JAM Pion PDF Analysis

Including Resummation
Patrick Barry, Nobuo Sato, Wally Melnitchouk, and C.-R. Ji
Perceiving the Emergence of Hadron Mass through AMBER@CERN Friday, August 7th, 2020
Contact: pcbarry@ncsu.edu

Motivation/Background

Theoretical Interest

- Behavior of PDF as $x_{\pi} \rightarrow 1\left(\mathrm{v}_{\pi} \sim\left(1-x_{\pi}\right)^{2 \beta}\right)$ is of theoretical interest
- Recent lattice calculations as well as phenomenologically determined valence quark PDFs using threshold resummation indicate $\beta=1$ as opposed to fixed order ($\beta=1 / 2$)
- This analysis with threshold resummation will have impact on this question

Recent Pion Phenomenology

- Recent (I. Novikov, et al, 2020, xFitter) pion fit to DY and prompt photon data
- Fit uses soft gluon resummation

JAM 18 Pion PDFs

- Valence, sea, and gluon distributions were extracted in an NLO analysis
- Drell-Yan (DY) only fit then include the Leading Neutron (LN)
- Theoretical uncertainty shown only in model dependence for LN treatment

JAM 18 Momentum Fractions

- We also compute the momentum fractions for each flavor
- Large difference in in the gluon and sea $\left\langle x_{\pi}\right\rangle$ from a DY to a DY+LN analysis
- Gluon carries ~30\% of the momentum
fraction at the initial scale

Threshold Resummation in Drell-Yan

Drell-Yan (DY) Definitions

Hadronic variable

$$
\tau=\frac{Q^{2}}{S}
$$

Partonic variable

\hat{S} is the center of mass momentum squared of incoming partons

$$
z \equiv \frac{Q^{2}}{\hat{S}}=\frac{\tau}{x_{1} x_{2}}
$$

Soft Gluon Resummation

- The goal is to sum the contributions of the soft gluon emissions from the quark line to all orders of α_{S}
- Can perturbatively calculate these emissions to all orders of α_{S}
- Here, z_{i} near 1

Full Hard Kernel to Calculate

Next-to-Leading + Next-to-Leading Logarithm Order Calculation

An NLO calculation
gathers the $\mathcal{O}\left(\alpha_{S}\right)$
terms

ㄴ

LO 1
NLO $\alpha_{s} \log (N)^{2}$ $\alpha_{S} \log (N)$

NNLO $\quad \alpha_{S}^{2} \log (N)^{4} \quad \alpha_{S}^{2}\left(\log (N)^{2}, \log (N)^{3}\right)$
N^{k} LO
$\alpha_{S}^{k} \log (N)^{2 k} \quad \alpha_{S}^{k}\left(\log (N)^{2 k-1}, \log (N)^{2 k-2}\right)$
$\ldots \alpha_{S}^{k} \log (N)^{2 k-2 p}+\ldots$

Next-to-Leading + Next-to-Leading Logarithm Order Calculation

Add the columns to the rows

	$\underline{\mathrm{LL}}$	$\underline{\mathrm{NLL}}$	\ldots	$\underline{\mathrm{N}^{\mathrm{pLL}}}$
	1	--	\ldots	--
LO	1	$\alpha_{S} \log (N)$	\ldots	--
NLO	$\alpha_{S} \log (N)^{2}$	$\alpha_{S}^{2}\left(\log (N)^{2}, \log (N)^{3}\right)$	\ldots	--
NNLO	$\alpha_{S}^{2} \log (N)^{4}$	\ldots	\ldots	\ldots
\ldots	\ldots	$\alpha_{S}^{k}\left(\log (N)^{2 k-1}, \log (N)^{2 k-2}\right)$	\ldots	$\alpha_{S}^{k} \log (N)^{2 k-2 p}+\cdots$

Next-to-Leading + Next-to-Leading Logarithm

 Order Calculation\author{

- Subtract the matching
}

	$\underline{\mathrm{LL}}$	$\underline{\text { NLL }}$	\ldots	$\underline{\text { NPLL }}$
LO	1	--	\ldots	--
NLO	$\alpha_{S} \log (N)^{2}$	$\alpha_{S} \log (N)$	\ldots	--
NNLO	$\alpha_{S}^{2} \log (N)^{4}$	$\alpha_{S}^{2}\left(\log (N)^{2}, \log (N)^{3}\right)$	\ldots	--
\ldots	\ldots	\ldots	\ldots	\ldots
Nk LO	$\alpha_{S}^{k} \log (N)^{2 k}$	$\alpha_{S}^{k}\left(\log (N)^{2 k-1}, \log (N)^{2 k-2}\right)$	\ldots	$\alpha_{S}^{k} \log (N)^{2 k-2 p}+\ldots$

