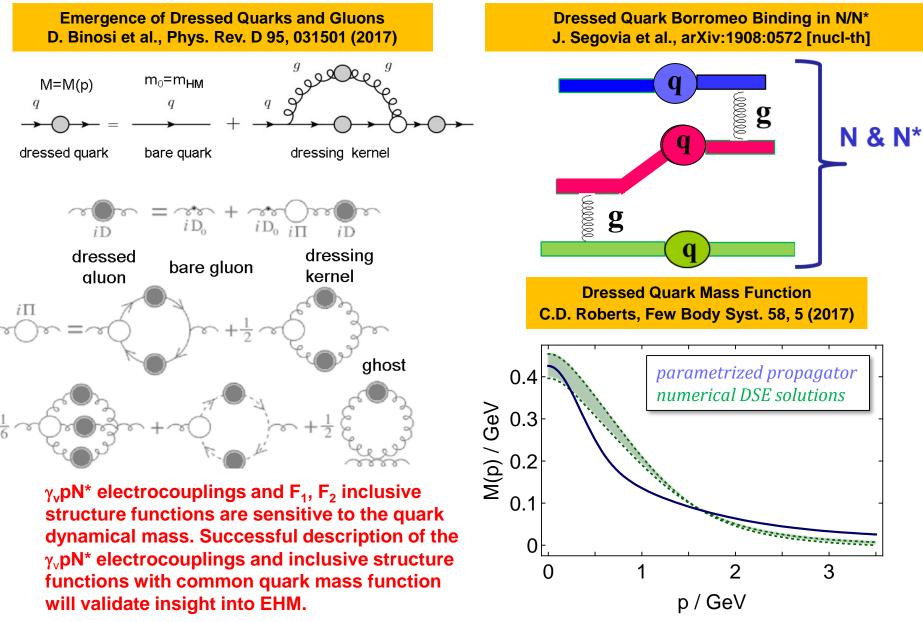

Shedding Light on EHM from Inclusive Electron Scattering off Protons in the Resonance Region and N* Electrocouplings

V.I. Mokeev, A.N. Hiller Blin Jefferson Laboratory


- EHM impact on the structure of ground and excited nucleon states
- Dressed quark mass function from data on γ_vpN* electrocouplings
- Resonant contributions to F₁ and F₂ inclusive structure functions
- Validating insight into hadron mass generation from data on inclusive structure functions

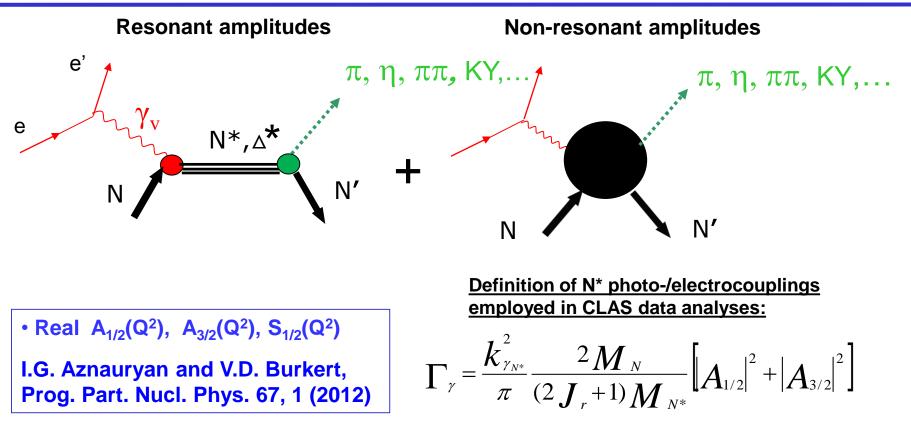
Conclusions and outlook

Perceiving the Origin of Hadron Mass through AMBER @ CERN, August 6 – 7, 2020, Geneva, Switzerland

Basics for Insight into EHM

Inferred from QCD Lagrangian with only the Λ_{QCD} parameter

N* Structure in Experiments with CLAS/CLAS12


- The experimental program on the studies of N* structure in exclusive meson photo-/electroproduction with CLAS/CLAS12 seeks to determine:
 - γ_vpN* electrocouplings at photon virtualities Q² up to 5.0 GeV² for most excited proton states through analyzing major meson electroproduction channels from CLAS data
 - extend accessible Q² range within 5.0 GeV²<Q²<12 GeV² and down to 0.05 GeV² from CLAS12 data
 - explore hadron mass emergence by mapping out running quark mass in the transition from almost massless pQCD quarks to fully dressed constituent quarks
- A unique source of information on many facets of strong QCD in generating N* states with different structural features
- Allow evaluation of the resonant contributions to inclusive F₁ and F₂ structure functions from experimental results on γ_vpN* electrocouplings

References:

- 1. I.G. Aznauryan and V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)
- 2. V.D. Burkert and C.D. Roberts, Rev. Mod. Phys. 91, 011003 (2019)
- 3. V.I. Mokeev, Few Body Syst. 59, 46 (2018)
- 4. A.N. Hiller Blin et al., Phys. Rev. C100, 035201 (2019)

N* Electroexcitation Amplitudes (γ_vNN* Electrocouplings) and their Extraction from Exclusive Electroproduction Data

 Consistent results on γ_vpN* electrocouplings from different meson electroproduction channels are critical in order to validate reliable extraction of these quantities

Summary of Published CLAS Data on Exclusive Meson Electroproduction off Protons in N* Excitation Region

