \\
215 & 1.35 & 2 & 1 & 0.453 & 0.67 & 98 & 0.835 & 0.895 & 0.703 \\
255 & 1.45 & 2.5 & 1.2 & 0.511 & 0.70 & 130 & 0.663 & 0.710 & 0.538
\end{array}
\end{aligned}
\]

The experimental value of \(f_{\pi}\) is \(130.50 \pm 0.017 \mathrm{MeV}\)


\[
Q^{2} F_{\text {asymp }}\left(Q^{2}\right)=8 \pi \alpha_{s}\left(Q^{2}\right) f_{\pi}^{2}
\]
G. Lepage, S. J. Brodsky, Phys. Lett. B 87 (1979) 359

\section*{Valence form factor}
\[
\begin{gathered}
F_{\mathrm{val}}\left(Q^{2}\right)=\frac{N_{c}}{16 \pi^{3}} \int d^{2} k_{\perp} \int_{-1}^{1} d z\left[\psi_{\uparrow \downarrow}^{*}\left(\gamma^{\prime}, z\right) \psi_{\uparrow \downarrow}\left(\gamma^{\prime \prime}, z\right)+\frac{\vec{k}_{\perp}^{\prime} \cdot \vec{k}_{\perp}^{\prime \prime}}{k_{\perp}^{\prime} k_{\perp}^{\prime \prime}} \psi_{\uparrow \uparrow}^{*}\left(\gamma^{\prime}, z\right) \psi_{\uparrow \uparrow}\left(\gamma^{\prime \prime}, z\right)\right] \\
\vec{k}_{\perp}^{\prime}=\vec{k}_{\perp}+\frac{1}{4}(1-z) \vec{q}_{\perp}, \quad \vec{k}_{\perp}^{\prime \prime}=\vec{k}_{\perp}-\frac{1}{4}(1-z) \vec{q}_{\perp}=\vec{k}_{\perp}^{\prime}-\frac{1}{2}(1-z) \vec{q}_{\perp}
\end{gathered}
\]

Asymp. form factor \(\left.\quad F_{\mathrm{val}}\left(Q^{2}\right)\right|_{Q^{2} \rightarrow \infty} \sim \frac{N_{c}}{16 \pi^{2}} \int_{-1}^{1} d z \psi_{\uparrow \downarrow}\left(\frac{(1-z)^{2}}{4} Q^{2}, z\right) \int_{0}^{\infty} d \gamma \psi_{\uparrow \downarrow}(\gamma, z)\)
\[
F\left(Q^{2}\right)=\int_{-1}^{1} d z \tilde{F}\left(Q^{2}, z\right)
\]


Valence pion GPD


Figure 4: Left: Integrand of the full form factor vs \(z\) for fixed values of \(Q^{2}\). In the main frame are shown the results for \(z \geqslant 0\) and in the inset the results for the full interval are visible. Right: The corresponding results for the valence form factor. In the main frame the results obtained by using the complete formula are shown. In the inset the results for the asymptotic formula are displayed. For the visibility the results for \(Q^{2}>0\) have been multiplied by a factor of 10 .
\[
\begin{aligned}
& r_{\pi}^{2}=P_{v a l} r_{v a l}^{2}+\left(1-P_{v a l}\right) r_{n v a l}^{2} \\
& B=1.45 \mathrm{~m}_{\mathrm{q}} \quad \mathrm{~m}_{\text {glue }}=2.5 \mathrm{~m}_{\mathrm{q}} \quad \text { 人 }=1.2 \mathrm{~m}_{\mathrm{q}} \quad \mathrm{~m}_{\mathrm{q}}=255 \mathrm{MeV}
\end{aligned}
\]
\(0.657 \pm 0.003 \mathrm{fm} \quad\) B. Ananthanarayan, I. Caprini, D. Das, Phys. Rev. Lett. 119 (2017) 132002

\section*{\(70 \% \quad\) Valence}
higher Fock-components \(\rightarrow\) large virtuality \(\rightarrow\) more compact 30\%