Rapidity Distribution

- Formulate resummation in Mellin space for $Q^{2}(\operatorname{or} \tau)$ distribution
- For rapidity distribution, a Mellin-Fourier transform can be taken instead of a single Mellin

$$
\sigma(N, M)=\int_{0}^{1} d \tau \tau^{N-1} \int_{-\log \frac{1}{\sqrt{\tau}}}^{\log \frac{1}{\sqrt{\tau}}} d Y e^{i M Y} \frac{d \sigma}{d Q^{2} d Y}
$$

- Where the hard coefficients reduce to

$$
C^{\mathrm{res}}(N, M)=\int_{0}^{1} d z z^{N-1} \cos \left(\frac{M}{2} \log z\right) C^{\mathrm{res}}(z)
$$

Cosine vs Expansion

- Since we focus on the threshold region, that is when $z \rightarrow 1$, the log of z will be close to 0 , meaning the argument of the cosine will be close to 0
- One can expand to the cosine term such that

$$
\cos \left(\frac{M}{2} \log z\right) \approx 1
$$

- Or, one can take the cosine exactly using Euler identity

$$
\cos \left(\frac{M}{2} \log z\right)=\frac{1}{2}\left(e^{i \frac{M}{2} \log z}+e^{-i \frac{M}{2} \log z}\right)=\frac{1}{2}\left(z^{i \frac{M}{2}}+z^{-i \frac{M}{2}}\right)
$$

K-factor Aside

- Whether cosine or expansion is used has impact at large x_{F}
- We will focus on the Minimal Prescription (MP)
- Testing both methods can give a theoretical uncertainty on our pion PDFs

D. Westmark and J. F. Owens, Phys. Rev. D 95, 056024 (2017).

Extraction Procedure

Kinematic Coverage

- We want to be able to fit simultaneously the DrellYan and Leading Neutron data
- We can shape the pion PDFs at both high- and low- x_{π} with both datasets
- E615, NA10 - DY
- H1, ZEUS - LN

Kinematic Coverage

- We want to be able to fit simultaneously the DrellYan and Leading Neutron data
- We can shape the pion PDFs at both high- and low- x_{π} with both datasets
- E615, NA10 - DY
- H1, ZEUS - LN

Parametrization of the PDF

- We open the shape up a little for the valence (important for resummation in DY)

$$
q_{v}\left(x_{\pi}, Q_{0}^{2}, \mathbf{a}\right)=\frac{N}{N_{v}} x_{\pi}^{\alpha}\left(1-x_{\pi}\right)^{\beta}\left(1+\gamma x^{2}\right)
$$

where

$$
N_{v}^{\prime}=B(2+\alpha, \beta+1)+\gamma B(4+\alpha, \beta+1)
$$

- And for the sea and the gluon, we parametrize by

$$
f\left(x_{\pi}, Q_{0}^{2}, \mathbf{a}\right)=\frac{N}{N^{\prime}} x_{\pi}^{\alpha}\left(1-x_{\pi}\right)^{\beta}
$$

where

$$
N^{\prime}=B(2+\alpha, \beta+1)
$$

Parameterization of the PDF (in terms of π^{-})

- We equate the valence distributions: $\bar{u}_{v}^{\pi-}=d_{v}^{\pi-}$
- We equate the light sea distributions: $u^{\pi-}=\bar{d}^{\pi-}=u_{s}^{\pi-}=d_{s}^{\pi-}=s=\bar{s}$
- Normalizations of the valence and sea PDFs are fixed by the sum rules

$$
\text { Quark sum rule } \quad \int_{0}^{1} d x_{\pi} q_{v}^{\pi}=1
$$

Momentum Sum Rule $\int_{0}^{1} d x_{\pi} x_{\pi}\left(2 q_{v}^{\pi}+6 q_{s}^{\pi}+g^{\pi}\right)=1$

Monte Carlo

- Using Bayesian statistics, we describe the probability

$$
\mathcal{P}(\mathbf{a} \mid \text { data }) \propto \mathcal{L}(\text { data } \mid \mathbf{a}) \pi(\mathbf{a})
$$