Hadronic final state	Covered W-range, GeV	Covered Q ² - range, GeV ²	Measured observables
π +n	1.1-1.38 1.1-1.55 1.1-1.7 1.6-2.0	0.16-0.36 0.3-0.6 1.7-4.5 1.8-4.5	dσ/dΩ dσ/dΩ dσ/dΩ, A _b dσ/dΩ
π⁰ ρ	1.1-1.38 1.1-1.68 1.1-1.39 1.1-1.8	0.16-0.36 0.4-1.8 3.0.0-6.0 0.4-1.0	dσ/dΩ dσ/dΩ, A _b ,A _t ,A _{bt} dσ/dΩ dσ/dΩ
ηρ	1.5-2.3	0.2-3.1	dσ/dΩ
K ⁺ Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P⁰, P'
$K^+\Sigma^0$	thresh-2.6	1.40-3.90 0.70-5.4	dσ/dΩ P'
π+ π-p	1.3-1.6 0.2-0.6 Nine 1-fold 1.4-2.1 0.5-1.5 differential cross 1.4-2.0 2.0-5.0 sections		differential cross

 dσ/dΩ–CM angular distributions
 A_b,A_t,A_{bt}-longitudinal beam, target, and beam-target asymmetries
 P⁰, P' –recoil and transferred polarization of strange baryon

Over 150,000 data points!

Almost full coverage of the final state hadron phase space

The measured observables from CLAS are stored in the

CLAS Physics Database http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi

V.I. Mokeev, EHM Workshop at CERN, Aug. 6-7, 2020

Independent analyses of different meson electroproduction channels:

$> \pi^+$ n and π^0 p channels:

Unitary Isobar Model (UIM) and Fixed-t Dispersion Relations (DR)

I.G. Aznauryan, Phys. Rev. C67, 015209 (2003)

I.G. Aznauryan et al. (CLAS), Phys. Rev. C80, 055203 (2009)

I.G. Aznauryan et al. (CLAS), Phys. Rev. C91, 045203 (2015)

>ηp channel:

Extension of UIM and DR

I.G. Aznauryan, Phys. Rev. C68, 065204 (2003)

Data fit at W<1.6 GeV, assuming N(1535)1/2⁻ dominance

H. Denizli et al. (CLAS), Phys. Rev. C76, 015204 (2007)

 $> \pi^+\pi^-p$ channel:

Data driven JLab-MSU meson-baryon model (JM)

V.I. Mokeev, V.D. Burkert et al., Phys. Rev. C80, 045212 (2009)

V.I. Mokeev et al. (CLAS), Phys. Rev. C86, 035203 (2012)

V.I. Mokeev, V.D. Burkert et al., Phys. Rev. C93, 054016 (2016)

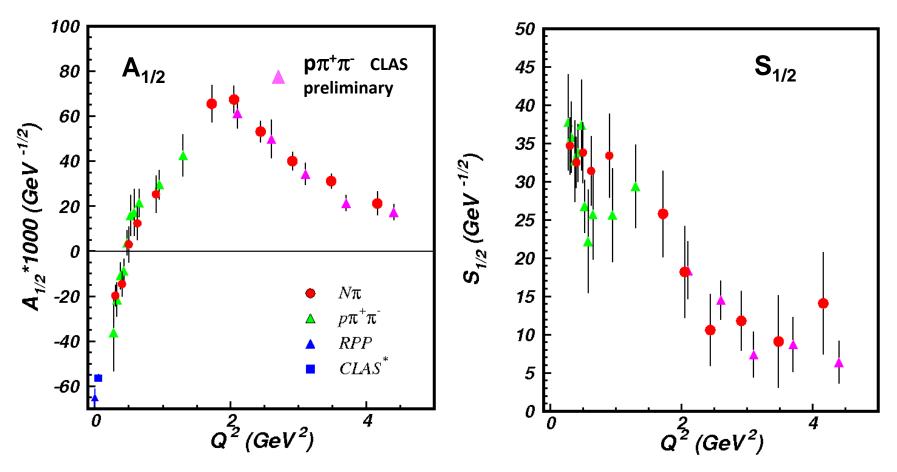
E. Golovatch et al., Phys. Lett. B788. 371 (2019).

Global coupled-channel analysis of $\gamma_{r,v}$ **N**, π **N**, η **N**, $\pi\pi$ **N**, **K** Λ , **K** Σ **exclusive channels:**

H. Kamano, Few Body Syst. 59, 24 (2018)

- H. Kamano, JPS Conf. Proc. 13, 010012 (2017)
- H. Kamano, arXiv:1909.11935 [nucl-th]

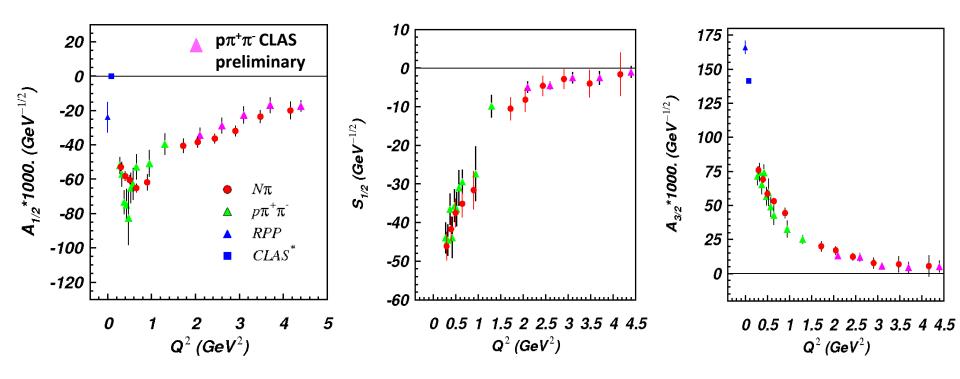
Nucleon Resonance Electrocouplings from Data On Exclusive Meson Electroproduction with CLAS


