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Based on (a small part of) my writeup,

“Lectures on Statistics in Theory: Prelude to Statistics in Practice”
https://arxiv.org/abs/1807.05996 and references therein.

Section numbers in today’s slides refer to this arxiv post.
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Notation

x denotes observable(s), can be multi-D

More generally, x is any convenient or useful function of the
observable(s), and is called a “statistic” or “test statistic”

u denotes parameter(s) (also use 0 if there are muons around)

p(x|u) is probability/pdf characterizing everything that
determines the probabilities (densities) of the observations, from
laws of physics to experiment setup and protocol

p(x|u) is called the “statistical model” or simply “the model” by
statisticians.
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Basic notions of confidence intervals (Sec. 6.2)

In two sentences:

Given the model p(x|u) and the observed value x, ., for what
values of p is x_, an “extreme” value of x?

Include in the confidence interval [u,,11,] those values of p for
which x .. is not “extreme”.
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Basic notions of confidence intervals (Sec. 6.2)

In two sentences:

Given the model p(x|u) and the observed value x, ., for what
values of p is x_, an “extreme” value of x?

Include in the confidence interval [u,,11,] those values of p for

which x .. is not “extreme”.

To be well-defined, the first point needs to be supplemented:

1) In order to define “extreme”, one needs to choose an ordering
principle for x applicable to each u: high rank means not extreme.

2) One also needs to specify what fraction of values of x are not
considered extreme. Called the confidence level C.L.; a =1 - C.L.
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Basic notions of confidence intervals (cont.)

Three common ordering choices in 1D
(when p(x|u) is such that higher p implies higher average x):

1. Order x from largest to smallest.
Leads to confidence intervals known as upper limits on p.

2. Order x from smallest to largest. Leads to lower limits on p.

3. Order x using central quantiles of p(x|u).
Gives central confidence intervals for L.

These orderings apply only when x is 1D
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Basic notions of confidence intervals (cont.)

So, one-sentence definition of confidence interval:

The confidence interval [p,,1,] contains those values of u for

which x, . is not “extreme” at the chosen C.L., given the ordering.

See Section 6.8 (and F-C paper) for graphical equivalent that we
call “Neyman’s construction”, and “confidence belts”
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o Confidence Intervals and Coverage (Sec. 6.11)

Let 1, be the unknown true value of . In repeated experiments,
confidence intervals will have different endpoints [u,, 11,], since
the endpoints are functions of the randomly sampled x.

A little thought will convince you that a fraction C.L. =1 — a of
confidence intervals so obtained will contain (“cover”) the fixed
but unknown L. l.e.,

P(w € [y, 1,]) = C.L. =1 - a. (Definition of coverage)
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o Confidence Intervals and Coverage (Sec. 6.11)

Let 1, be the unknown true value of . In repeated experiments,
confidence intervals will have different endpoints [u,, 11,], since
the endpoints are functions of the randomly sampled x.

A little thought will convince you that a fraction C.L. =1 — o of
confidence intervals so obtained will contain (“cover”) the fixed
but unknown ;. l.e.,

P(w € [y, 1,]) = C.L. =1 - a. (Definition of coverage)

In this (frequentist) equation, p, is fixed and unknown.
The endpoints p,,u, are the random variables (!).

Coverage is a property of the sef of confidence intervals, not of
any one interval.

See backup re Neyman'’s point that expts need not be the same.

Discrete observations and/or nuisance parameters typically
make exact coverage unobtainable — see writeup.
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Fourth ordering: Likelihood ratios (Sec. 6.7)

4. Order x using likelihood ratio L(x|u) | L(X|w,est 5it), @advocated
by F-C.
Unified approach to the classical statistical analysis of small signals

Gary J. Feldman
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousins'
Department of Physics and Astronomy, University of California, Los Angeles, California 90095

Phys. Rev. D57 3873 (1998):

Ordering applies (in principle) for arbitrary dimensions of x, L.

We looked “everywhere” in literature on confidence intervals, did
not see this ordering used for intervals. Was it really new?

Instructive twist as our paper was in proof!
For that we must first turn to...
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Hypothesis testing

Many special cases, including:

a) Model Selection: A given functional form (“model’) vs
another functional form.

b) Goodness of Fit: A given functional form against all
other (unspecified) functional forms (aka “model
checking”)

Within the same functional form, a single value of a
parameter (say 0 or 1) vs all other values.

The model with the single value is nested within the
model with all other values

(Section 2.3)
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Nested Hypothesis Testing is very common in HEP

There is an undetermined parameter 0 in H, .
H, corresponds to a particular parameter value 0,
E.g., zero, SM prediction, or .

H,: 0 = 0, (the “point null”, or “sharp hypothesis”)
H,: 0 # 0, (the “continuous alternative”).

