Flavored axions and the flavor problem

Eduardo Rojas Peña

In Collaboration with: R. Martinez, Y. Giraldo, J.C. Salazar.
Moca 2020.

Universidad de Nariño

Outline

- CP problem
- Five texture-zero mass matrices
- Particle content
- Minimal Higgs content
- Effective Lagrangian
- Low Energy constraints
- Conclusions

The CP problem

- In the limit $m_{f} \rightarrow 0$ the QCD lagrangian has the symmetry $U(N)_{V} \times U(N)_{A}$ sin the up and down masses satisfy $m_{u}, m_{d} \ll \Lambda_{\mathrm{acD}}$, one expect that the strong intēractions to be approximately $U(2)_{\mathrm{V}} \times \cup(2)_{\mathrm{A}}$ invariant
- Experimentally $U(2)_{V}=S U(2)_{v} \times U(1)_{V} \equiv$ Isospin \times Baryon \# however, quark condensates break $U(2)_{A}{ }^{\prime}$ down spontaneously

The CP problem

- however, quark condensates break down $\mathrm{U}(2)_{\mathrm{A}^{\prime}}$ spontaneously, one expects now 4 NambuGoldstone bosons (π, η). Although pions are light, there is no clue of another light state in the hadronic spectrum
- Weinberg dubbed this the $U(1) _A$ problem, suggesting that, somehow, there was no $U(1) _A$ symmetry in QCD.

The strong CP problem

- 't Hooft realized that the current associated with the $U(1) _$A symmetry is anomalous

$$
\partial_{\mu} J_{s}^{\mu}=\frac{g^{2} N}{32 \pi^{2}} F_{a}^{\mu \nu} \widetilde{F}_{a \mu \nu}=
$$

where N is the number ò massless quarks. From this it is possible to add to te lagrangian the term:

$$
L_{\theta}=\theta \frac{g^{2}}{32 \pi^{2}} F_{a}^{\mu \nu} \widetilde{F}_{a \mu \nu}
$$

Strong CP problem

- This termproduces an electric dipole moment for the neutron of order:
with $\mathrm{d}_{\mathrm{n}} \approx \mathrm{e} \mathrm{m}_{\mathrm{a}} / \mathrm{M}_{\mathrm{n}}{ }^{2} \theta \approx 10^{-16} \theta \mathrm{ecm}$

$$
\mathrm{d}_{\mathrm{n}}<2.9 \times 10^{-26} \mathrm{ecm}
$$

which requires

$$
\theta<10^{-9}-10^{-10}
$$

why θ is so small ?, this is the Strong CP problem.

A solution

- Pecce and Quinn proposed a solution suggesting that the SM had an additional $U(1)$ chiral symmetry which drives $\theta_{\text {total }} \rightarrow 0$

The five-texture mass matrices

- Our aim is to propose a PQ symmetry that generates this texture for the quark masses.

$$
\begin{aligned}
M^{U} & =\left(\begin{array}{ccc}
0 & 0 & C_{u} \\
0 & A_{u} & B_{u} \\
C_{u}^{*} & B_{u}^{*} & D_{u}
\end{array}\right), \\
M^{D} & =\left(\begin{array}{ccc}
0 & C_{d} & 0 \\
C_{d}^{*} & 0 & B_{d} \\
0 & B_{d}^{*} & A_{d}
\end{array}\right) .
\end{aligned}
$$

Minimal Higgs content

- From the Lagrangian

$$
\mathcal{L} \supset-\left(\bar{q}_{L i} y_{i j}^{D \alpha} \Phi^{\alpha} d_{R j}+\bar{q}_{L i} y_{i j}^{U \alpha} \tilde{\Phi}^{\alpha} u_{R j}+\text { h.c }\right),
$$

it is possible to obtain the mass functions

$$
\begin{aligned}
& M^{U}=\left(\begin{array}{lll}
0 & 0 & x \\
0 & x & x \\
x & x & x
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
S_{11}^{U \alpha} \neq 0 & S_{12}^{U \alpha} \neq 0 & S_{13}^{U \alpha}=0 \\
S_{21}^{U \alpha} \neq 0 & S_{22}^{U \alpha}=0 & S_{23}^{U \alpha}=0 \\
S_{31}^{U \alpha}=0 & S_{32}^{U \alpha}=0 & S_{33}^{U \alpha}=0
\end{array}\right), \\
& M^{D}=\left(\begin{array}{lll}
0 & x & 0 \\
x & 0 & x \\
0 & x & x
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
S_{11}^{D \alpha} \neq 0 & S_{12}^{D \alpha}=0 & S_{13}^{D \alpha} \neq 0 \\
S_{21}^{D \alpha}=0 & S_{22}^{D \alpha} \neq 0 & S_{23}^{D \alpha}=0 \\
S_{31}^{D \alpha} \neq 0 & S_{32}^{D \alpha}=0 & S_{33}^{D \alpha}=0
\end{array}\right),
\end{aligned}
$$

where $S_{i j}^{U \alpha}=\left(-x_{q_{i}}+x_{u_{j}}-x_{\phi_{\alpha}}\right)$ and $S_{i j}^{D \alpha}=\left(-x_{q_{i}}+x_{d_{j}}+x_{\phi_{\alpha}}\right)$.

