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Modern heavy flavour physics experiments

Belle-II (2017-)

• e+e− collisions (clean)
• √s = 10.58GeV (Υ(4S)),

decays to BB̄ in 96%
• Fully hermetic acceptance
• Specialised for study of B-hadrons
• Target luminosity 50 000 fb−1

LHCb (2010-)

• pp, p-Pb, Pb-Pb collisions (messier)
• √s = 0.9− 14TeV
• Fixed-target: {p,Pb}-{He,Ne,Ar}

@ 69-110 GeV
• Single-arm spectrometer
• General purpose forward spectrometer
• Target luminosity 300 fb−1 (Run 1-6)
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Heavy flavour physics

CP violation ↔
matter/antimatter asymmetry
• K 0: Cronin & Fitch 1964
• B0: BABAR 2001
• D0: LHCb 2019

• Search for new physics in B decays
• Time-integrated CP violationa
• Time-dependent CP violationa
• Search for rare decaysb

• Direct search for light new particlesb
• Search for flavour-changing neutral currents

beyond SM
• Hadron spectroscopy and precise

measurement of Standard Model
• Tetraquarks, Pentaquarks, excited

mesons and baryons
• Ion collisions (LHC): Study of Quark Gluon

Plasma and collective effects
• Spin/resonance analysis with Dalitz methoda,c

a) sPlot technique, b) limit setting,
c) multi-dimensional data
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High-level goals 1

Identify and promote optimal methods and best practices

Image credit: Matt Flores, Unsplash

• Gold standard: Unbiased estimators with
minimum variance
• Maximum likelihood estimation
• Blind searches
• Report sufficient information

• Full covariance matrices of statistical and
systematic errors

• Likelihood functions for limits (needs software:
HistFactory, pyhf, . . . )

• Symmetric intervals preferred that behave like
std.deviations

• Use ensemble methods to check estimators

See Nicholas Wardle’s talk (combination of results) on Tuesday, 14:00 CEST
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High-level goals 2

Ensure coherent meaning of uncertainty intervals and limits

• Particle physics has Frequentist tradition
• Confidence intervals need to have specified coverage probability

• Exception for limit setting where overcovering is accepted
• Users of Bayesian methods need to demonstrate coverage

• OK: high-statistics unweighted case
• Ongoing research: low statistics, weighted data
• Rules needed for consistent treatment of systematic uncertainties
• Consistency with wider community when reporting limits (CLs)

See Giovanni Punzi’s talk (interval estimation) on Monday, 16:30 CEST
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Typical challenges for measurements in flavour physics

• Sophisticated non-linear models with many nuisance parameters
• Profile likelihood method replaces Neyman construction
• Uncertainty of control variables (calibration factors, efficiencies, . . . )

propagated into final result either by
• Likelihood profiling
• Marginal likelihood (seems to be rare?)
• Error propagation (first order or simulation based)

• Exact coverage probability not guaranteed, has to be checked
• Common practical challenge is to fully automate these fits

• Unbinned fits are popular, especially for multi-dimensional data
• Computationally expensive when samples are large

• sWeights as a statistical tool are popular and correspondingly analysis
of weighted data (more on that later)

See Peter Stangl’s talk (global fits) on Wednesday, 16:30 CEST
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Intervals from HESSE or MINOS method?

F. James, “Statistical
Methods in Experimental
Physics” (2nd) edition,
World scientific, p. 240

• HESSE method
• Based on asymptotic normality of estimator
• Symmetric intervals
• Full covariance matrix
• Asymptotic bias wrt to χ2: 1 + 1

N a
• MINOS method

• Based on on asymptotic χ2 distribution of
likelihood ratio

• Asymmetric intervals
• Asymptotic bias wrt to χ2: 1 + 1

N
(
a + b

3
)

• MINOS intervals
• Asymmetric intervals seem to offer more detail
• Coverage probability in small samples should be

worse in general to due larger bias
• Difficult to combine with other results

(likelihood cannot be recovered from 3 points)
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Intervals used for distributions with discrete samples

We prefer “right coverage probability on average” over “always conservative”
to be consistent.

Poisson distribution: sqrt(N) estimate preferred over exact Neyman
construction

Binomial distribution: Wilson interval preferred over Clopper-Pearson
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Remarks on ensemble methods

• Study distribution of estimator on generated pseudo-datasets
• Parametric bootstrap: Fit model to data, draw samples from model
• Non-parametric bootstrap: sample uniformly from original data set

• Generic method applicable to estimators of arbitrary complexity
• Construct confidence intervals with good coverage (bca method),

estimate bias, estimate coverage probability of interval estimator
• Challenges

• Samples must be independent and identically distributed (i.i.d.)
• Arbitrary sample of particle tracks may not be i.i.d.
• Events within time blocks of constant detector performance may be i.i.d.

