The Z_5 model of two-component dark matter

Óscar Zapata

Universidad de Antioquia & ICTP.

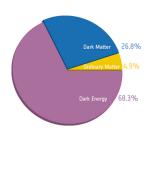
MOCa 2020

Based on JHEP09(2020) in coll. with: G. Belanger, A. Pukhov, C. Yaguna.

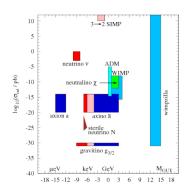
- * Motivation
- * The Z_5 model
- \ast DM phenomenology
- * Summary

Evidence for dark matter is abundant and compelling

- Galactic rotation curves
- Bullet cluster
- Weak lensing
- Cluster and supernova data
- Big bang nucleosynthesis
- CMB anisotropies



- Massive, non baryonic, electrically neutral.
- Non relativistic at the time of decoupling.
- □ Stable or longlived
- $\square \ \Omega_{DM} \sim 0.25.$



Multicomponent DM

- It is often assumed that Ω_{DM} is entirely explained by one candidate $(\tilde{\chi}_1^0, N_S, a, S, \text{etc})$.
- It may also be that the DM is actually composed of several species (as the visible sector): $\Omega_{DM} = \Omega_1 + \Omega_2 + \dots$
- They not only are perfectly consistent with observations but often lead to testable predictions in current and future DM exps.

Who is behind the stability of DM particles?

Z_N multicomponent scenarios

- Multi-component DM models featuring scalar fields that are simultaneously stabilized by a single Z_N symmetry are particularly appealing. Z_N group: comprises the N Nth roots of 1.
- For k dark matter particles, they require k complex scalar fields that are SM singlets but have different charges under a Z_N $(N \ge 2k)$.
- This symmetry, in turn, could be a remnant of a spontaneously broken U(1) gauge symmetry and thus be related to gauge extensions of the SM.

The Z_5 two-component DM model

N = 5 is the lowest N compatible with two DM particles that are complex scalar fields.

Z_N multicomponent scenarios

- Multi-component DM models featuring scalar fields that are simultaneously stabilized by a single Z_N symmetry are particularly appealing. Z_N group: comprises the N Nth roots of 1.
- For k dark matter particles, they require k complex scalar fields that are SM singlets but have different charges under a Z_N $(N \ge 2k)$.
- This symmetry, in turn, could be a remnant of a spontaneously broken U(1) gauge symmetry and thus be related to gauge extensions of the SM.

The Z_5 two-component DM model

 ${\cal N}=5$ is the lowest ${\cal N}$ compatible with two DM particles that are complex scalar fields.

Z_5 model: interactions

Two new complex scalar fields, $\phi_{1,2}$

$$\phi_1 \sim \omega_5, \ \phi_2 \sim \omega_5^2; \qquad \omega_5 = \exp(i2\pi/5).$$

 $\phi_{1,2}$ singlets under \mathcal{G}_{SM} whereas the SM particles are singlets under Z_5 .

$$\mathcal{V} \supset \mu_1^2 |\phi_1|^2 + \lambda_{41} |\phi_1|^4 + \lambda_{S1} |H|^2 |\phi_1|^2 + \mu_2^2 |\phi_2|^2 + \lambda_{42} |\phi_2|^4 + \lambda_{S2} |H|^2 |\phi_2|^2 + \lambda_{412} |\phi_1|^2 |\phi_2|^2 + \frac{1}{2} \left[\mu_{S1} \phi_1^2 \phi_2^* + \mu_{S2} \phi_2^2 \phi_1 + \lambda_{31} \phi_1^3 \phi_2 + \lambda_{32} \phi_1 \phi_2^{*3} + \text{H.c.} \right]$$

 $\langle \phi_{1,2} \rangle = 0$ and $M_1 < M_2 < 2M_1$ so that both are stable.

Set of free parameters:

 $M_i, \lambda_{Si}, \lambda_{412}, \mu_{Si}, \lambda_{3i}.$

How do these parameters affect $\Omega_{1,2}$, shape the viable parameter space, and determine the DM observables?

