

Specifications of 36 GHz gyroklystron

Liang Zhang^{1,2}, Laurence Nix^{1,2}, Li Wang³, Wenlong He⁴ & A.W. Cross^{1,2}

on behalf of research teams of

¹Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK

²The Cockcroft Institute, Daresbury Laboratory, Warrington. WA4 4AD, UK

³School of Electronic Science and Engineering, University of Electronic Science & Technology of China, Chengdu, 610054, People's Republic of China

⁴ College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518060, People's Republic of China

Dimensions of gyroklystron

- Output is in the axial direction
- Output mode is TE₀₂ in circular waveguide, can be converted to TE₀₁ mode easily with a waveguide taper

$TE_{01/02}$ transmission line

Transmission line system is composed of:

- (1) Waveguide taper (conversion between TE_{01} to TE_{02} mode)
- (2) Miter bend
- (3) Straight waveguide (low loss ~0.02 dB/meter)

A complete design has been done at Strathclyde at W-band
94 GHz with -0.75 dB loss for a total length of 20-meters

Specifications

Beam voltage / Beam current	150 kV / 50 A
Output power / 2 nd harmonic power	3.2 MW / 2.3%
Output power stability	0.4% @0.5% variation of the modulator voltage
Output frequency / 3dB bandwidth	36 GHz / 108 MHz (0.3%)
Magnetic field and frequency drift	1.46 T and < 1 MHz frequency drift due to the drift of magnetic field
Frequency drift due to beam voltage	24 MHz @0.5% / 4.8MHz @0.1% variation of the modulator voltage
Pulse repetition rate / Duration	1000 Hz / 1.5 us
Drive power / Gain	410 W / 39 dB
Input / output waveguide mode	Input TE10 (Rectangular) mode, output TE02 (Circular) mode
Efficiency	43% (without energy recovery), 58.0% (with single stage depressed collector)
Average spent beam power	6.5 kW (mm-waves on),11.3kW (mm-waves off)
Dimensions	60 cm (W) * 60 cm (L) * 1200 cm (H)
Phase stability	17.0 degree @ 0.5% variation in modulator voltage 3.4 degree @ 0.1% variation in modulator voltage 0.34 degree @ 0.01% variation in modulator voltage
JULA	4

Specifications of the commercial superconducting magnet

Guide magnetic field	1.46 T
Туре	Cryogen Free Superconducting Magnet
Candidate vendor	Cryogenic Ltd
Magnetic field accuracy	0.08%
Stability over time	0.002%/hour
Stability over	0.002%/K
temperature	

Reference:

http://www.cryogenic.co.uk/sites/default/files/product_files/sms_series_sample_users_manual.pdf

Specifications of the power modulator

Operating voltage	150 kV
Operating current	50 A
Candidate vendor	ScandiNova
Product model	K Series K100 (with enhanced option to 1000 Hz)
Typical pulsed voltage range	115 – 190 kV
Typical pulsed current range	90 – 140 A
RMS Voltage stability	0.02%
Dimensions	166 cm * 70 cm * 220 cm

Reference: https://scandinovasystems.com/content/uploads/2020/04/scandinova-productsheet-k100-200421.pdf

Meet the requirements of the 36 GHz linearizer

- 1. Consider a loss of 2% in the TE01 transmission line, the input power at the pulse compressor is 3.2 MW * (1 2%) = 3.13 MW
- 2. For the pulse compressor with 1394 ns pulse length input, the power gain is 7.65
 - The output of the compressor (with 5% loss) is 3.13 MW * 7.65 * (1 5%) = 22.7 MW (larger than required 22 MW)
- 3. The phase stability is proportional to the variation of the modulator voltage
 - It is 3.4 degree per 0.1% variation on the modulator voltage
 - The phase stability is 0.34 degree at 0.01% voltage variation (less than 0.5 degrees required by lineariser)
- 4. The output power stability is 0.4% at 0.5% variation of the modulator voltage, which satisfies the requirement of 1%
- 5. The output mode of the gyroklystron is TE02 in circular waveguide
 - It can be converted to TE01 simply by using a circular waveguide taper

Acknowledgement

This work is supported by the European Commission Horizon 2020 Project "CompactLight" (777431-XLS), and the State Scholarship Fund from the China Scholarship Council and the STFC, UK (Cockcroft Institute Core Grant)

