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Motivation/Background
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Theoretical Interest
• Behavior of PDF as 𝑥! → 1 (v!~ 1 − 𝑥! "#) is of 

theoretical interest
• Recent lattice calculations as well as phenomenologically 

determined valence quark PDFs using threshold 
resummation indicate 𝛽 = 1 as opposed to fixed order 
(𝛽 = 1/2)
• This analysis with threshold resummation will have impact 

on this question
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Recent Pion Phenomenology

• Recent (M. Aicher, et al, 2010) pion fit 
to DY data
• Fit uses soft gluon resummation
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• Recent (I. Novikov, et al, 2020, xFitter) 
pion fit to DY and prompt photon data
• Fit uses NLO in 𝛼!

𝑣!~ 1 − 𝑥 "
𝑣!~(1 − 𝑥)



JAM 18 Pion PDFs

• Valence, sea, and 
gluon distributions 
were extracted in an 
NLO analysis
• Drell-Yan (DY) only fit 

then include the 
Leading Neutron (LN)
• Theoretical 

uncertainty shown 
only in model 
dependence for LN 
treatment
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JAM 18 Momentum Fractions

• We also compute the 
momentum fractions 
for each flavor
• Large difference in in 

the gluon and sea ⟨𝑥!⟩
from a DY to a DY+LN 
analysis
• Gluon carries ~30% of 

the momentum 
fraction at the initial 
scale
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Threshold Resummation in 
Drell-Yan
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Drell-Yan (DY) Definitions
Hadronic variable
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Partonic variable
!𝑆 is the center of mass 

momentum squared of 
incoming partons

𝜋"

𝐴



Soft Gluon Resummation

• The goal is to sum the contributions of the soft gluon emissions 
from the quark line to all orders of 𝛼#
• Can perturbatively calculate these emissions to all orders of 𝛼#
• Here, 𝑧$ near 1
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Full Hard Kernel to Calculate

Fixed order Kernel (such as NLO)

Resummation Kernel.
Calculate such as Leading Log, 
or Next-to-Leading Log Matching coefficients

Need to subtract in 
order to avoid double 
counting
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Next-to-Leading + Next-to-Leading Logarithm 
Order Calculation

LL NLL … NpLL

LO 1 -- … --

NLO 𝛼% log 𝑁 & 𝛼# log(𝑁) … --

NNLO 𝛼#& log 𝑁 ' 𝛼%& log 𝑁 & , log 𝑁 ( … --

… … … … …
NkLO 𝛼#) log 𝑁 &) 𝛼#) log 𝑁 &)"* , log 𝑁 &)"& … 𝛼#) log 𝑁 &)"&+ +⋯11

An NLO calculation 
gathers the 𝒪(𝛼#)
terms 



Next-to-Leading + Next-to-Leading Logarithm 
Order Calculation

LL NLL … NpLL

LO 1 -- … --

NLO 𝛼% log 𝑁 & 𝛼# log(𝑁) … --

NNLO 𝛼#& log 𝑁 ' 𝛼%& log 𝑁 & , log 𝑁 ( … --

… … … … …
NkLO 𝛼#) log 𝑁 &) 𝛼#) log 𝑁 &)"* , log 𝑁 &)"& … 𝛼#) log 𝑁 &)"&+ +⋯12

Add the columns to 
the rows



Next-to-Leading + Next-to-Leading Logarithm 
Order Calculation

LL NLL … NpLL

LO 1 -- … --

NLO 𝛼% log 𝑁 & 𝛼# log(𝑁) … --

NNLO 𝛼#& log 𝑁 ' 𝛼%& log 𝑁 & , log 𝑁 ( … --

… … … … …
NkLO 𝛼#) log 𝑁 &) 𝛼#) log 𝑁 &)"* , log 𝑁 &)"& … 𝛼#) log 𝑁 &)"&+ +⋯13

Make sure only counted once!
- Subtract the matching



Rapidity Distribution

• Formulate resummation in Mellin space for 𝑄&(or 𝜏) distribution
• For rapidity distribution, a Mellin-Fourier transform can be taken 

instead of a single Mellin

• Where the hard coefficients reduce to
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Cosine vs Expansion

• Since we focus on the threshold region, that is when 𝑧 → 1, the log of 
z will be close to 0, meaning the argument of the cosine will be close 
to 0
• One can expand to the cosine term such that 

• Or, one can take the cosine exactly using Euler identity
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K-factor Aside
• Whether cosine or 

expansion is used 
has impact at large 
𝑥!
• We will focus on

the Minimal 
Prescription (MP)
• Testing both

methods can give a
theoretical
uncertainty on our
pion PDFs

16D. Westmark and J. F. Owens, Phys. Rev. D 95, 056024 (2017).



Extraction Procedure
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• We want to be able to fit 
simultaneously the Drell-
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data
• We can shape the pion 

PDFs at both high- and 
low-𝑥! with both datasets
• E615, NA10 – DY
• H1, ZEUS – LN
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Very little 
kinematic 
overlap!



Parametrization of the PDF

• We open the shape up a little for the valence (important for 
resummation in DY)

• And for the sea and the gluon, we parametrize by

As was done in Aicher et al.
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Parameterization of the PDF (in terms of 𝜋!)

• We equate the valence distributions: 5𝑢,!" = 𝑑,!"