DM-SM processes

$2 \rightarrow 2$ processes that can modify the relic density of ϕ_1 and ϕ_2 :

ϕ_1 Processes	Type
$\phi_1 + \phi_1^\dagger \to SM + SM$	1100 A
$\phi_1^{\dagger} + h \to \phi_2 + \phi_2$	1022 SA
$\phi_1 + \phi_2 o \phi_2^\dagger + h$	1220 SA
$\phi_1 + \phi_1 \to \phi_2 + h$	1120 SA
$\phi_1 + \phi_2^\dagger o \phi_2 + \phi_2$	$1222 \mathrm{C}$
$\phi_1^{\dagger} + \phi_1^{\dagger} \rightarrow \phi_2 + \phi_1$	$1112 \mathrm{C}$
$\phi_1 + \phi_1^\dagger o \phi_2 + \phi_2^\dagger$	$1122 \mathrm{C}$

According to the number of SM particles (\mathcal{N}_{SM}) :

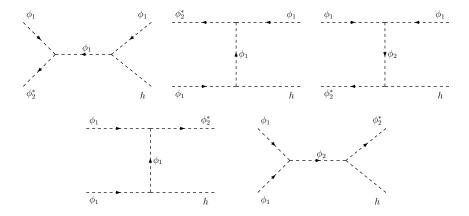
Annihilation (2), semi-annihilation (1), conversion (0).

Boltzmann eqs are solved via micrOMEGAs 5.2.1.

$$\begin{split} \frac{dn_1}{dt} &= -\sigma_v^{1100} \left(n_1^2 - \bar{n}_1^2 \right) - \sigma_v^{1120} \left(n_1^2 - n_2 \frac{\bar{n}_1^2}{\bar{n}_2} \right) - \sigma_v^{1122} \left(n_1^2 - n_2 \frac{\bar{n}_1^2}{\bar{n}_2^2} \right) - \frac{1}{2} \sigma_v^{1112} \left(n_1^2 - n_1 n_2 \frac{\bar{n}_1}{\bar{n}_2} \right) \\ &- \frac{1}{2} \sigma_v^{1222} \left(n_1 n_2 - n_2 \frac{\bar{n}_1}{\bar{n}_2} \right) - \frac{1}{2} \sigma_v^{1220} \left(n_1 n_2 - n_2 \bar{n}_1 \right) + \frac{1}{2} \sigma_v^{2210} (n_2^2 - n_1 \frac{\bar{n}_2^2}{\bar{n}_1}) - 3Hn_1. \end{split}$$

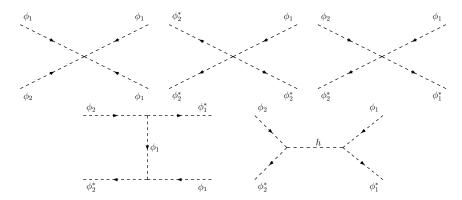
DM semi-annihilations

Semi-annihilation processes involve one μ_{S1} and one λ_{Si} : $\phi_1\phi_2^* \rightarrow \phi_1 h$ and $\phi_2^*h \rightarrow \phi_1\phi_1$.



DM conversion processes

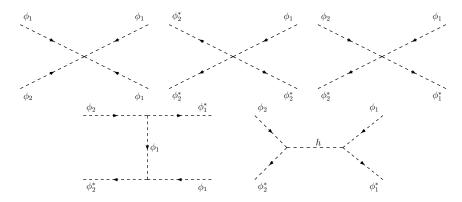
Conversion via $(\lambda_{31}, \lambda_{32}, \lambda_{412}), \mu_{S1}, \text{ or } \lambda_{S1} : \lambda_{S2}.$



DM annihilations proceed via the usual s-channel Higgs-mediated diagram, with W^+W^- being the dominant final state for $M_i \gtrsim M_W$.

DM conversion processes

Conversion via $(\lambda_{31}, \lambda_{32}, \lambda_{412}), \mu_{S1}, \text{ or } \lambda_{S1} : \lambda_{S2}.$



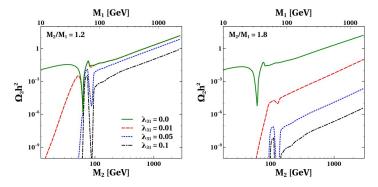
DM annihilations proceed via the usual s-channel Higgs-mediated diagram, with W^+W^- being the dominant final state for $M_i \gtrsim M_W$.

Parameter dependence

Reference model: $\mu_{Si} = 0$, $\lambda_{3i} = 0$, $\lambda_{412} = 0$. $\lambda_{S1} = \lambda_{S2} = 0.1$.

• λ_{31} only induces DM conversion processes. During the ϕ_2 freeze-out, they contribute to the depletion of ϕ_2 and therefore reduce Ω_2 .