• Ensemble methods can be prohibitively time-consuming

See Brad Efron’s talk on Tuesday, 18:00 h CEST

Efron & Tibshirani, “An Introduction to the Bootstrap”, CRC Press 1994
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Limit setting

• Typical scenario
• Observed n = ns + nb, want to estimate signal expectation µs
• Background expectation µb not exactly known, estimate µ̂b has

statistical uncertainty (e.g. background estimated from off-signal region)
• µ̂s and µ̂b are usually estimated from fits with various nuisance

parameters (calibration factors, efficiencies, . . . )
• Want to report central interval when evidence for signal is strong and

upper limit otherwise (with well-defined coverage probability)
• Undesired

• Methods that yield empty or unphysical intervals (e.g. µs ∈ [−3, 1])
• Methods that undercover through flip-flopping
• Experiment with higher expected background should not give better

limit when n = 0 is observed
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Feldman-Cousins approach

Feldman & Cousins, Phys. Rev. D 57 (1998)

• FC approach: Refinement of classic Neyman construction with
guaranteed coverage properties

Red area has less than 90 %
coverage probability (image from
FC paper, red overlay added)

• Educational example from FC paper:
Gaussian for x with σ = 1, µ ≥ 0

• Bad algorithm to report result at 90 % CL
• If result less than 3σ, report upper limit
• If result greater than 3σ, report central

confidence interval
• If x < 0, report upper limit for x = 0

• Intervals constructed in this way contain µ
in only 85 % of cases if µ = 2
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Confidence belt constructed with FC method for normal with σ = 1, µ > 0

• FC method
• Neyman construction: Constructed belt horizontally, read off vertically
• For each µ: start with empty interval and iteratively grow in direction of

higher likelihood ratio R = L(x |µ)/L(x |µ̂) with µ̂ ≥ 0
• No flip-flopping due to transition from upper limit to central interval
• No empty intervals

See Robert Cousins’ talk on Monday, 15:45 CEST
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CLs approach

• Criticism of FC method
• May give better limit for experiment with higher expected background

• CLs generalised originally Bayesian limit for counting experiments
• Classic derivation offered by Zech, Nucl. Instrum. Meth. A 277 (1989)

608, but not frequentist in Neyman sense, see comment by Highland,
NIM A 398 (1997) 429 and reply by Zech, NIM A 398 (1997) 431

• Counts replaced with likelihood ratio test statistic t = −2 ln[Ls+b/Lb]
• Ls+b likelihood of signal and background fit
• Lb likelihood of background-only fit

• Set limit on s: Solve CLs(s) = 1− CL for smax

CLs(s) = P(t ≤ tobs; s)
P(t ≤ tobs; 0) = CLs+b

CLb

Read, J. Phys. G 28 (2002) 2693-2704
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• Arbitrary nuisance parameters can be included
• Maximise likelihoods Ls+b and Lb over nuisance parameters

• No solution for flip-flopping
• Practical issues

• t distribution often computed from simulations to get P(t ≤ tobs)
• Each computation of t requires maximum-likelihood fit
• Simulation of P(t) requires many generated data samples for several

values of parameter µ
• Options to reduce computational burden

• Binned fits instead of unbinned fits
• Use of asymptotic formulas (next slide)

H. Dembinski, M. Kenzie Statistical issues in modern flavour physics experiments 14 / 28



Specialised likelihood ratio test statistics

• Cowan, Cranmer, Gross, Vitells, Eur.Phys.J.C 71 (2011) 1554 studied
test statistics for fits to histograms
• Ansatz E [ni ] = µ si(~θs) + bi(~θb) for bin i with nuisance parameters
~θ = {~θs , ~θb}

• General statistic tµ = −2 ln[L(µ; ~̂θ(µ))/L(µ̂; ~̂θ)]
• t̃µ for measurement of non-negative signal
• q̃0 for discovery of non-negative signal
• qµ for upper limits
• q̃µ for upper limits on non-negative signal

• Systematic uncertainties handled as nuisance parameters
• Asymptotic formulas for their pdfs are given based on classic results
from Wald and Wilks and so-called Asimov data sets
• Useful for sensitivity studies to compute expected median limit

• Can be combined with CLs limit setting or Feldman-Cousins approach
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Open issues: Limit setting

• Flip-flopping remains an issue
• Only avoided by Feldman-Cousins method
• But Feldman-Cousins method incompatible with CLs and any other

non-Neyman construction like Bayesian limits
• Simulating distribution of likelihood ratio test statistic

• Should nuisance parameters be varied within uncertainties or fixed to
data estimates?