states	γ _v pN* electrocouplings, GeV ²
∆ (1232)3/2 +	0.16-6.0
N(1440)1/2+,N(1520)3/2 ⁻ , N(1535)1/2 ⁻	0.30-4.16
N(1675)5/2 ⁻ , N(1680)5/2+ N(1710)1/2+	1.6-4.5
N(1535)1/2 ⁻	0.2-2.9
∆(1620)1/2 ⁻ , N(1650)1/2 ⁻ , N(1680)5/2⁺, ∆(1700)3/2 ⁻ ,	0.25-1.50 2.0-5.0 (preliminary) 0.5-1.5
	N(1440)1/2+,N(1520)3/2 ⁻ , N(1535)1/2 ⁻ N(1675)5/2 ⁻ , N(1680)5/2+ N(1710)1/2+

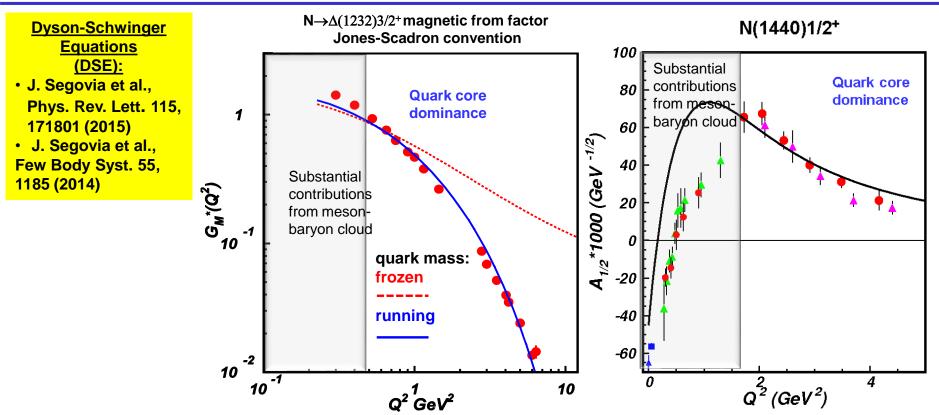
The website with numerical results and references: https://userweb.jlab.org/~mokeev/resonance_electrocouplings/

lefferson Pat

Interpolation at 0.5 GeV²<Q²<7.0 GeV² for resonances in the mass range of W<1.8 GeV is available in: A.N. Hiller Blin et al., Phys. Rev. C 100, 035201 (2019)


Electrocouplings of N(1440)1/2+ from π **N and** $\pi^+\pi^-$ **p Electroproduction off Proton Data**

Consistent results on N(1440)1/2⁺ electrocouplings from independent studies of two major π N and $\pi^+\pi^-p$ electroproduction channels with different non-resonant contributions allow us to evaluate the systematic uncertainties of these quantities in a nearly model-independent way


Electrocouplings of N(1520)3/2⁻ from π N and $\pi^+\pi^-p$ Electroproduction off Proton Data

Consistent results from πN and $\pi^+\pi^-p$ electroproduction off proton data on electrocouplings of N(1440)1/2⁺ and N(1520)3/2⁻ resonances with the biggest combined contribution into the resonant parts of both channels at W<1.55 GeV strongly support the capabilities of the developed reaction models for credible extraction of resonance electrocouplings from independent analyses of both πN and $\pi^+\pi^-p$ electroproduction

Insight to EHM From Resonance Electrocouplings

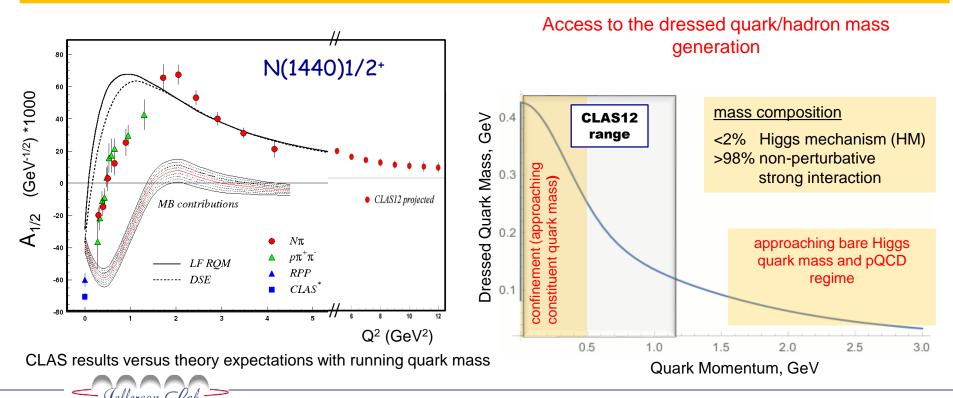
DSE analyses of CLAS data on Δ (1232)3/2⁺ electroexcitation demonstrate that dressed quark mass runs with momentum

Good data description at Q²>2.0 GeV² achieved with <u>the same dressed quark mass function</u> for the ground and two excited nucleon states of distinctively different structure validates the DSE results on momentum dependence of dressed quark mass. $\gamma_v pN^*$ electrocoupling data offer access to the strong QCD dynamics underlying hadron mass generation.

One of the most important achievements in hadron physics of the last decade in synergistic efforts between experimentalists, phenomenologists, and theorists

Emergence of Hadron Mass and Quark-Gluon Confinement

N* electroexcitation studies at JLab will address the critical open questions:


How is >98% of visible mass generated?