- We quantify the expectation value and variance of our observable \mathcal{O} as a function of the parameter set \boldsymbol{a}_{i}

$$
\begin{gathered}
E[\mathcal{O}]=\frac{1}{N} \sum_{i} \mathcal{O}\left(\mathbf{a}_{i}\right) \\
V[\mathcal{O}]=\frac{1}{N} \sum_{i}\left[\mathcal{O}\left(\mathbf{a}_{i}\right)-E[\mathcal{O}]\right]^{2}
\end{gathered}
$$

Multi-Step Strategy

- Fitting PDFs to many types of observables all at once is time consuming and slows the fit
- We start with many replicas with flat priors to fit to one observable, the $\pi^{-} W$ DY data
- The posteriors from that fit are used as the priors for the next fit, which includes the LN data

Monte Carlo Results

PDF Results - Cosine

- Fitting to both DY and LN data using the cosine approximation in the minimal prescription

- Clearly there are multiple solutions (evident in the valence)
- Use k-means clustering to distinguish solutions

χ^{2} profile of clusters

- Histogram of χ^{2} values for the different clusters
- Red is best, but not by much!
- Consider only the red solutions

Comparisons $-\chi^{2}$

Cosine method	reaction	idx		col	npts	chi2	chi2/npts	norm
	ln	1000	data	H1	58	22.07	0.38	1.26
	ln	2000	gallery	ZEUS	50	72.75	1.46	0.95
	dy-pion	10001	input.py	E615	55	72.19	1.31	1.10
	dy-pion	10002	msr	NA10	36	48.97	1.36	0.90
	dy-pion	10003	msr-insp	NA10	20	27.85	1.39	0.84
	-Drop	Docur			219	243.82	E6151.11	

Expansion method

reaction	idx		col	npts	chi2	chi2/npts	norm
ln	1000		H1	58	21.93	0.38	1.25
ln	Favor 2000	practices	ZEUS	50	74.39	1.49	0.95
dy-pion	10001	README.	E615	55	57.77	1.05	1.08
dy-pion	10002	results1	NA10	36	26.58	0.74	0.90
dy-pion	10003	results1	NA10	20	15.29	0.76	0.83
		esults20	heck8	219	195.96	specte 0.89	

Comparisons - Momentum Fractions

Comparisons - PDFs

- Comparison of the PDFs at the initial scale with fixed order

K Factor

- K factor for kinematics associated with the E615 dataset
- PDFs are consistent with each curve
- Cosine seems to gather more terms at higher orders than expansion

K Factor - More calculations in MP

- Invokes an "exact" resummation prescription with Double Mellin transforms for rapidity distribution
- Lowers the K factor from expansion to near 1 for all x_{F}
- Large range in K factor for 3 MP methods

D. Westmark and J. F. Owens, Phys. Rev. D 95, 056024 (2017). effectively captures various resummation effects

Conclusions

Conclusions

- The analysis of the resummation focuses on the Minimal Prescription
- With resummation, the valence quark distribution is softer as $x_{\pi} \rightarrow 1$ than in the fixed order case
- Fits using the Double Mellin "exact" method are needed
- Expectation is that the K factor for the "exact" method will be closer to 1 and the PDFs will be closer to the NLO calculation

Backup

Setting it up

- Because of the Eikonal approximation, in the soft limit, matrix elements of large numbers of emitted gluons can be factorized as such:

$$
\mathcal{M}_{n}\left(z_{1}, \ldots, z_{n}\right) \stackrel{\text { soft }}{\sim} \frac{1}{n!} \prod_{i=1}^{n} \mathcal{M}_{1}\left(z_{i}\right)
$$

- Even though the amplitudes factorize in z-space in that way, the phase space does not because of the presence of a delta function for conservation of momentum

$$
\delta\left(z-z_{1} z_{2} \ldots z_{n}\right)
$$

Setting it up

- In Mellin space, however, we do have factorization of the phase space,

$$
\int_{0}^{1} d z z^{N-1} \delta\left(z-z_{1} z_{2} \ldots z_{n}\right)=z_{1}^{N-1} z_{2}^{N-1} \ldots z_{n}^{N-1}
$$

- So for hard kernels, for each order of α_{S}, we have:

$$
C^{(n)}(N) \stackrel{\text { soft }}{\simeq} \frac{1}{n!}\left[C_{\mathrm{soft}}^{(1)}(N)\right]^{n}
$$

- Where $C_{\text {soft }}^{1}(N)$ is the hard kernel for one soft gluon emitted from the quark line

