Boosting Ultraviolet Freeze-in

Based on: NB, Maíra Dutra, Yann Mambrini, Keith Olive, Marco Peloso and Mathias Pierre - arXiv:1803.01866 NB, Javier Rubio and Hardi Veermäe - arXiv:2004.13706 & arXiv:2006.02442 NB - arXiv:2005.08988

Nicolás BERNAL

MOCa 2020 October 7th, 2020

WIMP paradigm

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(n^2 - n_{\rm eq}^2 \right)$$

$$Y \equiv n/s \text{ and } x \equiv m/T$$

 $\frac{dY}{dx} = -\frac{\langle \sigma v \rangle s}{H x} \left(Y^2 - Y_{eq}^2 \right)$

* chemical equilibrium * $\langle \sigma v \rangle \sim$ few 10⁻²⁶ cm³/s * T_{fo} \sim m / 20

 \rightarrow independent from initial conditions

WIMP paradigm

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(n^2 - n_{\rm eq}^2 \right)$$

$$Y \equiv n/s \text{ and } x \equiv m/T$$

 $\frac{dY}{dx} = -\frac{\langle \sigma v \rangle s}{H x} \left(Y^2 - Y_{eq}^2 \right)$

Over the last decades a huge worldwide effort to detect WIMP DM using a multi-channel and multi-messenger approach...

but no compelling detection so far! :-(

IR FIMP paradigm

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(\eta^2 - n_{\rm eq}^2 \right)$$

$$Y \equiv n/s \text{ and } x \equiv m/T$$

 $\frac{dY}{dx} = -\frac{\langle \sigma v \rangle s}{H x} \left(Y^2 - Y_{eq}^2 \right)$

- * chemical equilibrium never reached * renormalizable operators * $\lambda_{\text{DM-SM}} \sim 10^{-11}$ * $T_{fi} \sim m$
- \rightarrow (mild) dependence from initial conditions

UV FIMP paradigm

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(p^{\mathbb{Z}} - n_{\rm eq}^2 \right)$$

$$Y \equiv n/s \text{ and } x \equiv m/T$$

 $\frac{dY}{dx} = -\frac{\langle \sigma v \rangle s}{H x} \left(Y^2 - Y_{eq}^2 \right)$

* chemical equilibrium never reached * non-renormalizable operators * $\Lambda > T_{rh}$ * $T_{fi} \sim T_{rh}$

 \rightarrow (strong) dependence from initial conditions ₅

UV FIMP paradigm

UV FIMP paradigm $\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$

• Heavy mediator (M >> $T_{\rm rh}$) $\langle \sigma v \rangle \propto g^4 \frac{T^2}{M^4}$

UV FIMP paradigm $\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$

• Heavy mediator (M >> $T_{\rm rh}$) $\langle \sigma v \rangle \propto g^4 \frac{T^2}{M^4}$

- Suppressed couplings (A >> $T_{\rm rh}$) $\langle \sigma v \rangle \propto \frac{T^2}{\Lambda^4}$

UV FIMP paradigm $\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$

• Heavy mediator (M >> $T_{
m rh}$) $\langle \sigma v
angle \propto g^4 rac{T^2}{M^4}$

- Suppressed couplings (\wedge >> $T_{\rm rh}$) $\langle \sigma v \rangle \propto {T^2 \over \Lambda^4}$
- Heavy mediator + suppressed couplings ($M, \land >> T_{rh}$)

$$\langle \sigma v
angle \propto rac{T^6}{\Lambda^4 \, M^4}$$

Instantaneous Reheating

T ~ 1/a

* SM entropy conserved * $H \sim T^2 / M_P$

Instantaneous Reheating

* SM entropy conserved * $H \sim T^2 / M_P$

This is pretty much the common lore of the particle physics community! ;-)