Examples:

1) Signal strength 0 of previously unobserved physics (SM,BSM):
null 6, = 0, alternative 0 > 0.

2) B.° > u*u- before observation, signal strength 0 :
null 6, = 0, alternative 0 > 0.

3) B.° —» u*u- after observation, signal strength 0 :
null 6, = SM prediction, alternative is any other 0 = 9,

(Section 7.3)
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Classical Frequentist Hypothesis Testing

For null hypothesis H,, order possible observations x from least

extreme to most extreme, using an ordering principle (which can
depend on H, as well). Choose a cutoff a (smallish number).

Then “reject” H, if observed x, . is in the most extreme fraction a
of observations x (generated under H,). By construction,

a = probability (with x generated according to H;) of rejecting
H, when it is true, i.e., false discovery claim (Type | error)

[See elsewhere for Type Il error prob 8 ]
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Classical Frequentist Hypothesis Testing

For null hypothesis H,, order possible observations x from least
extreme to most extreme, using an ordering principle (which can
depend on H, as well). Choose a cutoff a (smallish number).

Then “reject” H, if observed x, . is in the most extreme fraction a
of observations x (generated under H,). By construction,

a = probability (with x generated according to H;) of rejecting
H, when it is true, i.e., false discovery claim (Type | error)

[See elsewhere for Type Il error prob ]

o is a pre-data assessment of risk. After data are obtained, the
p-value is the smallest value of a for which H, would be rejected,
had it been specified in advance.

This is numerically (if not philosophically) the same as definition
used e.g. by Fisher and often taught: “p-value is probability
under H, of obtaining x as extreme or more extreme than
observed x,.” [See backup slides and google regarding p-values.]
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Nested Hypothesis Testing: Duality with Intervals

In classical/frequentist formalism (but not Bayesian formalism), the
theory of these hypo tests maps to that of confidence intervals:

Having observed data x_, ., suppose the 95% C.L. confidence
interval for pis [u,,1,].

This contains all values of u for which observed x_, . is ranked in
the least extreme 95% of possible outcomes x according to p(x|u)
and the ordering principle in use.
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Nested Hypothesis Testing: Duality with Intervals

In classical/frequentist formalism (but not Bayesian formalism), the
theory of these hypo tests maps to that of confidence intervals:

Having observed data x_, ., suppose the 95% C.L. confidence
interval for pis [u,,1,].

This contains all values of u for which observed x_, . is ranked in
the least extreme 95% of possible outcomes x according to p(x|u)
and the ordering principle in use.

Now suppose we test H,:p=p, vs H,:p#u, at Type | error prob a=5%.
We reject H, if x_, . is ranked in the most extreme 5% of x according

to p(x|u) and the ordering principle in use.
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Nested Hypothesis Testing: Duality with Intervals

In classical/frequentist formalism (but not Bayesian formalism), the
theory of these hypo tests maps to that of confidence intervals:

Having observed data x_, ., suppose the 95% C.L. confidence
interval for pis [u,,1,].

This contains all values of u for which observed x_, . is ranked in
the least extreme 95% of possible outcomes x according to p(x|u)
and the ordering principle in use.

Now suppose we test H,:p=p, vs H,:p#u, at Type | error prob a=5%.
We reject H, if x_, . is ranked in the most extreme 5% of x according
to p(x|u) and the ordering principle in use.

Comparing the two procedures, we see:

Reject H, at a=5% iff y, is not in 95% C.L. conf. interval [p,,u,].

Use of the duality is referred to as “inverting a test” to obtain
confidence intervals, and vice versa. (Section 7.4)
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Duality in Nested Hypothesis Testing

CHAPTER 22

Wh i Ie F -C was i i N p ro of’ ? , G a ry LIKELTHOOD RATIO TESTS AND TEST EFFICIENCY
realized that “our” intervals were

221 The ML method discussed in Chapter |8 is aconstructive method of obtaining estimators
which, under certain conditions, have desirable properties. A method of test construction closely

L] L] L] -
simply those obtained by “inverting” ity s Nomm e i
played arole in the theory of tests analogous to that of the ML method in the theory of estimation.
As before, we have the LF

the classic “exact” LR hypothesis test Lowr = [0

i=1

where @ = (8., 8,) is avector of ¥ +5 = k parameters (r = |, 5 > 0)and x may also be a vector.

(which specifies LR ordering) in
Ke n d al I a n d Stu a rt- which is composite unless s = 0, against

Hy 8, #6,.