How does confinement emerge from QCD and how is it related to Dynamical Chiral Symmetry Breaking?

What is the behavior of QCD's running coupling at infrared momenta?

(D. Binosi et al., Phys. Rev. D96, 054026 (2017))

Mapping-out quark mass function from the CLAS12 results on γ_vpN* electrocouplings of spin-isospin flip, radial, and orbital excited nucleon resonances at 5<Q²<12 GeV² will allow us to explore the transition from strong QCD to pQCD regimes

V.I. Mokeev, EHM Workshop at CERN, Aug. 6-7, 2020

- The non-resonant contributions to F_1 and F_2 inclusive structure functions can be computed within the continuum QCD approach with the dressed quark mass function used for the description of the $\gamma_v pN^*$ electrocouplings of the prominent resonances and with the qq correlation amplitudes confirmed by the data on the nucleon elastic form factors and on the N(1440)1/2⁺ electrocouplings.
- inclusive F₁ and F₂ structure functions in the resonance region can be computed as the sum of the resonant contributions evaluated from the results on γ_vpN* electrocouplings and non-resonant contributions computed within continuum QCD approach.
- Successful description of the data on F₁ and F₂ inclusive structure functions achieved with the same dressed quark mass function as used for description γ_vpN* electrocouplngs will solidify the evidence for credible insight into the baryon mass generation dynamics.

Evaluation of the Resonant Contributions

- Transverse and longitudinal resonant cross sections are described by sum of the contributions from all relevant resonances computed within the Breit-Wigner ansatz.
- The experimental results on γ_vpN* electrocouplings from CLAS for most resonances in the mass range of W<1.75 GeV make it possible to evaluate the resonant contribution into inclusive cross sections/structure functions from the data on N* electroexcitation amplitudes for the first time.

Resonant contributions to inclusive virtual photon-proton cross sections:

$$\sigma_{T,L}^{R}(W,Q^{2}) = \frac{\pi}{q_{\gamma}K} \sum_{N^{*}} (2J_{r}+1) \frac{M_{r}^{2}\Gamma_{\text{tot}}(W)\Gamma_{\gamma}{}^{T,L}(M_{r},Q^{2})}{(M_{r}^{2}-W^{2})^{2}+M_{r}^{2}\Gamma_{\text{tot}}^{2}(W)},$$
$$q_{\gamma} = \sqrt{Q^{2}+E_{\gamma}^{2}}, \quad E_{\gamma} = \frac{W^{2}-Q^{2}-M_{N}^{2}}{2W}, \quad K = \frac{W^{2}-M_{N}^{2}}{2W}.$$

The electrocouplings $A_{1/2}(Q^2)$, $A_{3/2}(Q^2)$ and $S_{1/2}(Q^2)$ are taken from CLAS electroproduction data and enter the electromagnetic widths as

$$\Gamma_{\gamma}^{T}(W = M_{r}, Q^{2}) = \frac{q_{\gamma,r}^{2}(Q^{2})}{\pi} \frac{2M_{N}}{(2J_{r}+1)M_{r}} \left(|A_{1/2}(Q^{2})|^{2} + |A_{3/2}(Q^{2})|^{2} \right),$$

$$\Gamma_{\gamma}^{L}(W = M_{r}, Q^{2}) = 2 \frac{q_{\gamma,r}^{2}(Q^{2})}{\pi} \frac{2M_{N}}{(2J_{r}+1)M_{r}} |S_{1/2}(Q^{2})|^{2}, \quad q_{\gamma,r} = q_{\gamma}|_{W=M_{r}}.$$

Evaluation of the Resonant Contributions

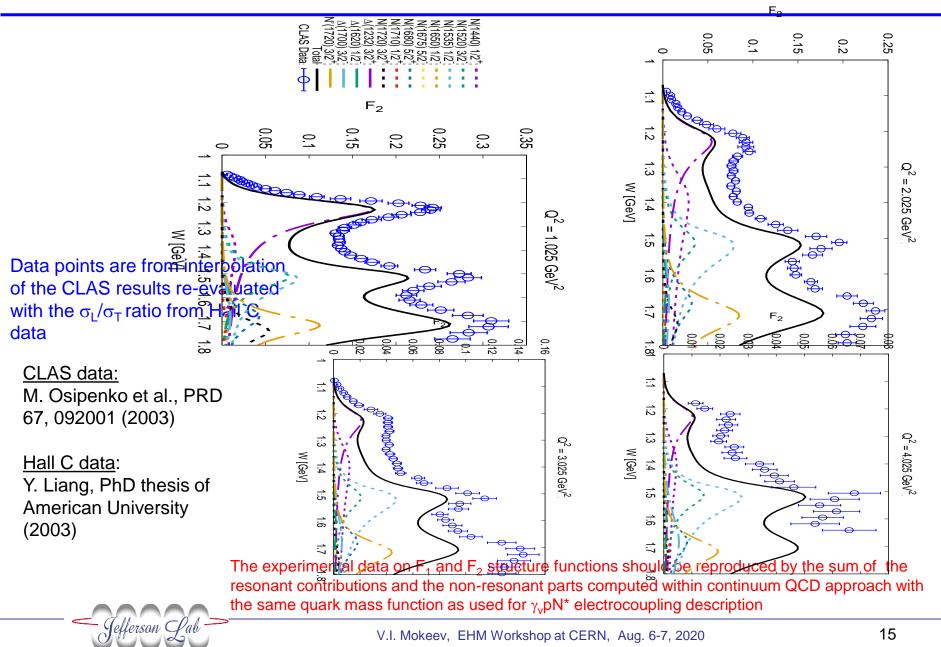
The hadronic decay width is given by

$$\Gamma_{\text{tot}}(W) = \Gamma_{\pi N}(W) + \Gamma_{\text{remain.}}(W) + \Gamma_{\eta N}(W),$$