Exponentiation in Mellin space

- The matrix elements of emitted soft gluons that carry large logarithms are factorized in the Eikonal approximation
- Phase space only factorizes in Mellin space
- Summing over all orders of α_{S} leads to exponentiation of the Mellin space coefficients

$$
\begin{aligned}
\sum_{n=1}^{\infty} C^{(n)}(N) & =\sum_{n} \frac{1}{n!}\left[C_{\mathrm{soft}}^{(1)}(N)\right]^{n} \\
& =\exp \left(C_{\mathrm{soft}}^{(1)}(N)\right)
\end{aligned}
$$

Computing the Expressions

- Specifically for the DY case, we need to use the following for each initial state parton (2 for DY)

$$
\log \Delta(N)=\int_{0}^{1} d z \frac{z^{N-1}-1}{1-z} \int_{\mu^{2}}^{(1-z)^{2} Q^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} A_{q}\left(\alpha_{S}\left(k_{\perp}\right)\right)
$$

where

$$
A_{q}\left(\alpha_{S}\right)=\sum_{i=1}^{\infty} \alpha_{S}^{i} A_{q}^{(i)}
$$

and

$$
A_{q}^{(1)}=\frac{C_{F}}{\pi}, \quad A_{q}^{(2)}=\frac{C_{F}}{2 \pi^{2}}\left[C_{A}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{5}{9} N_{f}\right] .
$$

Computing the Expressions

- We also need a closed form for α_{S}, in which case, we use the twoloop (needed for up to NLL accuracy)

$$
\alpha_{S}\left(k_{T}^{2}\right)=\frac{\alpha_{S}\left(\mu^{2}\right)}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \left(\frac{k_{T}^{2}}{\mu^{2}}\right)}\left[1-\frac{b_{1}}{b_{0}} \frac{\alpha_{S}\left(\mu^{2}\right) \log \left(1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \left(\frac{k_{T}^{2}}{\mu^{2}}\right)\right.}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \left(\frac{k_{T}^{2}}{\mu^{2}}\right)}\right]
$$

Computing the Expressions

- Plugging those in, we get the following

$$
\begin{array}{r}
\log \Delta(N)=\int_{0}^{1} d z \frac{z^{N-1}-1}{1-z} \int_{\mu^{2}}^{(1-z)^{2} Q^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}\left\{A_{q}^{(1)} \frac{\alpha_{S}\left(\mu^{2}\right)}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \frac{k_{\perp}^{2}}{\mu^{2}}}\right. \\
\times\left[\frac{b_{1}}{b_{0}} \frac{\alpha_{S}\left(\mu^{2}\right) \log \left(1+b_{0} \alpha_{S} \log \frac{k_{\perp}^{2}}{\mu^{2}}\right)}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \frac{k_{\perp}^{2}}{\mu^{2}}}\right] \\
\left.+A_{q}^{(2)}\left(\frac{\alpha_{S}\left(\mu^{2}\right)}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \frac{k_{1}^{2}}{\mu^{2}}}\left[\frac{b_{1}}{b_{0}} \frac{\alpha_{S}\left(\mu^{2}\right) \log \left(1+b_{0} \alpha_{S} \log \frac{k_{\perp}^{2}}{\mu^{2}}\right)}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \frac{k_{\perp}^{2}}{\mu^{2}}}\right]\right)^{2}\right\}
\end{array}
$$

Large N Approximation

- The z integral on the previous slide is difficult, but not impossible
- Recall, our aim is the soft limit, i.e. when $z \rightarrow 1$
- In Mellin space, soft limit is $N \rightarrow \infty$
- In the large N limit, we may use the approximation

$$
z^{N-1}-1 \approx-\Theta\left(1-\frac{1}{\bar{N}}-z\right)
$$

where

$$
\bar{N}=N e^{\gamma_{E}}
$$

Plugging it in

- We can use the large N approximation to compute the following

$$
\begin{aligned}
& \log \Delta(N)=-\int_{0}^{1-\frac{1}{N}} \frac{d z}{1-z} \int_{\mu^{2}}^{(1-z)^{2}} Q^{2} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}\left\{A_{q}^{(1)} \frac{\alpha_{S}\left(\mu^{2}\right)}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \frac{k_{\perp}^{2}}{\mu^{2}}}\right. \\
& \times\left[\frac{b_{1}}{b_{0}} \frac{\alpha_{S}\left(\mu^{2}\right) \log \left(1+b_{0} \alpha_{S} \log \frac{k_{\perp}^{2}}{\mu^{2}}\right)}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \frac{k_{\perp}^{2}}{\mu^{2}}}\right] \\
&\left.+A_{q}^{(2)}\left(\frac{\alpha_{S}\left(\mu^{2}\right)}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \frac{k_{\perp}^{2}}{\mu^{2}}}\left[\frac{b_{1}}{b_{0}} \frac{\alpha_{S}\left(\mu^{2}\right) \log \left(1+b_{0} \alpha_{S} \log \frac{k_{\perp}^{2}}{\mu^{2}}\right)}{1+b_{0} \alpha_{S}\left(\mu^{2}\right) \log \frac{k_{\perp}^{2}}{\mu^{2}}}\right]\right)^{2}\right\}
\end{aligned}
$$