Hy:8, =#,0. (22.1)

We know that there is generally no UMP test in this situation, but that there may be a UMPU est

1/ I f' I - ef 2131
It Was a I I o n 1 4 pag es 3y p u s p ro I I n g 'Il"lizll.‘]: methad first requires us to find the ML estimators of (8, #,), giving the unconditional

maximum of the LF

nuisance parameters! Lo

and also o find the ML estimators of @,, when Hg holds,' giving the conditional maximum of
the LF .
Lix|@.p,0,). (22.3)

See G a ry,s Fe rm i Ia b ta I k, “J o u rn eys Of 9. in (22.3) has heen given a double circumflex to emphasize that it does not in general coincide

with 8, in (22.2). Now consider the likelihoad ratio?

an Accidental Statistician”,
http://users.physics.harvard.edu/~feldman/Journeys.pdf Lo 60

Since (22.4) 1s the ratio of a conditonal maximum of the LF to its unconditional maximum, we
clearly have

O=l=1 (22.5)

L]
Th Is Was Of co u rse QOOd ! Intuitively, I is a reasonable test statistic for Hy: it is the maximum likelihood under Hyj as a

fraction of its largest possible value, and large values of { signify that Hy is reasonably acceptable.

It led to rapid inclusion in PDG RPP.

<oy, (22.6)

where ¢ is determined from the distribution g{/) of ! 1o give a size-o test, that is,

f Cedl = . (22.7)
[y}

Nerther maximum value of the LF is affected by a change of parameter from @ o t(#), the ML
estimator of r(#) heing r(8) — cf. 18.3. Thus the LR statistic is invariant under reparametrization.
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Famous confusion re Gaussian p(x|u) where n >0

It is crucial to distinguish between the data x, which can be
negative (no problem), and a parameter p such as mass or signal
strength, for which negative values do nof exist in the model.
l.e., for mass p <0, p(x|u) does not exist: You would not know
how to simulate the physics of detector response for mass < 0.
Constraint u = 0 has nothing to do with a Bayesian prior for p !!!
It’s in the model (and hence in L(p)).

Bob Cousins, PhyStat-Flavour, 10/2020
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Famous confusion re Gaussian p(x|u) where n >0

It is crucial to distinguish between the data x, which can be
negative (no problem), and a parameter p such as mass or signal
strength, for which negative values do nof exist in the model.
l.e., for mass p <0, p(x|u) does not exist: You would not know
how to simulate the physics of detector response for mass < 0.
Constraint u = 0 has nothing to do with a Bayesian prior for p !!!
It’s in the model (and hence in L(p)).

110 rryrrrryrrrrprrrry rrTr T TP r T Ty T T Ty Tl

Z

The confusion is encouraged since 8
we often refer to x as the “measured
value of u”, and say that x<0 is
“unphysical” — bad habits!

A proper confidence belt has x of
both signs, only non-negative pn > 0.
Example: Construction on right is
LR ordering advocated by F-C 5
(SECtionS 6.9, 14) -3H”.2|IH-1”||0”H1”MZHH3H”4H”5|IHGHH_7

Measured Mean x

© a4 N W A A O N 0
I
N
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>20 years of experience with F-C

Lots of experience in HEP, many find it useful, especially when:

Y A model parameter is bounded (mass, cross section,
sine/cosine of an angle, etc.); and/or

YiAe Log-likelihood is non-Gaussian (so Wilks’s Theorem is
inaccurate); multiply connected confidence regions; and/or

¢ The interesting parameter space or sample space is >1D,
where LR ordering a la F-C and K&S is particularly useful,
and other orderings are poorly defined (metric dependent)

Flavour experiments have one or more, so various usage.

BTW, for data with a “5-sigma discovery”, the F-C “unified
approach” reproduces same answer as usual one-tailed test.
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>20 years of experience with F-C (cont.)

Main foundational (philosophical) issue, already discussed in
the F-C paper, is illustrated by Poisson case with non-zero
expected background, zero events observed.

See Section 9.1 of arxiv post (violation of Likelihood Principle,
very common in frequentist statistics).

Main practical issues:

1) Computational time, especially in presence of nuisance
parameters.

2) In common with other frequentist methods, there is no
automatic way to “eliminate” nuisance parameters that is
always satisfactory. (Section 12)

Comparison to other “contenders” in a prototype problem:

http:/lwww.physics.ucla.edu/~cousins/stats/cousins bounded gaussian virtual talk 12sep2011.pdf

Bob Cousins, PhyStat-Flavour, 10/2020
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Bayes, Fisher, Neyman,
Neutrino Masses, and the LHC

Bob Cousins
Univ. of California, Los Angeles
Virtual Talk
12 September 2011

http://www.physics.ucla.edu/~cousins/stats/cousins bounded gaussian virtual talk 12sep2011.pdf
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Early uses of F-C in flavour physics

1999 CDF low-statistics measurement of CP parameter sin2p.
Sampled value was near boundary, so natural to use F-C.

Use duality to test sin2pf=0 by finding that CL for which 0 is an
endpoint: 93%. Equivalent to p-value of 0.07 for F-C ordering.