Minimal Higgs content

- To reproduce these mass functions at least 4 higgs doublets are needed.

Particles	Spin	$S U(3)_{C}$	$S U(2)_{L}$	$U(1)_{Y}$	Q_{PQ}	$U(1)_{\mathrm{PQ}}$
ϕ_{1}	0	1	2	$1 / 2$	s_{1}	$x_{\phi_{1}}$
ϕ_{2}	0	1	2	$1 / 2$	s_{2}	$x_{\phi_{2}}$
ϕ_{3}	0	1	2	$1 / 2$	$-s_{1}+2 s_{2}$	$x_{\phi_{3}}$
ϕ_{4}	0	1	2	$1 / 2$	$-3 s_{1}+4 s_{2}$	$x_{\phi_{4}}$
S	0	1	1	0	$x_{S} \neq 0$	x_{S}
Q_{L}	$1 / 2$	3	0	0		
Q_{R}	$1 / 2$	3	0	0	$x_{Q_{L}}-x_{Q_{R}} \neq 0$	$x_{Q_{L}}$
$x_{Q_{R}}$						

TABLE III: Beyond standard model scalar and fermion fields and their respective PQ charges. The parameters s_{1}, s_{2} and α are reals, with $s_{1} \neq s_{2}$, where: $s_{1}=\frac{N}{9} \hat{s}_{1}$ and $s_{2}=\frac{N}{9}\left(\epsilon+\hat{s}_{1}\right)$.

Model particle content

- The PQ charges of quarks to reproduce the mass textures are

Particles	Spin	$S U(3)_{C}$	$S U(2)_{L}$	$U(1)_{Y}$	$Q_{\mathrm{PQ}}(i=1)$	$Q_{\mathrm{PQ}}(i=2)$	$Q_{\mathrm{PQ}}(i=3)$	$U(1)_{\mathrm{PQ}}$
$q_{L i}$	$1 / 2$	3	2	$1 / 6$	$-2 s_{1}+2 s_{2}+\alpha$	$-s_{1}+s_{2}+\alpha$	α	$x_{q_{i}}$
$u_{R i}$	$1 / 2$	3	1	$2 / 3$	$s_{1}+\alpha$	$s_{2}+\alpha$	$-s_{1}+2 s_{2}+\alpha$	$x_{u_{i}}$
$d_{R i}$	$1 / 2$	3	1	$-1 / 3$	$2 s_{1}-3 s_{2}+\alpha$	$s_{1}-2 s_{2}+\alpha$	$-s_{2}+\alpha$	$x_{d_{i}}$

TABLE II: The columns 6-8 are the PQ $Q_{P Q}$ charges for the SM quarks in each family. The subindex $i=1,2,3$ stands for the family number in the interaction basis. The parameters s_{1}, s_{2} and α are reals, with $s_{1} \neq s_{2}$, where: $s_{1}=\frac{N}{9} \hat{s}_{1}$ and $s_{2}=\frac{N}{9}\left(\epsilon+\hat{s}_{1}\right)$.

- by chosing the VEVs in a convenient way it is possible to reproduce the quark masses and the CKM mixing matrix.

Effective Lagrangian

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathcal{L} & =\left(D_{\mu} \Phi^{\alpha}\right)^{\dagger} D^{\mu} \Phi^{\alpha}+\sum_{\psi} i \bar{\psi} \gamma^{\mu} D_{\mu} \psi+\frac{1}{2} \partial_{\mu} a \partial^{\mu} a-\frac{1}{2} m_{a}^{2} a^{2} \\
& -\left(\bar{q}_{L i} y_{i j}^{D \alpha} \Phi^{\alpha} d_{R j}+\bar{q}_{L i} y_{i j}^{U \alpha} \tilde{\Phi}^{\alpha} u_{R j}+\bar{\ell}_{L i} y_{i j}^{E \alpha} \Phi^{\alpha} e_{R j}+\bar{\ell}_{L i} y_{i j}^{N \alpha} \tilde{\Phi}^{\alpha} \nu_{R j}+\text { h.c }\right) \\
& +c_{a \Phi^{\alpha}} O_{a \Phi^{\alpha}}+c_{1} \frac{\alpha_{1}}{8 \pi} O_{B}+c_{2} \frac{\alpha_{2}}{8 \pi} O_{W}+c_{3} \frac{\alpha_{3}}{8 \pi} O_{G},
\end{aligned} \\
& \text { Where }
\end{aligned}
$$

$$
\begin{aligned}
O_{a \Phi} & =i \frac{\partial^{\mu} a}{\Lambda}\left(\left(D_{\mu} \Phi^{\alpha}\right)^{\dagger} \Phi^{\alpha}-\Phi^{\alpha \dagger}\left(D_{\mu} \Phi^{\alpha}\right)\right), & O_{B} & =-\frac{a}{\Lambda} B_{\mu \nu} \tilde{B}^{\mu \nu} \\
O_{W} & =-\frac{a}{\Lambda} W_{\mu \nu}^{a} \tilde{W}^{a \mu \nu}, & O_{G} & =-\frac{a}{\Lambda} G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu}
\end{aligned}
$$