$$\Gamma_{\pi(\eta)N}(W) = \Gamma_r \beta_{\pi(\eta)N} \left(\frac{p_{\pi(\eta)}(W)}{p_{\pi(\eta)}(M_r)}\right)^{2L+1} \left(\frac{X^2 + p_{\pi(\eta)}(M_r)^2}{X^2 + p_{\pi(\eta)}(W)^2}\right)^L,$$

$$\Gamma_{\text{remain.}}(W) = \Gamma_r \beta_{\text{remain.}} \left(\frac{p_{\pi\pi}(W)}{p_{\pi\pi}(M_r)}\right)^{2L+4} \left(\frac{X^2 + p_{\pi\pi}(M_r)^2}{X^2 + p_{\pi\pi}(W)^2}\right)^{L+2}.$$

Resonances included


N^*	M_r [MeV]	$\Gamma_r \; [{\rm MeV}]$	J_r	L_r	${\rm BF}_{\pi N}$	${\rm BF}_{\pi\pi N}$	$\mathrm{BF}_{\eta N}$	X
N(1440)	1430	350	$\frac{1}{2}$	1	0.65	0.35	0	0.
N(1520)	1515	115	$\frac{3}{2}$	2	0.60	0.40	0	0.
N(1535)	1535	150	$\frac{1}{2}$	0	0.45	0.13	0.42	0.
N(1650)	1655	140	$\frac{1}{2}$	0	0.60	0.22	0.18	0.
N(1675)	1675	150	$\frac{5}{2}$	2	0.40	0.60	0	0.5
N(1680)	1685	130	$\frac{5}{2}$	3	0.68	0.32	0	0.2
N(1710)	1710	100	$\frac{1}{2}$	1	0.13	0.57	0.30	0.5
N(1720)	1748	114	$\frac{3}{2}$	1	0.14	0.82	0.04	0.5
N'(1720)	1725 25	$50 \frac{3}{2} 1$	0.3	8	0.62	0 0.5		

Δ	$M_r \; [\text{MeV}]$	Γ_r [MeV]	J_r	L_r	${\rm BF}_{\pi N}$	${\rm BF}_{\pi\pi N}$	$\mathrm{BF}_{\eta N}$	X
$\Delta(1232)$	1232	117	$\frac{3}{2}$	1	1	0	0	
$\Delta(1620)$	1630	140	$\frac{1}{2}$	0	0.25	0.75	0	0.5
$\Delta(1700)$	1700	293	$\frac{3}{2}$	2	0.10	0.90	0	0.22

N'(1720)3/2⁺ new state was included. V. Mokeev et al., Phys. Lett. B805, 135457 (2020).

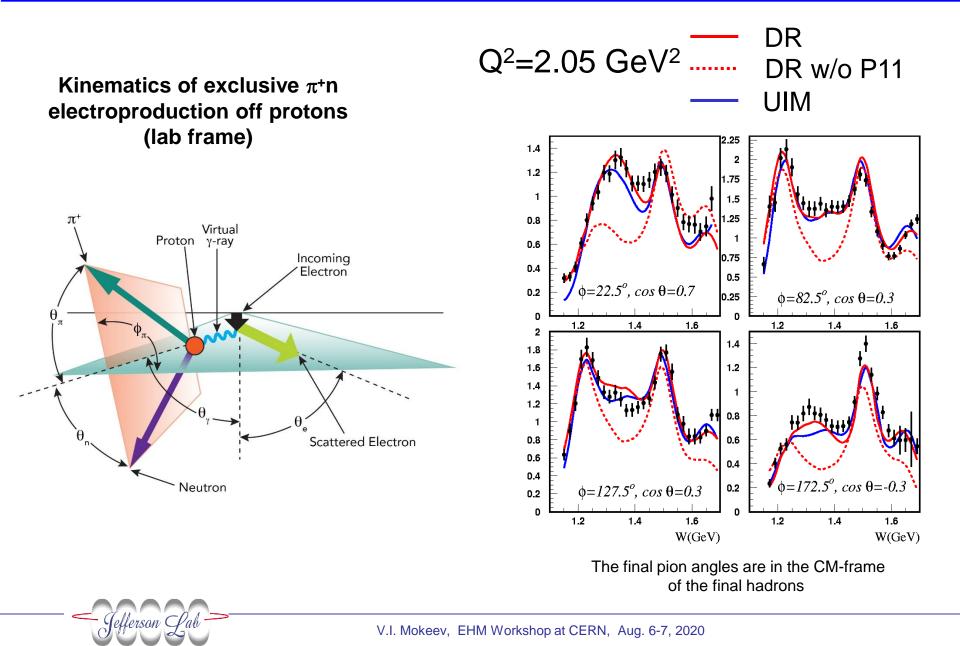
Resonant Contributions to Inclusive F₁(W,Q²) and F₂(W,Q²) Structure Functions Computed from the CLAS data on γ_vpN* Electrocouplings

High quality meson electroproduction data from CLAS have allowed us to determine the electrocouplings of most resonances in the mass range up to 1.8 GeV with consistent results from analyses of π^+n , π^0p , ηp , and $\pi^+\pi^-p$ electroproduction channels. Resonance electrocouplings will become available for the N* in the mass range <2.0 GeV and at Q²<5.0 GeV² (CLAS) and at Q²<12 GeV² (CLAS12)