\section*{Distribution and transverse amplitudes}

\[
\varphi_{\uparrow \downarrow}(\xi)=\frac{\int_{0}^{\infty} d \gamma \psi_{\uparrow \downarrow}(\gamma, z)}{\int_{0}^{1} d \xi \int_{0}^{\infty} d \gamma \psi_{\uparrow \downarrow}(\gamma, z)}
\]
\[
\varphi_{\uparrow \uparrow}(\xi)=\frac{\int_{0}^{\infty} d \gamma \psi_{\uparrow \uparrow}(\gamma, z)}{\int_{0}^{1} d \xi \int_{0}^{\infty} d \gamma \psi_{\uparrow \uparrow}(\gamma, z)}
\]

\[
\begin{aligned}
& \varphi_{\uparrow \downarrow}^{T}(\gamma)=\frac{\int_{0}^{1} d \xi \psi_{\uparrow \downarrow}(\gamma, z)}{\int_{0}^{1} d \xi \int_{0}^{\infty} d \gamma \psi_{\uparrow \downarrow}(\gamma, z)} \\
& \varphi_{\uparrow \uparrow}^{T}(\gamma)=\frac{\int_{0}^{1} d \xi \psi_{\uparrow \uparrow}(\gamma, z)}{\int_{0}^{1} d \xi \int_{0}^{\infty} d \gamma \psi_{\uparrow \uparrow}(\gamma, z)}
\end{aligned}
\]

FIG. 4. Pion DA and transverse amplitudes for the two spin components obtained with the parameter set VII.

\section*{Valence TMD}

\[
P_{\mathrm{val}}=\int_{-1}^{1} d z \int_{0}^{\infty} d \gamma \mathcal{P}_{v a l}(\gamma, z)
\]
\begin{tabular}{|c|c|c|c|c|}
\hline Set & \(f_{\pi} / m\) & \(\eta_{\uparrow \downarrow}\) & \(\eta_{\uparrow \uparrow}\) & \(\eta\) \\
\hline II & 0.433 & 1.71 & 1.50 & 1.66 \\
IV & 0.477 & 1.61 & 1.42 & 1.57 \\
VII & 0.511 & 1.44 & 1.26 & 1.40 \\
\hline
\end{tabular}

TABLE II. Exponent of the fit function \((1-\xi)^{\eta}(\xi \rightarrow 1)\) for the antiparallel, parallel and total valence distributions.

FIG. 3. 3D-valence momentum distribution as a function of \(\xi\) and \(\gamma=k_{\perp}^{2}\). Panels from top to bottom represent the results for the parameter sets (II), (IV) and (VII), respectively.

Pion parton distribution \(\xi \phi(\xi)\) at \(Q^{2}=27 \mathrm{GeV}^{2}\)



E615: Conway et al. PRD39 (1989) 92
E615 rescaled: Aicher, Schäfer, Volgesang
\[
\text { PRL105 (2010) } 252003
\]

Middle panel: NLO evolved results for some of the parameters sets for \(Q_{0}^{2}=0.25 \mathrm{GeV}^{2}\) and \(\alpha\left(Q_{0}^{2}\right)=1.884\). Bottom panel: NLO evolution with the initial distribution \(\xi \tilde{\phi}(\xi)\) from Eq. (49) for \(\alpha\left(Q_{0}^{2}\right)=1.884\).
T. Frederico and G. Miller. Phys. Rev. D 50, 210 (1994)

\section*{3D image of the pion on the null-plane}
\[
\left\{\xi=k^{+} / p^{+}, \mathbf{k}_{\perp}\right\} \xrightarrow{\text { F.T. }}\left\{\tilde{z}=p^{+} x^{-} / 2, \mathbf{b}\right\}
\]

Ioffe-time

Phys. Lett. B 30, 123 (1969).

\(\tilde{\psi}_{\uparrow \downarrow}(\tilde{z}, b)=\mathrm{e}^{-b \kappa} \mathrm{e}^{-\frac{i}{2} \tilde{z}} \chi_{\uparrow \downarrow}(\tilde{z}, b)\)
\(\tilde{\psi}_{\uparrow \uparrow}(\tilde{z}, b)=\mathrm{e}^{-b \kappa} \mathrm{e}^{-\frac{i}{2} \tilde{z}^{\chi}} \chi_{\uparrow \uparrow}(\tilde{z}, b)\)


FIG. 9. Integrated probability density for the two spin components as a function of the rescaled longitudinal momentum. Dashed line: \(\tilde{\psi}_{\uparrow \downarrow}(\tilde{z})=\int_{0}^{\infty} d b \tilde{\psi}_{\uparrow \downarrow}(\tilde{z}, b)\) and dashdotted line: \(\tilde{\psi}_{\uparrow \uparrow}(\tilde{z})=\int_{0}^{\infty} d b \tilde{\psi}_{\uparrow \uparrow}(\tilde{z}, b)\).