Effective Lagrangian

- It is possible to obtain the dimension five effective lagrangians by means of the nonlinear transformation

$$
\begin{aligned}
& \Phi^{\alpha} \longrightarrow e^{i \frac{x_{\Phi} \alpha}{h} a} \Phi^{\alpha}, \\
& \psi_{L} \longrightarrow e^{i \frac{x_{2}}{h} a} \psi_{L}, \\
& \psi_{R} \longrightarrow e^{i \frac{x_{\psi_{R}}}{h} a} \psi_{R},
\end{aligned}
$$

Down quark Vector and axial couplings

$$
\begin{align*}
& \Delta \mathcal{L}_{K^{D}}+\Delta \mathcal{L}_{Y^{D}} \equiv-\partial_{\mu} a \bar{d}_{i} \gamma^{\mu}\left(g_{a d_{i} d_{j}}^{V}+\gamma^{5} g_{a d_{i} d_{j}}^{A}\right) d_{j} . \\
& g_{a d i d j}^{V, A}=\frac{1}{2 f_{a} c_{3}^{c{ }_{2 d}}}\left(2 \Delta_{V, A}^{D i j}+\frac{\hat{v} \Delta_{d}^{\gamma 1} Y_{V, A}^{D i j}}{\left(m_{i}^{D} \mp m_{j}^{D}\right)}\right), \tag{35}
\end{align*}
$$

where $\Delta_{V, A}^{D i j}=\Delta_{R R}^{D i j}(d) \pm \Delta_{L L}^{D i j}(q)$ with $\Delta_{L L}^{F i j}(q)=\left(U_{L}^{D} x_{q} U_{L}^{D \dagger}\right)^{i j}$ and $\Delta_{R R}^{F i j}(d)=\left(U_{R}^{D} x_{d} U_{R}^{D \dagger}\right)^{i j}$. The parameters associated with the FCNC due to the differences between the Higgs charges are: $\Delta_{\phi}^{\gamma \beta}=\left(R x_{\Phi} R^{T}\right)^{\gamma^{\beta}}, \hat{v}=v / \sqrt{2}$ and $Y_{V, A}^{D \gamma i j}=\left(Y_{i j}^{D \gamma} \mp Y_{i j}^{D \gamma \gamma}\right)$. The term with $\gamma=1$ does not contribute to the FCNC since $Y^{D 1}=\frac{2}{v} m^{D}$ is a diagonal

Constraints from Semileptonic decays

$$
\begin{aligned}
\Gamma\left(K^{+} \rightarrow \pi^{+} a\right) & =\frac{m_{K}^{3}}{16 \pi}\left(1-\frac{m_{\pi}^{2}}{m_{K}^{2}}\right)^{2} \lambda_{K \pi a}^{1 / 2} f_{0}^{2}\left(m_{a}^{2}\right)\left|g_{a d s}^{V}\right|^{2} \\
\Gamma\left(B \rightarrow K^{*} a\right) & =\frac{m_{B}^{3}}{16 \pi} \lambda_{B K^{*} a}^{3 / 2} A_{0}^{2}\left(m_{a}^{2}\right)\left|g_{a s b}^{A}\right|^{2}
\end{aligned}
$$

Constraints from semileptonic decays

Collaboration	upper bound
E949+E787 [48, 49]	$\mathcal{B}\left(K^{+} \rightarrow \pi^{+} a\right)<0.73 \times 10^{-10}$
CLEO [50]	$\mathcal{B}\left(B^{ \pm} \rightarrow \pi^{ \pm} a\right)<4.9 \times 10^{-5}$
CLEO [50]	$\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} a\right)<4.9 \times 10^{-5}$
BELLE [51]	$\mathcal{B}\left(B^{ \pm} \rightarrow \rho^{ \pm} a\right)<21.3 \times 10^{-5}$
BELLE [51]	$\mathcal{B}\left(B^{ \pm} \rightarrow K^{* \pm} a\right)<4.0 \times 10^{-5}$

TABLE IV: These inequalities come from the window for new physics in the branching ratio uncertainty of the meson decay in a pair $\bar{\nu} \nu$.

FIG. 2: Allowed regions by semileptonic meson decays.

Conclusions

- In this work we have proposed a PQ symmetry that gives rise to Hermitian mass matrices with five texture-zeros. This texture can adjust in a non-trivial way the six masses of the quarks and the three CKM mixing angles and the CP violating phase.
- we showed that this texture requires at least four Higgs doublets to be generated from a PQ symmetry. We proposed a general parameterization for the $P Q$ charges which is consistent with the texture.

Conclusions

- We calculated the FCNC coming from the effective Lagrangian of interaction between the Yukawa term and the axion. This calculation poses some technical problems due to the multi-Higgs sector. To solve this, we proposed a generalized Georgi rotation for an arbitrary number of Higgs doublets.
- As a bonus, we showed that our model can adjust the axion mass required to explain the anomaly recently reported by XENON1T~\cite\{Aprile:2020tmw\}.