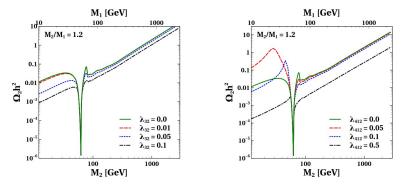
- λ_{31} as small as 10^{-2} can modify Ω_2 by several orders of magnitude.
- The larger M_2/M_1 , the larger the suppression is.



• Ω_1 hardly gets modified unless $M_1 \approx M_2$, when the kinematic suppression of $\phi_1 + \phi_1 \rightarrow \phi_1^{\dagger} + \phi_2^{\dagger}$ is alleviated.

$\lambda_{32}, \, \lambda_{412}$

- λ_{32} leads to a reduction of Ω_2 while leaving Ω_1 mostly unaffected.
- λ_{412} causes a reduction of Ω_2 at large M_2 via $\phi_2 + \phi_2^{\dagger} \rightarrow \phi_1 + \phi_1^{\dagger}$.



- Quartic interactions affect Ω_2 ; the effect on Ω_1 is negligible.
- Ω_1 is determined by the Higgs-mediated interactions of the singlet scalar model. Therefore the same stringent DD constraints apply.
- The μ_{S1} and μ_{S2} can help to relax such constraints.

Trilinear interaction μ_{S1}

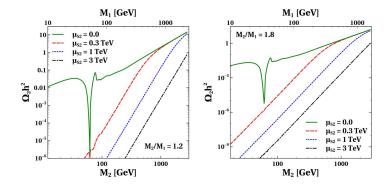


• Ω_2 can be suppressed by orders of magnitude as a consequence of the exponential suppression $\phi_1 + \phi_2^{\dagger} \leftrightarrow \phi_1 + h$: $dY_2/dT \propto \sigma_v^{1210}Y_1Y_2$. • Ω_2 increases rapidly once the process $\phi_1 + \phi_1 \rightarrow \phi_2 + h$ is kinematically

• Ω_2 increases rapidly once the process $\phi_1 + \phi_1 \rightarrow \phi_2 + h$ is kinematically open.

• At intermediate values of M_1 , Ω_1 can be reduced by up to two orders of magnitude.

- μ_{S2}-induced processes can affect Ω₂ at low and intermediate masses.
 The only process that may reduce Ω₁ after φ₂ freeze-out is
- $\phi_1 + \phi_2 \rightarrow \phi_2 + h$ but it has a negligible effect on Ω_1 due to the small value of Ω_2 . Exception: mass degeneracy $M_2/M_1 \lesssim 1.3$

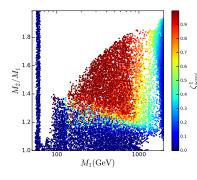


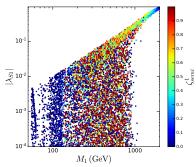
40 GeV
$$\leq M_1 \leq 2$$
 TeV, $M_1 < M_2 < 2M_1$,
 $10^{-4} \leq |\lambda_{S1}| \leq 1$, $10^{-3} \leq |\lambda_{S2}| \leq 1$.

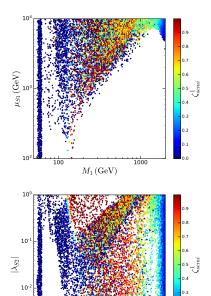
- Scenario #1: $100 \text{ GeV} \le \mu_{S1} \le 10 \text{ TeV}.$
- Scenario #2: $100 \text{ GeV} \le \mu_{S2} \le 10 \text{ TeV}.$
- Scenario #3: $10^{-4} \le |\lambda_{3i,412}| \le 1$.

Relevance of the three kinds of processes that can contribute to Ω_1 :

$$\begin{split} \zeta_{anni}^{1} &\equiv \frac{\sigma_{v}^{1100}}{\overline{\sigma_{v}^{1}}}, \quad \zeta_{semi}^{1} \equiv \frac{\frac{1}{2}(\sigma_{v}^{1120} + \sigma_{v}^{1220} + \sigma_{v}^{1022})}{\overline{\sigma_{v}^{1}}}, \\ \zeta_{conv}^{1} &\equiv \frac{\sigma_{v}^{1122} + \sigma_{v}^{1112} + \sigma_{v}^{1222}}{\overline{\sigma_{v}^{1}}}. \end{split}$$