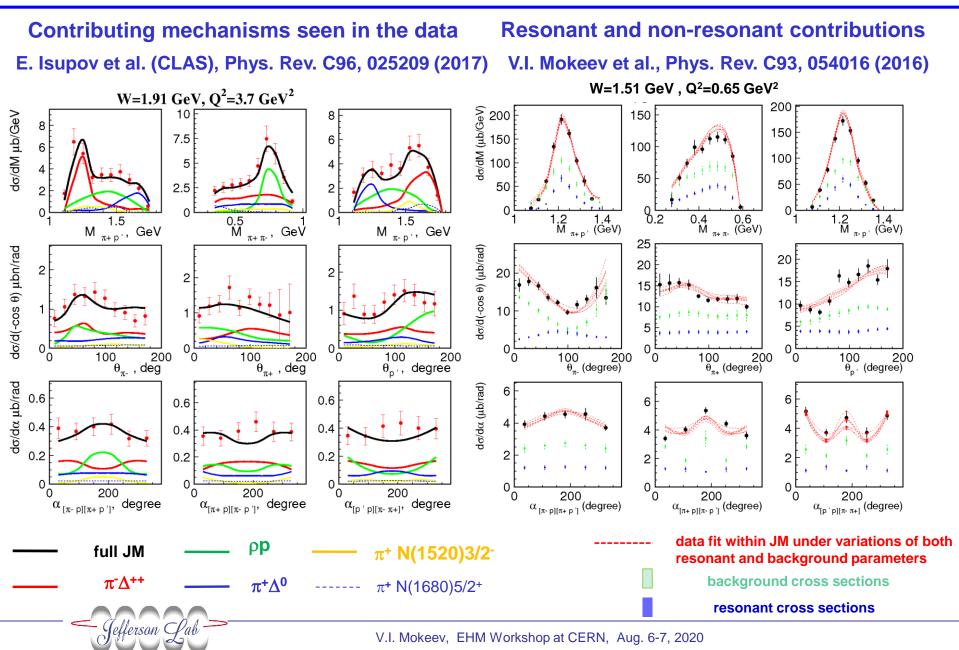
Profound impact on the exploration of the hadron mass generation:

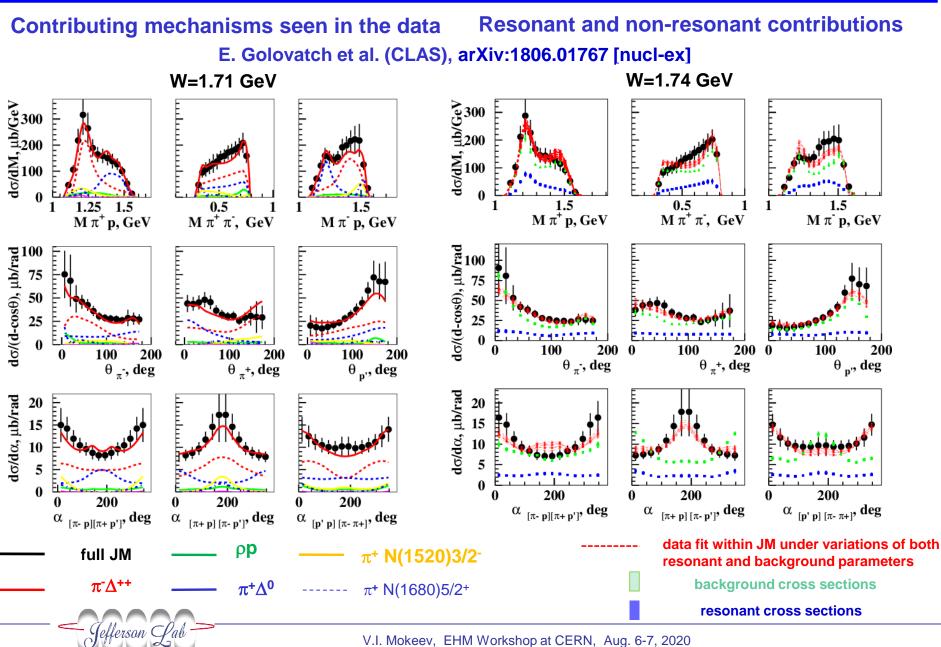
A good description of CLAS results on $\Delta(1232)3/2^+$ and N(1440)1/2⁺ electroexcitation amplitudes <u>achieved with the same dressed quark mass function</u> as used previously in successful evaluations of the elastic ground nucleon and pion form factors, validate insight to the dressed quark mass function in a nearly model-independent way.

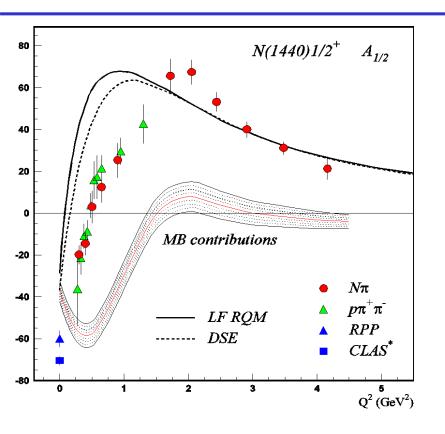
- The resonant contributions into inclusive $F_1(W,Q^2)$ and $F_2(W,Q^2)$ structure functions were evaluated by employing the experimental results on $\gamma_v pN^*$ electrocouplings for the first time. The $F_1(W,Q^2)$ and $F_2(W,Q^2)$ structure functions measured in the N* resonance region should be described by the sum of the resonant contributions and the non-resonant parts computed within continuum QCD approaches with the same dressed quark mass function as used for the description of the $\gamma_v pN^*$ electrocouplings. The DSE evaluation of the ground nucleon PDF is needed.
- The successful description of the experimental data from two different areas: a) on unpolarized inclusive structure functions and b) on γ_vpN* electrocouplings achieved with a common dressed quark mass function will solidify the evidence for credible insight into the baryon mass generation.