Measurement of sin 2 from B— J/ sK¢ with the CDF detector

PHYSICAL REVIEW D, VOLUME 61, 072005

sin 2 3=0.79%0.39(stat) =0.16(syst).

ko
T

A scan through the likelihood function as
sin 2 is varied is shown in Fig. 7 and demonstrates that the
uncertainties follow Gaussian statistics. Using the Feldman-
Cousins frequentist approach [30], we calculate a confidence it
interval of 0.0<<sin23<C1 at 93%. An alternative approach is
the Bayesian method, where a flat prior distribution in sin23 05t
is assumed and a probability that sin 23>0.0 of 95% is cal-
culated. Finally, if the true value of sin2f is zero, and the o— v . -
measurement uncertainty is 0.44 (Gaussian uncertainty), the sin2p

pI’Dbﬂ.blllty of Dbtaining sin 2}3)’079 18 3.6%. FIG. 7. A scan of the log-likelihood function. The value of
sin 23 is scanned, and at each step, the function is minimized.

-log{likelihood)

e
n
T
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Early uses of F-C in flavour physics (cont.)

2002 Belle analysis, amplitudes S and A (both 0 if CP conserved).
Bruce Yabsley talk at Durham (post-named) PhyStat 2002.
Physically A2+ S2< 1. Belle’s sampled values were outside.

F-C provided frequentist way to deal with boundary.

Like CDF, Belle used test-interval duality to obtain p-value for
testing S=0 and A=0 for FC ordering.

Study of CP-Violating Asymmetries in B — 77+ 77~ Decays

The result of the fit to the 162 candidates (92 B® and 70 Phys. Rev. Lett. 89 (2002) 071801

BY tags) that remain after flavor tagging and vertex recon-
struction is
We determine the statistical significance from the like-
Sz = — L2113 (stat) 1 1§ (syst); lihood function, taking into accogunt the boundary of the
A = +0.9470%(stat) + 0.09(syst). physical region as well as the effect of the systematic error.
' The Feldman-Cousins frequentist approach [14] gives a
The result is 1.30 away from the physical boundary S2_ +  99.6% confidence level (C.L.) for =1 = S, _ < 0, equiva-
A2 _ = 1, which is consistent with a statistical fluctuation.  lent to a 2.9 significance for a Gaussian error. A similar
analysis yields a significance of 290 for 0 < A = 1.
The 95% C.L. intervals are found to be —1.00 =S __ <
—0.39 and +0.30 < A . = +1.00, respectively, [15].
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More recent uses of F-C in flavour physics

Angular analysis of the B" — K*'utu~ decay using
JHEP 02 (2016) 104

LHCb

3fb—! of integrated luminosity

Very complicated analysis...| am familiar with CMS version ---
difficult. Multiple analysis approaches, Again, physical
constraints mean that F-C can provide coverage (approximate
since nuisance params).

To ensure correct coverage for the uncertainties of the angular observables, the
Feldman-Cousins method [48] is used with nuisance parameters treated according to the
plug-in method [49]. Angular observables are considered one at a time, with the other

angular observables treated as nuisance parameters. The nuisance parameters also include
the signal fraction, the background parameters, Fs and the angular terms that arise from

interference between the S- and P-wave.

For testing SM, they abandon F-C duality and used Ay?-based
test using EOS package. (I did not try to follow.)

Bob Cousins, PhyStat-Flavour, 10/2020
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Bob Cousins

Observation of the rare B)—u* u~ decay from the

combined analysis of CMS and LHCDb data

Interesting comparison of F-C and asymptotic Wilks

CMS and LHCb (LHC run |
I T

1072

1073

Extended Data Figure 5 | Confidence level as a function of the B(B"—

1 u7) hypothesis. The value of 1 — CL, where CL is the confidence level

obtained with the Feldman-Cousins procedure, as a function of B(B®— u " )

is shown in logarithmic scale. The points mark the computed 1 — CL values and

the curve is their spline interpolation. The dark and light (cyan) areas define the
' two-sided * 10 and *2¢ confidence intervals for the branching fraction, while

0.4 0.6 0.8
B(B® — u* u~) [107]

the dashed horizontal line defines the confidence level for the 36 one-sided
interval. The dashed (grey) curve shows the 1 — CL values computed from the
one-dimensional —2AlnL test statistic using Wilks’ theorem. Deviations
between these confidence level values and those from the Feldman-Cousins
procedure™ illustrate the degree of approximation implied by the asymptotic
assumptions inherent to Wilks’ theorem™,

Nature 522 (2015) 68
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Back to main theme of this talk:

Hypothesis testing of a point null vs a
continuous alternative

Bob Cousins, PhyStat-Flavour, 10/2020

27



Bayesian Hypothesis Testing (Model Selection)

Forget the duality with intervals. Estimation # testing!

