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Probing nonperturbative models
with QCD scattering data

Many nonperturbative models predict PDFs in a free hadron.

A PDF is not a physical observable.

It enters QCD observables through factorized approximations known up to power suppressed terms.

Our goal is to understand conditions necessary for learning about primordial PDFs from scattering data.

= We will use the CT18NNLO global fit of proton PDFs.
= We will explore what we can learn about quark counting rules — the classical prediction of QCD theory.
= We study proton PDFs because they are well understood.

= Some considerations, such as the functional mimicry of PDFs, also apply to the simpler analysis of pion PDFs.
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Proton and Pion PDFs (examples)
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PDFs in nonperturbative QCD

® at hadronic scale U% <1GeV?2
= prefactorization picture
= nonperturbative dynamics
= model’s degrees of freedom

Phenomenological PDFs

® at factorization scale ,u2 > 1GeV?2
= quasi-free partonic degrees of freedom

= defined in the MSbar scheme
= leading-power approximation to full dynamics
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PDFs in nonperturbative QCD Phenomenological PDFs

How to relate the x dependence of the perturbative and nonperturbative pictures?

= we can learn about nonperturbative dynamics by
comparing predictions to data for the simplest scattering
processes (DIS and DY)

= pheno PDFs are determined from analyzing many
processes with complex scattering dynamics

2
Ko W~ Q?
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Definition of PDFs

Quark—quark correlation matrix DIS handbag diagram for the structure function

7(kP.8) =3 [ 2o~k POESOX) X WO)PS)

Bjorken regime () = / A% B (x k+) Tr(y ®)

(2n )4 P+
dt
= [ 55 e PSP em)|PS) =2 ()P,
leading-twist
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MS Definition of PDFs

Quark—quark correlation matrix DIS handbag diagram for the structure function

7(kP.8) =3 [ 2o~k POESOX) X WO)PS)

Bjorken regime (") 5/%5 (x ;i) Tr(y" ®)

= [ 52 PSP IPS) =2 ()P,

leading-twist

Collinear factorization: virtuality of the photon gives HARD scale

Plen,@%) =X / = forala. ) an<“’B gz)+0(M/Q> Do +O(M/Q)

mathematical object — f,/4(z, °) = M.S PDFs . 5
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Testing Quark Counting Rules
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Can we see the evidence for QCRs in data on F2 described by pQCD?

Pheno global fits from CT18NNLO [sou et al, 1912.10053]
CT18 NNLO, parametrization dependence

Effective exponent for x —1
b=1o GeV 13.5
Actt (F2) — dIn (F2(5U>Q)) I
2 ~ OJln(1—2x)
—_ 3.
w
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Two sources of uncertainties showed:
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NNLO Pheno PDFs:
experiments compatible with multiple parametric forms at large x
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Repeat the fit with N~300 functional forms

Variations of less than .5% in >

Extrapolation in the region x>0.75-0.8

1. Hessian error propagation from tabulated Az

2. Hessian error propagation for Azt from CT18NNLO

3. Scatter plot for the central fits for N parametrizations
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Running expected in pQCD

Can we see the evidence for QCRs in uy and dv?

(e.g. Eur.Phys.J.C 76, Phys. Lett. B112)
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Can we see the evidence for QCRs in gluon and @ +d ?

Repeat the fit with N~300 functional forms

Variations of less than .5% in >

Extrapolation in the region x>0.75-0.8

1. Hessian error propagation from tabulated Az

2. Hessian error propagation for Azt from CT18NNLO

3. Scatter plot for the central fits for N parametrizations
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Are the effective powers the same for all processes?
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What is the error on the effective power that accounts for realistic
measurement effects?

1. Free hadron vs. modification of hadron before hard scattering

= affects O(M/Q) corrections in a process dependent way J. Collins (Cambridge University Press, 2013)

Proton-proton collision: Increase in underlying hadronic activity with energy

2. At threshold, soft gluon resummation modifies the hard cross section.

and, for DIS, the resonance region requires a nonpert. treatment too!

« CJ: large-x PDF with TMC and higher-twist Accardi et al, PRD93 e.g. PYTHIA [0710.3820]

+ NNPDF with threshold resummation Bonvini et al, JHEP 09
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Does Az eff capture the true leading (1-x)-power?

A1 depends on x and Q2

The same curve can be described to polynomials of different orders.

= polynomial mimicry

1. Bézier curves give an example of mathematical equivalence of polynomials of different orders
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B.B" = Fla, B,
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Does Az eff capture the true leading (1-x)-power?

Az it depends on x and Q2

The same curve can be described to polynomials of different orders.

= polynomial mimicry

1. Bézier curves give an example of mathematical equivalence of polynomials of different orders
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2. Global/local degree of polynomial
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The shape of PDFs and manifestations of low-energy dynamics

Relevant for the upcoming pion analyses at JLab and AMBER

Nonperturbative theoretical uncertainties also get in the way of the comparisons.

Know your model:

2
o What are the characteristics of the underlying dynamics present/missing? ] ::
- Is DGLAP valid at 4§ ? -
= sources of uncertainty in the comparison with QCRs at a scale 1° oo
Mimicry: E615 “extraction”

o Multi-parameter analysis: impact of each nonpert. manifestation on objective function?

o Azef can be determined, A2 cannot.

Efforts needed to mindfully compare both pictures.
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Conclusions

We have analyzed the quark counting rules for the CT18NNLO global fit for the proton PDFs.

We have addressed the question of their universality for processes, flavors as well as Structure Function vs. PDFs.

= The Q2 dependence of the (1-x)-power is not negligible — supported by other global fits and by pQCD.

= Global analyses rely on complex processes: underlying hadronic activity —not only scaling violations or resummation.
= The universality of Quark Counting Rules for PDFs depends on the validity of factorization —O(M/Q) terms.

= Mimicry reconciles many parametrizations of PDFs with measurements.

= The uncertainties must be estimated from both the nonperturbative and the pheno side.

How do we cast nonperturbative manifestations into measurable observables?

We advocate for interpretative effective (1-x)-exponent.
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k6 It is worth emphasizing that, as long as the basic theoretical requirements are satisfied, all GPD
representations present the same field theoretical object. Therefore, in principle, it should be
possible to map a GPD within one representation to that in a different representation [...]. This
generally makes the popular question “Which GPD representation is better?” meaningless. Instead,
one may hope to get an additional insight of GPDs and their physical interpretation by comparing the
manifestation of GPD properties within different representations.
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