Light-front holographic wf
G. A. Miller and S. J. Brodsky: arXiv:1912.08911 [hep-ph]
- QCD inspired fermionic BSE model
- Solution in Minkowski space via Nakanishi Int. Representation;
- pion: LF amplitudes, SL FF, Valence: GPD, TMD, PDF
- Image of the pion (Ioffe-time \& impact parameter)
Future ...
- Self-energies, Landau gauge, quark-gluon vertex: ingredients from LQCD
- Confinement \& quark-gluon vertex?
- Beyond the pion, kaon, D, B, rho..., and the nucleon
- TL FF, GPDs (DGLAP\&ERBL),
- GTMDs (DGLAP\&ERBL),
- Fragmentation Functions...


\section*{THANK YOU!}


LIA/CNRS - SUBATOMIC PHYSICS: FROM THEORY TO APPLICATIONS

\section*{Observables associated with the hadron structure}


Lorcé, Pasquini, Vanderhaeghen JHEP05(2011)041
- TMD, PDFs, SL and TL form factors (pion) ...


FIG. 6. Moments of the pion parton distribution for the parameter set VII at several scales \(Q^{2}\) compared to different models, Lattice and the JAM global fit at \(4 \mathrm{GeV}^{2}[36]\). Results are shown both for the original \(\phi(\xi)\) (solid lines) and using the phenomenological treatment given by Eq. (49) (dashed lines). The results are compared with BLFQ NJL calculations of [39, 40]. The lattice results are from Brommel et al [41], DESY [42], ETM [37], Detmold [43] and Martinell [44].

\section*{Schematic view: TMDs \& PDFs}

FSI gluon exchange: T-odd

TF \& Miller PRD 50 (1994)210

\[
q^{+}=q^{0}+q^{3} \quad q^{-}=q^{0}-q^{3}
\]
\(q^{-} \longrightarrow\) infty
DIS

Bethe-Salpeter Amplitude @ \(\mathbf{x}^{+}=\mathbf{0}\)

Bethe-Salpeter amplitude: beyond the valence stàtes Light-front projection

\(+\)

, higher Fock-components
, gluon radiation = initial state interaction (ISI)
- gluon radiation in the final state (FSI)

Generalized Stietjes transform and the LF valence wave function II Carbonell, TF, Karmanov PLB769 (2017) 418
\[
f(\gamma) \equiv \int_{0}^{\infty} d \gamma^{\prime} L\left(\gamma, \gamma^{\prime}\right) g\left(\gamma^{\prime}\right)=\int_{0}^{\infty} d \gamma^{\prime} \frac{g\left(\gamma^{\prime}\right)}{\left(\gamma^{\prime}+\gamma+b\right)^{2}}
\]
denoted symbolically as \(f=\hat{L} g\).
\[
g(\gamma)=\hat{L}^{-1} f=\frac{\gamma}{2 \pi} \int_{-\pi}^{\pi} d \phi e^{i \phi} f\left(\gamma e^{i \phi}-b\right)
\]
J.H. Schwarz, J. Math. Phys. 46 (2005) 014501,

\section*{\(>\) Kernel of the LF projected pion BSE with NIR}
\(>\) end-point singularities in the \(\mathrm{k}^{-}\)integration (zero-modes)
\[
\begin{gathered}
\text { T.M. Yan, Phys. Rev. D 7, } 1780 \text { (1973) } \\
\mathcal{I}(\beta, y)=\int_{-\infty}^{\infty} \frac{d x}{[\beta x-y \mp i \epsilon]^{2}}= \pm \frac{2 \pi i \delta(\beta)}{[-y \mp i \epsilon]}
\end{gathered}
\]
\(\rightarrow\) Kernel with delta and its derivative!

End-point singularities- more intuitive: can be treated by the pole-dislocation method de Melo et al. NPA631 (1998) 574C, PLB708 (2012) 87```