Typically follows Chapter 5 of book by Harold Jeffreys:
Bayes’s Theorem is applied to the models themselves after
integrating out all parameters, including parameter of interest!

Presented too often as “logical” and therefore simple to use,
with great benefits such as automatic “Ockham’s razor”, etc.

In fact, it is full of subtleties. E.g., Jeffreys and followers use
different priors for integrating out parameter in model selection
than for same parameter in parameter estimation.

(Sections 5, 10, Appendix A)

Bob Cousins, PhyStat-Flavour, 10/2020
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Bayesian Hypothesis Testing (Model Selection)

Here | will mainly just say: Beware! There are posted/published
applications HEP that are silly (by Bayesian standards).

A pentaquark example in PRL provoked me to write a
Comment: https://arxiv.org/abs/0807.1330 .

For testing point null vs continuous alternative, in asymptotic
limit of large sample size, your answer (e.g. probability H, is
true, or an odds ratio called the Bayes Factor) remains
proportional to the prior pdf of parameter of interest.

This is totally different behavior compared to interval
estimation, where the effect of prior p(u) typically becomes
negligible as sample size increases without bound.

Bob Cousins, PhyStat-Flavour, 10/2020

29


https://arxiv.org/abs/0807.1330

Jeffreys-Lindley paradox

For fixed frequentist significance Z (number of “sigma’), the
Bayesian posterior probability of H,, as well as the Bayes
Factor, depend directly on the ratio

(width of prior)/(std dev of measurement).

This factor, which provides the famous “Ockham’s razor”, leads
to the Jeffreys-Lindley paradox.

It implies that, for experiments obtaining the same Z, the
Bayesian answers depend on sample size (std dev typically
goes as 1/sqrt(sample size). Very different behavior!

For a review and comparison to p-values in discovery of Higgs
boson, see my paper, “The Jeffreys-Lindley Paradox and
Discovery Criteria in High Energy Physics”

(Published in Synthese — long story)
https://arxiv.org/abs/1310.3791 .
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[SKIP?]
Priors in Bayesian Hypothesis Testing

For testing H,: 6 =6, vs H,: 6 = 0, , improper priors g(0) for 6 that
work fine for estimation (such as Jeffreys priors) become a
disaster.

The ratio, (width of prior)/(std dev of measurement),
diverges so H, always preferred.

Adding cut-off to make prior g(0) proper just gives direct
dependence on (arbitrary?) width of prior.
(Contrast with Bayesian point/interval estimation!)

Silly things like prior flat in log of mass as a way to represent

“ignorance” are strongly informative!
(See any serious Bayesian literature.)

Bob Cousins, PhyStat-Flavour, 10/2020

31



Sir David Cox at PhyStat-LHC 2007

Five faces of Bayesian statistics

e empirical Bayes; number of similar parameters with a frequency

distribution

e neutral (reference) priors: Laplace, Jeffreys, Jaynes, Berger and

Bernardo

e information-inserting priors (evidence-based)

e personalistic priors

e technical device for generating frequentist inference

_This Workshop will address
statistical topics relevant for LHC Physies -
- analyses Issties related to discavery, and
the associated problems arising frof"
systematicincertaintiés, will feature
; - prominently.

Further information and registration at http:f/cem.ch/phystat-ihc
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e technical device for generating frequentist inference

This is done, especially for upper limits, in HEP (flat prior on
Poisson mean). | consider the following paper from May 2020 to
be an example from flavour physics, though it was not
completely clear from the published paper. My thanks to the
corresponding author for clarifications.

Measurement of the A} — J /A angular distribution %
and the Ag polarisation in pp collisions  JHEP 06 (2020)110 | Hch collaboration

“The Bayesian analysis procedure has been validated for both
small and large values of the polarisation using
pseudoexperiments.”

“Validated” means good frequentist coverage (!)

Bob Cousins, PhyStat-Flavour, 10/2020 33



Bob Cousins, PhyStat-Flavour, 10/2020

“The remaining amplitudes are measured relative to b,. A uniform
prior is assumed on their magnitudes and phases and on P,. The
priors use the ranges [-1, +1] for P,, [-=, +x] for the phases, and
the range [0, 20] for the magnitudes of the amplitudes.”

No Bayesian or probability-matching theory was used to choose
these priors; it seems that the results are mostly insensitive to
the choice, and in any case the coverage was good.

“The 95% credibility intervals are provided in table 6 of the
appendix. ... The resulting A,°? polarisation at each centre-of-
mass energy is found to be consistent with zero.”

Note: The frequentist definition of “consistent” (inside the
interval) was used to test the “point null” of zero.
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[SKIP to bottom]
“Table 5. Estimates for the magnitude and phase of the decay

amplitudes and the transverse production polarisation of the A,°
baryons, extracted using the Bayesian analysis. The most
probable value (MPV) and the shortest 68% interval containing
the most probable value are given.”