Form for exponent

- Performing for the case of DY, we have

$$
\begin{aligned}
& \log \Delta(N)=2 h^{(1)} \log (\bar{N})+2 h^{(2)}\left(\lambda, Q^{2} / \mu^{2}\right) \\
& \lambda=b_{0} \alpha_{s}\left(\mu^{2}\right) \ln \bar{N} . \\
& h^{(1)}=\frac{A_{q}^{(1)}}{2 b_{0} \lambda}[2 \lambda+(1-2 \lambda) \log (1-2 \lambda)] \\
& h^{(2)}=\left(A_{q}^{(1)} b_{1}-b_{0} A_{q}^{(2)}\right) \frac{2 \lambda+\log (1-2 \lambda)}{2 b_{0}^{3}} \\
& +\frac{A_{q}^{(1)} b_{1}}{4 b_{0}^{3}} \log ^{2}(1-2 \lambda)+\frac{A_{q}^{(1)}}{2 b_{0}} \log (1-2 \lambda) \log \frac{Q^{2}}{\mu^{2}}
\end{aligned}
$$

Expansion

- If we use the expansion method, then

$$
C^{\mathrm{res}}(N, M)=\int_{0}^{1} d z z^{N-1} \cos \left(\frac{M}{2} \log z\right) C^{\mathrm{res}}(z)
$$

- Goes to

$$
C^{\mathrm{res}}(N, M)=\int_{0}^{1} d z z^{N-1} C^{\mathrm{res}}(z)=C^{\mathrm{res}}(N)
$$

- Note the independence of C on M

Cosine

- If we use the cosine method, then

$$
C^{\mathrm{res}}(N, M)=\int_{0}^{1} d z z^{N-1} \cos \left(\frac{M}{2} \log z\right) C^{\mathrm{res}}(z)
$$

- Goes to

$$
\begin{aligned}
C^{\mathrm{res}}(N, M) & =\int_{0}^{1} d z z^{N-1}\left[\frac{1}{2}\left(z^{i M / 2}+z^{-i M / 2}\right)\right] C^{\mathrm{res}}(z) \\
& =\int_{0}^{1} d z \frac{1}{2}\left(z^{(N+i M / 2)-1}+z^{(N-i M / 2)-1}\right) C^{\mathrm{res}}(z)
\end{aligned}
$$

Note the average of Mellin moments of C with Mellin variables $N \pm \frac{i M}{2}$

The need for prescriptions

- To compare with data, one must Mellin invert so that the formulas are in momentum-fraction space and not moment space
- The Mellin inversion of the hard kernel appears order-by-order, but it is divergent because of the divergence of α_{S}
- One can locate the divergences and avoid them as in the Minimal Prescription (main focus)
- Or one can manipulate the summation to make it convergent as in the Borel prescription (out of the scope of this talk)

Minimal Prescription

- In principle, one can just do the Mellin inversion exactly
- However, the ambiguity appears in the Landau pole
- We can locate the Landau and avoid it
- By looking at e.g. the $h^{1}(\lambda)$ term, we can see where the arguments of the logarithms go to 0 and become negative
- This location is the Landau pole

$$
1-2 \lambda>0 \Longrightarrow \bar{N}<\exp \left(1 / 2 \alpha_{S} b_{0}\right)
$$

MELLIN CONTOUR - Expansion and Cosine

- Here, c is to the right of the PDFs' rightmost poles
- Because the PDF moments are evaluated at $N \pm i \frac{M}{2}$ instead of the usual N, the poles are also located $\pm i \frac{M}{2}$ from the real axis (red and green stars)
- Contour is misshapen to ensure poles are encapsulated

$$
\begin{array}{ccc}
N_{1}=c-i \frac{M}{2}+z_{1} e^{\phi_{1}} & N_{2}=c-i \frac{M}{2}+z_{2} i M & N_{3}=c+i \frac{M}{2}+z_{3} e^{\phi_{3}} \\
0<z_{1}<\infty & 0<z_{2}<1 & 0<z_{3}<\infty
\end{array}
$$