• We equate the light sea distributions: 𝑢!" = �̅�!" = 𝑢%!" = 𝑑%!" = 𝑠 = �̅�
• Normalizations of the valence and sea PDFs are fixed by the sum rules

Quark sum rule

Momentum Sum Rule

21



Monte Carlo
• Using Bayesian statistics, we describe the probability

• We quantify the expectation value and variance of our observable 𝒪 as a function 
of the parameter set 𝒂+
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Multi-Step Strategy

• Fitting PDFs to many types of observables all at once is time 
consuming and slows the fit
• We start with many replicas with flat priors to fit to one observable, 

the 𝜋"𝑊 DY data
• The posteriors from that fit are used as the priors for the next fit, 

which includes the LN data
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Monte Carlo Results
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PDF Results – Cosine

• Fitting to both DY and LN data using the cosine approximation in the 
minimal prescription

• Clearly there are multiple solutions (evident in the valence)
• Use 𝑘-means clustering to distinguish solutions
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𝜒" profile of clusters

• Histogram of 𝜒& values for 
the different clusters
• Red is best, but not by 

much!
• Consider only the red 

solutions
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Comparisons – 𝜒"

Cosine method

Expansion method
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Comparisons – Momentum Fractions
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Comparisons – PDFs

• Comparison of the PDFs at the initial scale with fixed order
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K Factor

• K factor for 
kinematics 
associated with the 
E615 dataset
• PDFs are consistent

with each curve
• Cosine seems to 

gather more terms 
at higher orders 
than expansion
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K Factor – More calculations in MP

• Invokes an “exact”
resummation
prescription with Double 
Mellin transforms for 
rapidity distribution
• Lowers the K factor from 

expansion to near 1 for 
all 𝑥-
• Large range in K factor 

for 3 MP methods 
effectively captures 
various resummation 
effects
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Conclusions
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Conclusions

• The analysis of the resummation focuses on the Minimal Prescription
• With resummation, the valence quark distribution is softer as 𝑥! → 1

than in the fixed order case
• Fits using the Double Mellin “exact” method are needed
• Expectation is that the K factor for the “exact” method will be closer

to 1 and the PDFs will be closer to the NLO calculation
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Backup
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Setting it up

• Because of the Eikonal approximation, in the soft limit, matrix 
elements of large numbers of emitted gluons can be factorized as 
such:

• Even though the amplitudes factorize in 𝑧-space in that way, the 
phase space does not because of the presence of a delta function for 
conservation of momentum
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Setting it up

• In Mellin space, however, we do have factorization of the phase space,

• So for hard kernels, for each order of 𝛼", we have: 

• Where 𝐶#$%&' (𝑁) is the hard kernel for one soft gluon emitted from the 
quark line
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Exponentiation in Mellin space

• The matrix elements of emitted soft gluons that carry large 
logarithms are factorized in the Eikonal approximation
• Phase space only factorizes in Mellin space
• Summing over all orders of 𝛼# leads to exponentiation of the Mellin

space coefficients
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Computing the Expressions

• Specifically for the DY case, we need to use the following for each 
initial state parton (2 for DY)

and
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Computing the Expressions

• We also need a closed form for 𝛼#, in which case, we use the two-
loop (needed for up to NLL accuracy)
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Computing the Expressions

• Plugging those in, we get the following
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Large 𝑁 Approximation

• The 𝑧 integral on the previous slide is difficult, but not impossible
• Recall, our aim is the soft limit, i.e. when 𝑧 → 1
• In Mellin space, soft limit is 𝑁 → ∞
• In the large 𝑁 limit, we may use the approximation

where
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Plugging it in

• We can use the large 𝑁 approximation to compute the following
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Form for exponent

• Performing for the case of DY, we have
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Expansion

• If we use the expansion method, then 

• Goes to 

• Note the independence of C on M
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Cosine

• If we use the cosine method, then 

• Goes to 
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Note the average of Mellin moments of 𝐶 with Mellin variables 𝑁 ± !"
#



The need for prescriptions

• To compare with data, one must Mellin invert so that the formulas 
are in momentum-fraction space and not moment space
• The Mellin inversion of the hard kernel appears order-by-order, but it 

is divergent because of the divergence of 𝛼#
• One can locate the divergences and avoid them as in the Minimal 

Prescription (main focus)
• Or one can manipulate the summation to make it convergent as in the 

Borel prescription (out of the scope of this talk)
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Minimal Prescription

• In principle, one can just do the Mellin inversion exactly
• However, the ambiguity appears in the Landau pole
• We can locate the Landau and avoid it
• By looking at e.g. the ℎ*(𝜆) term, we can see where the arguments of 

the logarithms go to 0 and become negative
• This location is the Landau pole
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MELLIN CONTOUR – Expansion and Cosine
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N

• Here, 𝑐 is to the right of the PDFs’ 
rightmost poles

• Because the PDF moments are 
evaluated at 𝑁 ± 𝑖 ,- instead of 
the usual 𝑁, the poles are also 
located ±𝑖 ,- from the real axis 
(red and green stars)

• Contour is misshapen to ensure 
poles are encapsulated

𝜙$

𝜙%

𝑁% = 𝑐 − 𝑖
𝑀
2
+ 𝑧% 𝑒&! 𝑁" = 𝑐 − 𝑖

𝑀
2 + 𝑧" 𝑖 𝑀

𝑁$ = 𝑐 + 𝑖
𝑀
2
+ 𝑧$ 𝑒&"

0 < 𝑧% < ∞ 0 < 𝑧" < 1 0 < 𝑧$ < ∞

𝑁%

𝑁"

𝑁$

48