Both MPV and “shortest” are metric-dependent. The choices here
seem OK, if not optimal, from frequentist perspective.

The 68% credibility interval around the most probable value is
[-0.048, 0.005]. This measurement is consistent with, but more
precise than, previous measurements of a, by the ATLAS, CMS
and LHCDb collaborations [26-28].

Since [26—28] were not Bayesian analyses, it would be interesting
to compare recipes. Since this paper had coverage checked, that
presumably means answers would be similar.

Conclusion: “Bayesian recipe” with good frequentist coverage
can be win-win, since likelihood principle built in.
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Workshop on
Confidence Limits

27-28 March, 2000
Fermilab 1-West Conference Room

o
o
= o
w
-
[
o
=

Workshop Homepage

Jim Berger: M. K-e.ult”, IiVing Che old’ ‘F”?""’""!’:‘J
viewpeint of Bayesion anslysis )
“ I+ {:ﬁey [:ﬁaw;a‘m.:] wevld an’y do

3¢ he [Boyes] did sud publis)
Pﬁﬂé’huﬂ'\tu:’y) we shouvld 3l be
saved 3 ot of tredile,

What shevld be Lhe Wiew “éoJar;
Otjer'éfvg | g':stfﬂn ?H?IYIJ‘S s 'é'Ac
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My advocacy for >10 years (Section 16):

Have in place tools to allow computation of results using a
variety of recipes, for problems up to intermediate complexity:
— Bayesian with analysis of sensitivity to prior
— Profile likelihood ratio (Minuit MINOS)
— Frequentist construction with approximate treatment of
nuisance parameters
— Other “favorites” such as LEP’s CLg (an HEP invention)
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My advocacy for >10 years (Section 16):

Have in place tools to allow computation of results using a
variety of recipes, for problems up to intermediate complexity:
— Bayesian with analysis of sensitivity to prior
— Profile likelihood ratio (Minuit MINOS)
— Frequentist construction with approximate treatment of
nuisance parameters
— Other “favorites” such as LEP’s CLg (an HEP invention)

The community can (and should) then demand that a result
shown with one’s preferred method also be shown with the other
methods, and with sampling properties studied.

When the methods all agree, we are in asymptopic nirvana.
When the methods disagree, we are reminded that the results are
answers to different questions, and we learn something! E.g.:

— Bayesian methods can have poor frequentist properties

— Frequentist methods can badly violate likelihood principle
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Thanks to all (see note), including my
“sponsor”’, U.S. DOE Office of Science

P.S. On another topic, | wrote a note for students,
“What is the likelihood function, and how is it used in
particle physics? https://arxiv.org/abs/2010.00356

Bob Cousins, PhyStat-Flavour, 10/2020

39


https://arxiv.org/abs/2010.00356

Bob Cousins, PhyStat-Flavour, 10/2020

BACKUP

40



Negatively Biased Relevant Subsets Induced by the
Most-Powerful One-Sided Upper Confidence Limits
for a Bounded Physical Parameter

Robert D. Cousins*
Department of Physics and Astronomy
University of California, Los Angeles, California 90095, USA

September 9, 2011

Abstract

Suppose an observable x is the measured value (negative or non-negative) of a “true
mean” o (physically non-negative) in an experiment with a Gaussian resolution func-
tion with known fixed rms deviation o. The most powerful one-sided upper confidence
limit at 95% confidence level (C.L.) is pyr, = + 1.640, which [ refer to as the “original
diagonal line”. Perceived problems in HEP with small or non-physical upper limits for
x < 0 historically led, for example, to substitution of max(0, z) for z, and eventually to
abandonment in the Particle Data Group’s Review of Particle Physics of this diagonal
line relationship between pyr, and 2. Recently Cowan, Cranmer, Gross, and Vitells
(CCGV) have advocated a concept of “power constraint” that when applied to this
problem yields variants of diagonal line, including puyr, = max(—1,2) + 1.64¢. Thus
it is timely to consider again what is problematic about the original diagonal line,
and whether or not modifications cure these defects. In a 2002 Comment, statistician
Leon Jay Gleser pointed to the literature on recognizable and relevant subsets. For
upper limits given by the original diagonal line, the sample space for « has recogniz-
able relevant subsets in which the quoted 95% C.L. is known to be negatively hiased
(anti-conservative) by a finite amount for «ll values of p. This issue is at the heart of
a dispute between Jerzy Neyman and Sir Ronald Fisher over fifty years ago, the crux
of which is the relevance of pre-data coverage probabilities when making post-data
inferences. The literature describes illuminating connections to Bayesian statistics as
well. Methods such as that advocated by CCGV have 100% unconditional coverage
for certain values of ;¢ and hence formally evade the traditional criteria for negatively
biased relevant subsets; I argue that concerns remain. Comparison with frequentist
intervals advocated by Feldman and Cousins also sheds light on the issues.