• Should data-constrained nuisance parameters be treated differently from
nuisance parameters that represent systematic uncertainties?
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Handling and reporting systematic uncertainties

• Systematic uncertainties can be Frequentist or Bayesian
• Frequentist example: calibration parameter from control measurement
• Bayesian example: choice of a particular background model

• Expressed in σ, but usually no well-defined confidence level for intervals
• Chebyshev’s inequality applies: 1− 1/k2 of results must be within kσ

• Guiding principle: consistency of statistical and systematic uncertainties
• Do not estimate systematic uncertainties overly conservative
• Distinguish checks from systematic variations
• Only failed checks should add to total systematic uncertainty

See Roger Barlow’s talk on Monday, 14:45 h CEST

Barlow (2002), “Systematic errors: Facts and fictions”, hep-ex/0207026
Barlow (2019), “Practical Statistics for Particle Physics”,
arXiv:1905.12362v1
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Rules for discrete systematic variations

“These are just ballpark estimates. Do not push them too hard.” (RB)

• Systematic uncertainty should behave like standard deviation
• People will use it in least-squares fits and gaussian pdfs

• Distinguish “reasonable” and “extreme” variations
• Reasonable variation

• Variance is 1
N−1

∑
i(Ri − R̄)2

• Distribution-free
• Extreme variations

• Extreme ends of assumed uniform distribution
• Variance is (Rmax − Rmin)2/12

Two results R1,R2 reasonable variation extreme variation

None preferred R̄ ± |R1 − R2| R̄ ± |R1 − R2|/
√
12

R1 preferred R1 ± |R1 − R2| R1 ± |R1 − R2|/
√
6
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Open issues: systematic uncertainties

• How to include discrete variations in likelihood profiling?
• Example: Changing background or signal model
• Discrete variations cannot be handled by nuisance parameter
• Suggested solution discrete profiling: Dauncey, Kenzie, Wardle, Davies,

JINST 10 (2015) P04015
• Likelihood profiling or marginalisation?

• Profiling (Frequentist): Applicable to uncertainties that originate from
measurements in control samples (detector calibration, beam luminosity,
etc.), see Cowan, Cranmer, Gross, Vitells, Eur.Phys.J.C 71 (2011) 1554

• Marginalisation (Bayesian): Some systematic uncertainties are Bayesian
in nature, see Cousins, Highland, Nucl.Instrum.Meth.A 320 (1992) 331
for application to limit setting
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sPlot method (aka sWeights)

• Signal and background events
with variables m and t (t may
be multi-dimensional)

• Signal and background each
independent in m and t

f (m, t) = z gs(m) hs(t)+
(1− z) gb(m) hb(t)

• sPlot technique: compute weights ws(m) to estimate parameters of
hs(t) without modelling hb(t)
• Parametric models needed only for gs(m), gb(m), hs(t)
• Asymptotically unbiased and minimum variance for weights

• Very popular in flavour physics experiments

Pivk & Le Diberder, Nucl.Instrum.Meth.A 555 (2005) 356-369
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sWeight trick

• Integrate

f (m, t) = z gs(m) hs(t) + (1− z) gb(m) hb(t)

over t to get
g(m) = z gs(m) + (1− z) gb(m)

• Fit this to get ẑ , ĝs(m), ĝb(m)
• sWeights with projection property

∫
dmws(m) f (m, t) = z hs(t)

ws(m) = Wbb gs(m)−Wsb gb(m)
(WssWbb −W 2

sb) g(m)

with Wxy =
∫ gx (m)gy (m)

g(m) dm
• Estimates for Wxy can be computed from ẑ , ĝs(m), ĝb(m)

See Michael Schmelling’s talk on Wednesday, 14:00 CEST
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sWeights: (Semi-)open issues

• Classic sPlot technique only applicable if signal and background both
factorise in m, t; independence needs to be demonstrated in practice
• Insufficient: test for zero correlation of m, t
• Proper: test for zero Kendall rank coefficient (credit to Sara Algeri)

• Combining sWeights with detection efficiencies
• Detector efficiency may vary over m, t
• Efficiency weights cannot be trivially combined with sWeights

• Non-factorising background in m, t
• Factorisation usually good for signal but not necessarily for background
• How to handle (mildly) non-factorising background?