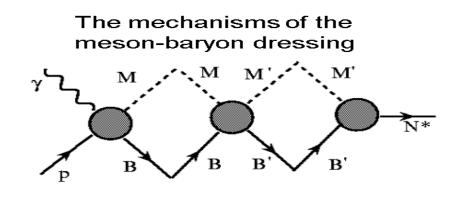
Back Up


More details on gvpN* electrocoupling extraction and the N* Program with the CLAS12


Accessing Resonance Electrocouplings from the π^+ n Differential Electroproduction Cross Sections off Protons


Accessing Resonance Electrocouplings from the $\pi^+\pi^-p$ Differential Electroproduction Cross Sections off Protons

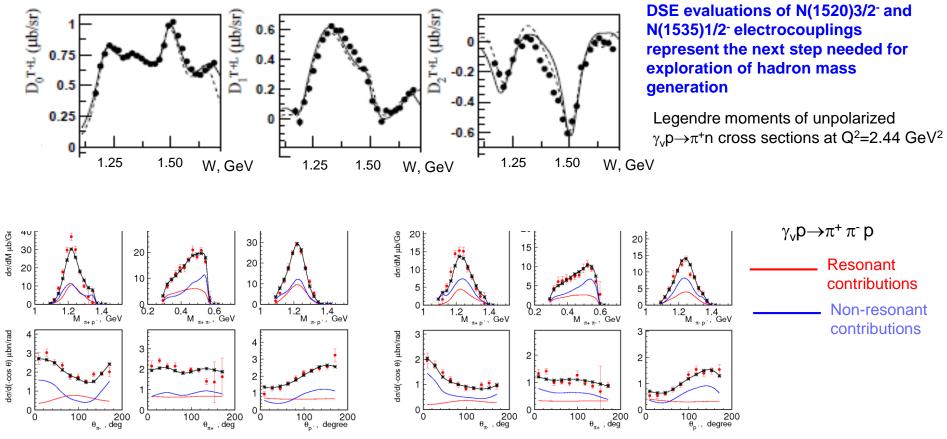
$\pi^+\pi^-p$ Differential Photoproduction Cross Sections off Protons in the Resonance Region



Resolving Puzzle of the Roper Structure

LF RQM-Light Front Relativistic Quark Model: V.D. Burkert, I.G. Aznauryan, Phys. Rev. C85, 055202 (2012); Phys. Rev. C95, 065207 (2017)

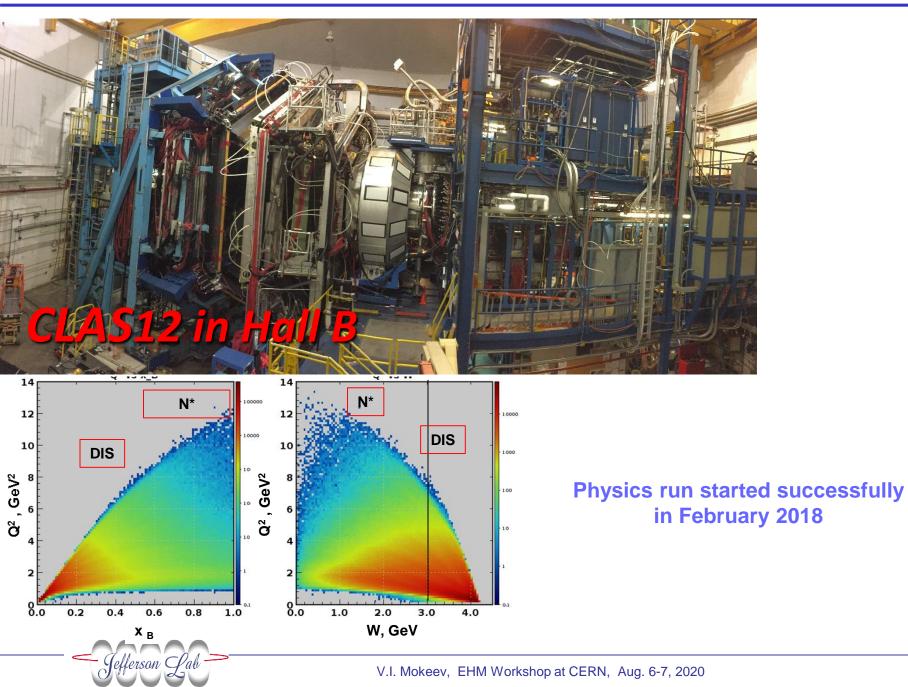
Quark core description within LF RQM and DSE is consistent


CLAS data in the range of Q²<5.0 GeV² reveal the structure of N(1440)1/2⁺ as a complex interplay between inner core of three dressed quarks in the first radial excitation and external meson-baron (MB) cloud

For more details on resolving Roper puzzle see:

V. D. Burkert and C.D. Roberts, Rev. Mod. Phys. 91, 011003 (2019)

Dressed Quark Mass Function from Exclusive Meson Electroproduction off Protons Data



The observables of Nπ and π⁺π⁻p exclusive channels at W<1.55 GeV and 2.0 GeV²<Q²< 5.0 GeV² will be computed with electrocouplings of four relevant Δ(1232)3/2⁺, N(1440)1/2⁺, N(1520)3/2⁻, and N(1535)1/2⁻ resonances obtained within DSE by employing a common dressed quark mass function. Mass function parameters will be fit to the data.