Bob Cousins, PhyStat-Flavour, 10/2020
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Bayesian hypothesis testing for nested case
H,: 6=0, vs H,: 00,

Let ©, be prior prob for H,. Then n, = 1—x, is prior prob for H,.
Conditional on H, true: prior pdf for 0, g(0).
m, IS like bit of Dirac 6-ftn (“probability mass™) at 0=6, .
In practice can have a little width:
g, = scale of width of null value(s) of 0
scale t: extent of prior plausible values in g(0)
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Gaussian model p(x|0) with rms o, , sampled value x,, .
ML Estimate for 0 is 6 = x,, .

Departure from null in sigma: Z= (0 — 0,)/0

Sketch has Z = 5.

Three independent scales: gets interesting when, as shown,
€) << Ot << T.

Bayesian posterior prob for H,, and Bayes Factor are prop to
1 lo,,; (1/0ckham factor), independent of Z!
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Tale of two 5c¢ effects
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A side note on priors for “Scales”

As my writeup mentions (following Eadie et al. nearly 50 years
earlier) various words including “estimation” have different
meanings to statisticians than to physicists. Beware!

Since then, | have realized that a disastrous mistake seems to
be made by some physicists regarding the word “scale”.

Recall (or learn about): So-called “objective priors” or “default
priors” (often called by the misnomer “noninformative priors”) in
Bayesian estimation are based on the measurement model, i.e.,
the measuring apparatus and the protocol (stopping rule, etc.).
(Jeffreys’s Rule, Bernardo-Berger Reference Priors, etc.)

E.g., if the measuring apparatus has Gaussian resolution for
some parameter (say mass-squared), then the default prior for
that parameter (for estimation) is uniform, with all that implies.

Bob Cousins, PhyStat-Flavour, 10/2020 45



A side note on priors for “Scales” (cont.)

To a statistician, whether or not a parameter is a scale parameter
again depends on the measurement model (!).

Parameter 0 is a scale parameter if the model p(x|0) has the form:
p(x|0) = (1/0) f(x/0).

From this one can partly derive and partly argue* that invariance
of prior form under change of scale parameter implies the
non-subjective prior p(0) = 1/6, i.e., a prior uniform in log(0).

*See pp. 85-87 of Jim Berger’s book on decision theory for subtleties of derivation. See also Jeffreys

pp- 120-123, which he abandons later in the book.
Bob Cousins, PhyStat-Flavour, 10/2020
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A side note on priors for “Scales” (cont.)

To a statistician, whether or not a parameter is a scale parameter
again depends on the measurement model (!).

Parameter 0 is a scale parameter if the model p(x|0) has the form:
p(x|0) = (1/0) f(x/0).

From this one can partly derive and partly argue* that invariance
of prior form under change of scale parameter implies the
non-subjective prior p(0) = 1/6, i.e., a prior uniform in log(0).

To a physicist, a “scale” is a quantity that sets the size of
physical quantities like mass, length.
E.g., “What is the DM mass scale?”

So it seems that some physicists make the mistake of saying,
“Since mass is a scale, | use the prior uniform in log(mass).”
OOPS! This “scale” is not a statistician’s “scale parameter”!
See Comment https://arxiv.org/abs/1703.04585

Bob Cousins, PhyStat-Flavour, 10/2020
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There is a large literature on frequentist
properties of Bayesian (inspired) procedures

Google on:

probability matching priors
Welch and Peers 1963
calibrated Bayes

Bayes non-Bayes compromise
prior predictive p-value
posterior predictive p-value
etc.

A nice introductory review is by M.J. Bayarri and J.O. Berger,
“The Interplay of Bayesian and Frequentist Analysis”,
Statist. Sci. 19 58-80 (2004), doi:10.1214/088342304000000116

We should be doing more of this in HEP, in my opinion.
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Coverage of Bayesian estimation procedures

Pre-data, Bayesians have the model p(x|u).
Thus, quite apart from imagined repeated experiments (to which
they may object) or frequentist definition of probability (to which
they may object), a Bayesian can calculate:

As a function of i, what is the coverage probability of the
credible interval [u,, 1,] that they will report: what is the
probability, given the model p(x|u) (with whatever definition of p
they use), that their procedure will lead to an interval in which

B e [uy, pol-

This is a crucial diagnostic to report to the consumer, especially

if default priors are used! (Jim B. says reference priors will work.)

(Of course, one can also average this coverage over i, weighted
by either the prior or the posterior.)