HD, M. Kenzie, C. Langenbruch, M. Schmelling, paper in preparation with
extensions to sPlot method to handle detector efficiencies and
non-factorising background
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Fits of (s)weighted data

• Binned fit
• Per bin: Estimates of expectation

∑
i wi and variance

∑
i w2

i
• Use least-squares fit or maximum-likelihood fit with scaled Poisson

distribution (better) Bohm & Zech, Nucl.Instrum.Meth.A 748 (2014) 1-6
• Asymptotically unbiased
• Biased when samples per bin become small (no info from empty bins)

• Unbinned fit
• Maximise “weighted log-likelihood” lnLw (θ) =

∑
i wi ln f (xi ; θ)

• Not really a likelihood = product of probabilities, modified properties
• Still proper estimator with proven asymptotic properties

• Asymptotically unbiased
• Modified covariance matrix Vθ = H−1DH−1 Langenbruch,

arXiv:1911.01303

H = ∂2 lnLw
∂2θ

∣∣∣
θ=θ̂

D =
∑
i

w2
i
∂ ln f (xi)

∂θ

∣∣∣
θ=θ̂

∂ ln f (xi)
∂θ

∣∣∣
θ=θ̂

See Christoph Langenbruch’s talk on Wednesday, 14:45 CEST
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(s)weighted fits: Open issues

• Are weighted fits less accurate than full parametric fits?
• Skipping background model hb(t) suggests loss of information
• At least in some toys accuracy reduction is found to be negligible

• Modified covariance matrix Vθ assumes known wi , but wi are
estimated from data and therefore deviate from asymptotic weights
• Additional contribution to Vθ or contribution zero?
• To be addressed in upcoming paper

• How to obtain confidence intervals with MINOS method?

∆ lnLw =?

• How to combine with weighted with normal likelihood, e.g. to add
gaussian nuisance parameter φ

fcorr lnLw −
(φ− φ0)2

2σ2
φ

with fcorr =?
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Open issues: signal+background fits with vanishing signal
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gaussian+uniform pdf fitted 200× to 100 background events
A: converged 100 %
mean = 0.24
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B: converged 80 %
mean = 0.04

• Setting: maximum likelihood fit with

f (z , θs , θb) = z fs(θs) + (1− z) fb(θb)

• Many background-only fits needed for
e.g. CLs

• Option A: use boundary condition 0 ≤ z ≤ 1
• Biased estimate ẑ for z → 0

• Option B: allow z < 0
• Bias of ẑ avoided, but ordinary fits become unstable
• z fs(xi , θs) + (1− z) fb(xi , θb) > 0 must be valid for all xi

• Condition not supported by MINUIT (bound on z depends on θs , θb)
• Can this be fixed in MINUIT?
• Different minimizer? Different analytical approach?

Please contact me (HD) if you interested in solving this.
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Open issues: GoF for unbinned fits

• Our common χ2 GoF statistic requires binned data

• Unbinned fits
• Cannot use likelihood value as GoF statistic, see Heinrich, PHYSTAT

2003, arXiv:physics/0310167
• GoF statistic directly from fitted model and unbinned data?

• In binning of high-dimensional data: difficult to maintain enough
counts per bin so that χ2 statistic follows asymptotic distribution

See Sara Algeri’s talk on Tuesday, 14:45 CEST

See Francois Le Diberder’s talk on Wednesday, 15:45 CEST
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Open issues: Look-elsewhere effect

27 expected 3  events in 10000 trials Look-elsewhere effect
• Expected number of rare deviations from H0

proportional to number of trials
• Win German lottery P = 7× 10−9

• Ntrial/yr ≈ 4× 108 (7M regular players)
• P × Ntrial/yr ≈ 3wins/yr (152 lottery

millionaires in 2018)
• Important for model-independent searches
• Dilution factor computed by repeating

experiment on H0 simulations many times

• What if N > 1 unexpected peaks were found? How to compute
dilution factor for this?
• Dilution factor for non-compact spaces: where to stop looking?

See André David’s talk on Tuesday, 15:45 CEST
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Concluding words

• Statistics is a science
• Where methods with proven optimal properties are known, we use them
• Conventions are needed when there is no clear optimal choice
• Consistency/comparability important guide in making choices

• Comparability to previous results
• Comparability to fellow CERN experiments

• Many thanks for comments and discussion on this talk to:

Roger Barlow, Olaf Behnke, Christoph Langenbruch, Louis Lyons,
Michael Schmelling, and Diego Tonelli

• PHYSTAT has successful history in bringing experts together and to
advance state-of-the-art

I am looking forward to a fruitful workshop!
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