• Insight to the dressed quark mass function from the N π and and $\pi^{+}\pi^{-}p$ electroproduction observables. The correlations between different resonance electrocouplings imposed by the common quark mass function will be checked against the data for the first time. Successful data description will unambiguously validate credible access to the quark mass function.

12 GeV Era with the CLAS12 Detector

CLAS12 N* Program at High Q²

E12-09-003

Nucleon Resonance Studies with CLAS12

Gothe, Mokeev, Burkert, Cole, Joo, Stoler

E12-06-108A

KY Electroproduction with CLAS12

Carman, Gothe, Mokeev

Measure exclusive electroproduction cross sections from an unpolarized proton target with polarized electron beam for Nπ, Nη, Nππ, KY:

 $E_b = 11 \text{ GeV}, Q^2 = 3 \rightarrow 12 \text{ GeV}^2, W \rightarrow 3.0 \text{ GeV}$ with nearly complete coverage of the final state phase space

Key Motivation

Study the structure of all prominent N* states in the mass range up to 2.0 GeV vs. Q^2 up to 12 GeV².

CLAS12 is the only facility to map-out the N* quark with minimal meson-baryon cloud contributions.

The experiments already started in February 2018!

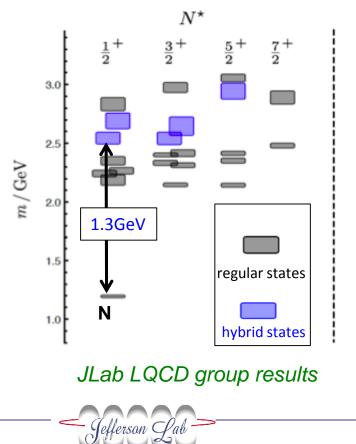
Hybrid Baryons E12-16-010	Search for hybrid baryons (qqqg) focusing on 0.05 GeV ² < Q ² < 2.0 GeV ² in mass range from 1.8 to 3 GeV in KA, N $\pi\pi$, N π (A. D'Angelo, et al.)
KY Electroproduction E12-16-010A	Study N* structure for states that couple to KY through measurements of cross sections and polarization observables that will yield Q ² evolution of electrocoupling amplitudes at Q^2 <7.0 GeV ² (D. Carman, et al.)

Approved by PAC44

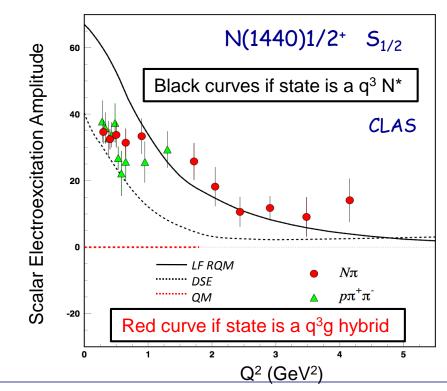
Run Group conditions:

 $E_{b} = 6.6 \text{ GeV}, 50 \text{ days}$

 $E_{b} = 8.8 \text{ GeV}, 50 \text{ days}$


- •Polarized electrons, unpolarized LH₂ target
- L = 1x10³⁵ cm⁻²s⁻¹

Hunting for Glue in Excited Baryons with CLAS12

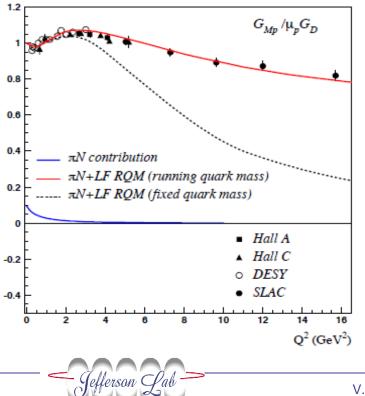

Can glue be a structural component to generate hybrid q³g baryon states?

Predictions of the N* spectrum from QCD show both regular q³ <u>and</u> hybrid q³g states

Search for hybrid baryons with CLAS12 in exclusive KY and $\pi^+\pi^-p$ electroproduction

LQCD and/or QM predictions on Q² evolution of the hybrid-baryon electroexcitation amplitudes are critical in order to establish the nature of a baryon state

V.I. Mokeev, EHM Workshop at CERN, Aug. 6-7, 2020


Quark Model with Input from QCD-based Approaches

Light Front QM by I.G. Aznauryan and V.D. Burkert: PRC 85, 055202 (2012).

The approach discussed here is purely phenomenological, and addresses a few topics that have some importance for the direction of the field, in particular:

- obtain a better understanding of the expected meson-baryon contributions
- study the sensitivity of the resonance transition amplitudes to the running quark mass, which is a result of the DSE approach and of LQCD calculations.

Proton Magnetic Form Factor

Nucleon electromagnetic form factors

 $\rightarrow q^3 + \pi N$ loops contributions in light-front dynamics

- \rightarrow running quark mass
- Electroexcitation of $\Delta(1232)^{\frac{3}{2}^+}$, $N(1440)^{\frac{1}{2}^+}$, $N(1520)^{\frac{3}{2}^-}$, and $N(1535)^{\frac{1}{2}^-}$

 $\rightarrow q^3$ contribution in a LF RQM with running quark mass

 \rightarrow inferred *MB* contributions

Implementation of momentum-dependent quark mass is needed in order to reproduce elastic magnetic form factor of proton at Q²>3.0 GeV²