1. Beyond the instantaneous reheating approximation...

Non-instantaneous Reheating

Decay of the inflaton into SM radiation is a continuous process

$$\frac{d\rho_{\phi}}{dt} + 3(1+\omega) H \rho_{\phi} = -\Gamma_{\phi} \rho_{\phi}$$
$$\frac{d\rho_R}{dt} + 4 H \rho_R = +\Gamma_{\phi} \rho_{\phi}$$

Inflaton decay widtl

$$\mathsf{h} \qquad \Gamma_{\phi} = \frac{\pi}{3} \sqrt{\frac{g_{\star}(T_{\mathrm{RH}})}{10}} \frac{T_{\mathrm{RH}}^2}{M_{\mathrm{Pl}}}$$

Hubble expansion rate $H^2 = (\rho_{\phi} + \rho_R)/(3 M_{\text{Pl}}^2)$

3 free parameters:
$$H_{ini}, \Gamma_{\phi}$$
 and ω

o (

Non-instantaneous Reheating

 T_{max} : SM thermal bath reaches a temperature $T_{max} >> T_{rh}$ due to the non-sudden decay $\rho_{\phi}(a) \propto \begin{cases} a^{-3(1+\omega)} & \text{for } a_{\max} \ll a \ll a_{\text{rh}} \\ 0 & \text{for } a_{\text{rh}} \ll a \end{cases}$ $\rho_R(a) \propto \begin{cases} a^{-\frac{3}{2}(1+\omega)} & \text{for } a_{\max} \ll a \ll a_{\text{rh}} \\ a^{-4} & \text{for } a_{\text{rh}} \ll a \end{cases}$ 3 free parameters: $T(a) \propto \begin{cases} a^{-\frac{3}{8}(1+\omega)} & \text{for } a_{\max} \ll a \ll a_{\mathrm{rh}} \\ a^{-1} & \text{for } a_{\mathrm{rh}} \ll a \end{cases}$ $H_{\rm ini}, \Gamma_{\phi}$ and ω or $T_{_{
m max}},\,T_{_{
m rh}}$ and ω 14

→ Chung, Kolb & Riotto '98

$$\frac{dn}{dt} + 3 H n = -\langle \sigma v \rangle \left(n^2 - n_{eq}^2 \right) \longrightarrow \frac{dN}{da} = -\frac{\langle \sigma v \rangle}{a^4 H} \left(N^2 - N_{eq}^2 \right)$$

$$\frac{d\rho_{\phi}}{dt} + 3(1+\omega) H \rho_{\phi} = -\Gamma_{\phi} \rho_{\phi}$$

$$N \equiv n \times a^3$$

$$\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$$

DM production: $T = T_{rh}$

m = 100 GeV $T_{\text{max}} = 10^8 \text{ GeV}$ $T_{\text{rh}} = 10^6 \text{ GeV}$ $\omega = 0$

$$\frac{dn}{dt} + 3 H n = -\langle \sigma v \rangle \left(n^2 - n_{eq}^2 \right)$$
$$\frac{d\rho_{\phi}}{dt} + 3(1+\omega) H \rho_{\phi} = -\Gamma_{\phi} \rho_{\phi}$$
$$\frac{d\rho_R}{dt} + 4 H \rho_R = +\Gamma_{\phi} \rho_{\phi}$$

$$Y_{\infty} = \frac{180\,\zeta(3)^2\,g^2}{\pi^7\,g_{\star s}}\sqrt{\frac{10}{g_{\star}}}\frac{1}{(n-n_c)(1+\omega)}\frac{M_{\rm Pl}\,T_{\rm rh}^{\frac{7-\omega}{1+\omega}}}{\Lambda^{n+2}}\left[T_{\rm max}^{n-n_c} - T_{\rm rh}^{n-n_c}\right] \qquad \text{for } n \neq n_c.$$
$$Y_{\infty} = \frac{45\,\zeta(3)^2\,(n+2)\,g^2}{2\pi^7\,g_{\star s}}\sqrt{\frac{10}{g_{\star}}}\frac{M_{\rm Pl}\,T_{\rm rh}^{1+n}}{\Lambda^{2+n}}\ln\frac{T_{\rm max}}{T_{\rm rh}}}{\int T_{\rm rh}^{n}} \qquad \text{for } n = n_c$$

