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OUTLINE
• With no pretense of completeness, I will discuss some practical  issues in the field. 

• We heard in the previous talk about alternative approaches to Interval Estimation 

• In practice, in many cases more than one are used for the same measurement. 
Partly because of their different conceptual merits - but one reason is the practical 
need for some approximations - particularly on the frequentist side, that is what I 
focus on. 

• One point is systematic treatment.  

• Bayesian need to "vary priors", in a non well-specified way; while frequentists 
need to make approximations.  I will go in some details about this. 

• The other point I will discuss is optimization of sensitivity.  

• Interval estimation is just the final step of the measurement process - an 
important ingredient for success is starting with careful experiment design.
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POSSIBLY THE BEST KNOWN EXAMPLE

• CKM parameters (rho, eta) are a center point of Flavor physics 

• Two groups worked for years publishing interval estimates from the whole 
of available data: CKMfit (frequentist), UTfit(Bayesian)
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CKMFIT/UTFIT COMPARISON
they correspond to different input likelihoods, for |Vcb|, |Vub|, FBd

√

B̂Bd
, B̂K and ξ as shown in the

previous figures. Figure 5.13 shows the comparison on the (ρ̄, η̄) plane. The numerical results are given
in Table 5.3. Figure 5.14 shows the comparison between the allowed regions obtained using Bayesian or
Rfit methods if the constraint from the direct measurement of sin2β is removed from the fit.
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Fig. 5.13: Comparison Bayesian/Rfit Methods. Allowed regions for ρ̄ and η̄ at 95% (left plot) and 99% (right plot) using the

measurements of |Vub| / |Vcb|,∆Md, the amplitude spectrum for including the information from the B0
s −B

0
s oscillations, |εK |

and the measurement of sin 2β.
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Fig. 5.14: Comparison Bayesian/Rfit Methods. Allowed regions for ρ̄ and η̄ at 95% (left plot) and 99% (right plot) using

the measurements of |Vub| / |Vcb|, ∆Md, the amplitude spectrum for including the information from the B0
s − B

0
s oscillations

and |εK |

5.3.1. Further comparisons
To further the orogin of the residual difference between the two methods, we have performed the fol-
lowing test: both methods use the distributions as obtained from Rfit or from the Bayesian method to
account for the information on input quantities. The results of the comparison using the input distribu-
tions as obtained from Rfit are shown in Figs. 5.15 (Table 5.4). In some cases (0.1% C.L.) the ranges
selected by the Bayesian approach are wider. The comparison using the input distributions, as obtained
from the Bayesian method, give a maximal difference of 5%. These two tests show that, if same input
likelihood are used, the results on the output quantities are very similar. The main origin of the residual
difference on the output quantities, between the Bayesian and the Rfit method comes from the likelihood
associated to the input quantities.

5.3.2. Some conclusions on the fit comparison
The Bayesian and the Rfit methods are compared in an agreed framework in terms of input and output
quantities. For the input quantities the total error has been splitted in two errors. The splitting and the
p.d.f distribution associated to any of the errors is not really important in the Bayesian approach. It
becomes central in the Rfit approach where the systematic errors are treated as “non statistical” errors.
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the measured values of these observables with their theoretical predictions (in the SM or in a different
model) yields a set of constraints, which however depend on several parameters, like quark masses, decay
constants of B mesons and non-perturbative parameters, such as B̂K . Their values are constrained by
both measurements and theoretical calculations which are reviewed in Chapter 4.

Different methods have been proposed to combine this information and extract the UT parameters.
They differ in the treatment of the theoretical uncertainties for which they adopt either a frequentist or a
Bayesian approach. Despite much interest in these studies, no systematic comparison of these methods
had been performed before this Workshop. Moreover, different assumptions on the input parameters
made any comparison of published results difficult. At the Workshop, different groups agreed to share a
common set of input values (see Table 5.1), provided by the relevant working groups. In spite of using
the same central values and errors, the likelihood functions associated with the input parameters are
different in the two approaches. As a consequence, the region defining the 95% (99%) confidence level
for the UT parameters is wider by 30% (20%) in the frequentist as compared to the Bayesian approach.
Further tests have shown that, if the same likelihoods are used for input quantities, the output results
become almost identical. The main origin of the difference between the results in the Bayesian and the
frequentist method is therefore the likelihood associated to the input quantities. But these differences will
decrease progressively as the theoretical uncertainties will be reduced or related to experimental ones.
An example of the latter is the extraction of |Vcb| from inclusive decays, where — as already mentioned
— experimental constraints from the moments have replaced theoretical estimates in the aftermath of
the Workshop. It is also expected that additional inputs will be determined using unquenched Lattice
simulations.