Bob Cousins, PhyStat-Flavour, 10/2020
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Evaluation of properties of Bayesian hypothesis
testing procedures

Similarly, quite apart from imagined repeated experiments or
frequentist definition of p, a Bayesian can calculate:

As a function of assumed H, and H, and any parameters, what is
the distribution of the Bayes Factors that they will report: what is
the probability, given each model p(x|H;,) (with whatever
definition of p they use), that their procedure will obtain various
values of the Bayes Factor (or posterior probabilities).

This is also a crucial diagnostic to report to the consumer,
especially if attempts at “noninformative” priors are used!

(enlightening for seeing relationship between Bayes Factors and
p-values)

Bob Cousins, PhyStat-Flavour, 10/2020
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Coverage: The experiments in the ensemble do
not have to be the same.

Neyman pointed this out in his 1937 paper (in which his
o is the modern 1 - a):

It is important to notice that for this conclusion to be true, it is not necessary that
the problem of estimation should be the same in all the cases. For instance, during
a period of time the statistician may deal with a thousand problems of estimation and
in each the parameter 6, to be estimated and the probability law of the X’s may be
different. As far asin each case the functions 0 (E) and 0 (E) are properly calculated
and correspond to the same value of «, his steps (), (4), and (¢), though different in
details of sampling and arithmetic, will have this in common—the probability of their
resulting in a correct statement will be the same, «. Hence the frequency of actually
correct statements will approach «.

Bob Cousins, PhyStat-Flavour, 10/2020
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Above is all “pre-data” characterization of the test
How to characterize post-data?
p-values and Z-values

In N-P theory, o is specified in advance.

Suppose after obtaining data, you notice that with =0.05
previously specified, you reject H,, but with a=0.01 previously
specified, you accept H,.

In fact, you determine that with the data set in hand, H, would be
rejected for a > 0.023. This interesting value has a name:

After data are obtained, the p-value is the smallest value of o for
which H, would be rejected, had it been specified in advance.

This is numerically (if not philosophically) the same as definition

used e.g. by Fisher and often taught: “p-value is probability under

H, of obtaining x as extreme or more extreme than observed x,.”

Bob Cousins, PhyStat-Flavour, 10/2020
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Interpreting p-values and Z-values

It is crucial to realize that that value of o (0.023 in the example)
was typically not specified in advance, so p-values do not
correspond to Type | error probs of experiments reporting them.

In HEP, p-value typically converted to Z-value (unfortunately
commonly called “the significance S”), equivalent number of
Gaussian sigma.*

E.g.., for one-tailed test, p = 2.87E-7 is Z = 5.
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Interpreting p-values and Z-values (cont.)

Interpretation of p-values (and hence Z-values) is a long,
contentious story — beware!

Widely bashed. | give some reasons why in
https://arxiv.org/abs/1807.05996 .

| defend their use in HEP. See https://arxiv.org/abs/1310.3791.)

Whatever they are, p-values are not the probability that H, is true!

— They are calculated assuming that H, is true, so they can
hardly tell you the probability that H, is true!

— Calculation of “probability that H, is true” requires prior(s)!

Please help educate press officers and journalists!
(and physicists) !
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Whatever you call non-subjective priors,
they do not represent ignorance!

Dennis V. Lindley Stat. Sci 5 85 (1990), “the mistake is to think
of them [Jeffreys priors or Bernardo/Berger’s reference
priors] as representing ignorance”

This Lindley quote is emphasized by Christian Robert, The
Bayesian Choice, (2007) p. 29.

Jose Bernardo: “[With non-subjective priors,] The contribution
of the data in constructing the posterior of interest should be
“dominant”. Note that this does not mean that a non-
subjective prior is a mathematical description of
“ignorance”. Any prior reflects some form of knowledge.”

Nonetheless, Berger (1985, p. 90) argues that Bayesian analysis
with noninformative priors (older name for objective priors)
such as Jeffreys and Barnardo/Berger “is the single most
powerful method of statistical analysis, in the sense of being
the ad hoc method most likely to yield a sensible answer for
a given investment of effort”.

Bob Cousins, PhyStat-Flavour, 10/2020
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Recent book exploring Bayesian-frequentist divide

Much interesting history and

up to-date discussion of both theory STATISTICAL
and practice, including, for example, INFERENCE
internal debates among Bayesians. as

Very well-referenced. SEVERE

Mayo has long advocated “error TESTING
statistics”, and in particular the concept

of how severely a hypothesis has been
tested in a test that “passes”.

How to Get Beyond
the Statistics Wars

See my note, https://arxiv.org/abs/2002.09713 ,
“Connections between statistical
practice in elementary particle physics
and the severity concept as discussed
in Mayo's Statistical Inference as Severe
Testing”

DEBORAH G. MAYO

Bob Cousins, PhyStat-Flavour, 10/2020
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