10-3

100

0.2

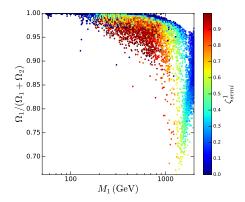
0.1

0.0

1000

 $M_1\,({\rm GeV})$

Viable parameter space

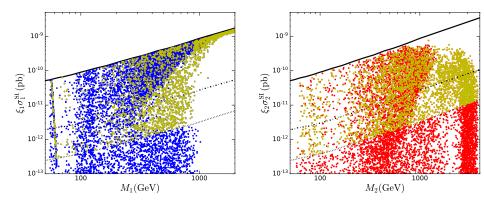


• ϕ_1 always gives the dominant contribution. It accounts for more than 70% of Ω_{DM} ($\gtrsim 95\%$ for the most points).

• In numerous cases Ω_2 turns out to be several orders of magnitude smaller than Ω_1 .

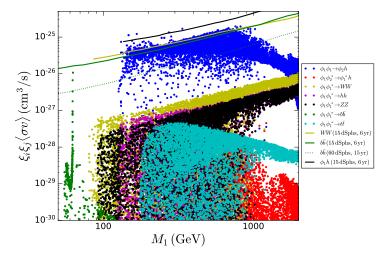
Direct detection

Spin-independent cross-section:
$$\xi_i \sigma_i^{\text{SI}} = \frac{\Omega_i}{\Omega_{DM}} \frac{\lambda_{Si}^2}{4\pi} \frac{\mu_R^2 m_p^2 f_p^2}{m_h^4 M_i^2}.$$



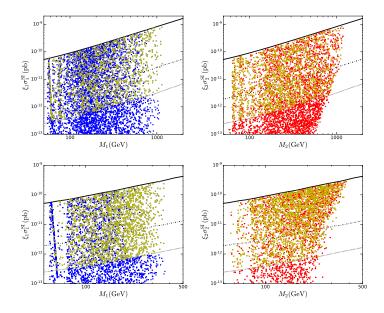
- The small Ω_2 can be compensated by a large λ_{S2} .
- Either DM particle may be observed in future DD experiments.
- Yellow points indicate that both DM particles lay within DARWIN. If observed, such signals would rule out the *one DM paradigm*

Indirect detection



φ₁φ₁ → φ₂h turns out to be the most relevant one ~ 10⁻²⁶ cm³/s.
Due to the ξ₂ suppression and its higher mass, the ID signals involving φ₂ are less promising.

Result for $\mu_{S2} \neq 0$ and $\lambda_{3i,412} \neq 0$



The results are essentially identical when *all* the free parameters are simultaneously varied.

- It is possible to satisfy $\Omega \approx 0.25$ and current DD limits over the entire range of DM masses considered ($M_1 < 2$ TeV).
- **2** Ω_{DM} is always dominated by the lighter dark matter particle: the heavier DM particle never accounts for more than 40% and often contributes significantly less than that.
- Either DM particle may be detected in future DD experiments.
- The results for the case $M_2 < M_1$ can be obtained by doing: $M_1 \leftrightarrow M_2, \, \mu_{S1} \leftrightarrow \mu_{S2}, \, \lambda_{31} \leftrightarrow \lambda_{32}, \, \Omega_1 \leftrightarrow \Omega_2, \, \text{etc}$

Besides being simple and well-motivated, the Z_5 model is a consistent and testable framework for two-component dark matter. For $5 < N \le 10$ with $\phi_i \sim (w_N)^i$:

- (ϕ_1, ϕ_2) : all Z_N symmetries forbid the $\mu_{S2}\phi_1\phi_2^2$ and $\lambda_{31}\phi_1^3\phi_2$ terms; while the Z_7 is the only one that allows $\lambda_{32}\phi_1\phi_2^3$.
- (ϕ_2, ϕ_4) : the Z_9 only allows the $\mu_{S2}\phi_2^2\phi_4^*$ interaction. The results for Z_5 apply to the Z_{10} model.
- The Z_5 model is the most general Z_N model with two complex fields, from which the DM properties for other models with a higher Z_N symmetry can be deduced to a large extent.
- The Z_7 model with (ϕ_1, ϕ_2, ϕ_3) serves as a prototype for scenarios with three DM particles.

Summary

- The model becomes viable over the entire range of DM masses.
- **2** The lighter DM particle (ϕ_1) accounts for most of Ω_{DM} .
- OD experiments offer great prospects to test this model, including the possibility of observing signals from *both* dark matter particles.