$$\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$$

 $n_c \equiv 2 \times \left(\frac{3-\omega}{1+\omega}\right)$

ω	n_c
-1/3	10
-1/5	8
0 (dust)	6
1/3 (radiation)	4
1 (kination)	2

Boost Factors

* Depends on n, ω and the ratio $T_{max} I T_{rh}$ * Independent from m, Λ

 ω

2. Allowing DM self-interactions

DM self-interactions

So far we have focused on the DM-SM interactions: WIMP, IR FIMP, IR FIMP... ignoring possible DM self-interactions

But what about possible *DM self-interactions*?

DM self-interactions

Elastic scattering

SSS

Kinetic equilibrium: DM temperature

DM self-interactions

Elastic scattering

Number-changing interactions

SS

Kinetic equilibrium: DM temperature

Chemical equilibrium: $4 \rightarrow 2$ and $2 \rightarrow 4$

• DM under-produced (wrt equilibrium) by the FIMP mechanism with a high momentum

- DM under-produced (wrt equilibrium) by the FIMP mechanism with a high momentum
- 2 → 4 Increases DM yield decreases DM temperature

- DM under-produced (wrt equilibrium) by the FIMP mechanism with a high momentum
- 2 → 4 Increases DM yield decreases DM temperature
- Chemical equilibirum $2 \rightarrow 4$ and $4 \rightarrow 2$

- DM under-produced (wrt equilibrium) by the FIMP mechanism with a high momentum
- 2 → 4 Increases DM yield decreases DM temperature
- Chemical equilibirum $2 \rightarrow 4$ and $4 \rightarrow 2$
- 4 → 2 freeze-out: Decreases DM yield increases DM temperature

DM boost by self-interactions

The boost factors can be computed in a *model-independent* way!

$$B \equiv \frac{Y_0^{\text{w}/}}{Y_0^{\text{w}/\text{o}}} \simeq \left(\frac{8}{27} \frac{g}{g_{\star s}(T_{\text{fi}})} \frac{1}{Y_0^{\text{w}/\text{o}}}\right)^{\frac{1}{4}} \times \begin{cases} \frac{45\,\zeta(3)}{2^{1/4}\,\pi^4} \frac{\mathcal{C}_n}{\mathcal{C}_\rho^{3/4}} & \text{for } x_{\text{fo}}' \ll 1, \\ \frac{8}{7^{3/4}} \frac{1}{x_{\text{fo}}'} & \text{for } x_{\text{fo}}' \gg 1. \end{cases}$$

Conclusions

- UV freeze-in is a viable DM production mechanism
- Strongly depends on the dynamics at the highest temperatures of the Universe: heating dynamics
- Instantaneous reheating may not be a good approximation •
 - \rightarrow miserably fails for $n > n_c$

• Boost factor *B*
$$B \propto \begin{cases} \mathcal{O}(1) & \text{for } n < n \\ \ln\left(\frac{T_{\max}}{T_{\text{rh}}}\right) & \text{for } n = n \\ \left(\frac{T_{\max}}{T_{\text{rh}}}\right)^{n-n_c} & \text{for } n > n \end{cases}$$

- For $n > n_c$: Bulk of DM produced near T_{max}
- Big boost factors due to the non-sudden reheating

 $\rightarrow T_{\rm max} >> T_{\rm rh}$

- \rightarrow depend on the effective equation of state of the early Universe
- \rightarrow Bigger boosts for stiffer EoS
- \rightarrow Bigger boosts if no entropy injection, i.e. no DM dilution
- DM Self-interactions have a strong impact on the DM dynamics ٠
- Boost factors of several order of magnitude can be computed in a model independent way!

$$\langle \sigma v \rangle = \frac{T^n}{\Lambda^{2+n}}$$

30

¡Muchas gracias!