Independently of the statistical method adopted, a crucial outcome of these investigations is the
remarkable agreement of the UT parameters, as determined by means of CP conserving quantities sen-
sitive to the UT sides, with the CP violation measurements in the kaon sector (ϵK) and in the B sector
(sin2β). This agreement tells us that, at the present level of accuracy, the SM mechanism of flavour and
CP violation describes the data well. At the same time, it is also an important test of the OPE, HQET and
Lattice QCD, on which the extraction of the CKM parameters rests. The present accuracy is at the 10%
level; the B factories and a next generation of facilities will improve the sensitivity of these tests by an
order of magnitude. The study of the impact of the uncertainties in the theoretical parameters on the UT
fits has shown that the uncertainties in

√

B̂Bd
FBd

have to be decreased by at least a factor of two in order

to have a significant impact on the UT fits — unless future calculations result in
√

B̂Bd
FBd

values which
differ significantly from present results. In the case of B̂K and in particular ξ, even a modest reduction
of the theoretical uncertainty could already have an important impact on the UT fits.

The output for various quantities of interest can be found in Table 5.5; a pictorial representation
of the fit is shown in Fig. 5.2. UT fits can also be used to obtain predictions for quantities that will
only be measured in the future, such as the ∆Ms oscillation frequency, predicted to be < 22.2 ps−1,
and the angle γ, predicted to be between 49.0◦ and 77.0◦. These 95% confidence levels ranges may be
considered as a reference to which the direct measurements will need to be compared for identifying
possible signals of New Physics.

While the determination of the triangle sides and the definition of the procedures for the UT fits
had a central role at the Workshop, a number of topics, which will become of increasing importance at
future meetings, started to be addressed. They are presented as individual contributions in Chapter 6. At
this stage, general strategies for the determination of the UT need to be formulated. Preliminary studies
show that the pairs of measurements (γ,β), (γ, Rb) and (γ, η) offer the most efficient sets of observables
to determine (ρ̄, η̄). On the other hand the pair (Rt,β) will play the leading role in the UT fits in the
coming years and for this reason it has been suggested to plot the available constraints on the CKM
matrix in the (Rt,β) plane. The present (Rt,β) plot corresponding to the usual (ρ̄, η̄) plot can be found
in Fig. 6.5.
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• Comparison and discussion between these groups have being ongoing for long. 
Also analyzed in detail in a CERN workshop (2003) 

• Summary conclusion: mostly similar when given the same likelihoods, difference is 
mainly in the systematic treatment. So it should be interesting.
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HOW FLAVOR-PHYSICS PRACTICE EVOLVED

(Disclaimer: what follows comes from a combination of INSPIRE citations, 
priv. comm. from statistics committees, and personal experience) 

• Fully Bayesian methodology, just as in UTFit is still being used; 
sometimes with the help of new tools as Markov-Chain MC. However, 
there is more attention to the frequentist coverage side - often a 
frequentist method is also presented, or it is used as a technical tool to 
produce frequentist coverage in a more practical way.  

• On the frequentist side, things are more varied: 

• Feldman-Cousins ordering is in wide use. The delta-chi^2 used by 
CKMfit is asymptotically equivalent. 

• CLs is a different frequentist approach in use, but less in Flavor than 
in High-PT (possibly due to its lower focus on rejection of H0 ?) 

• Handling of nuisance parameters still an important issue today.  
Largely based on the same approach of CKMFit, with some 
attempts at improving over those approximation - next slides

Citations of FC paper
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THE ISSUE WITH SYSTEMATICS
• Often the pdf p(x;µ) is actually a p(x;µ,ν), where ν is an unknown parameter I 

don’t care about, but it influences my measurement (nuisance) 

• I might also have some info of ν from another measurement y: q(e;ν).  
My problem is then: p(x,e; µ,ν) = p(x;µ,ν)*q(e;ν), but I am only interested in µ 

• In Bayesian approach, it is easy to get rid of ν: evaluate the posterior, 
marginalized on ν : 

              

• The only issue is the usual Bayesian question of choice of priors. This can 
also be non trivial, but will not discuss it further here [an example of 
surprising effects of choice of priors was shown at PhyStat05 by LeDiberder] 

• I will look more closely at the frequentist case, where issues are of a more 
practical nature

p(μ |x, e) = ∫ p(μ, ν |x, e)dν ∝ ∫ p(x, e |μ, ν)p(μ)p(ν)dν
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NEYMAN CONSTRUCTION WITH 
NUISANCE

• The rigorous frequentist way to deal with 
systematic uncertainties is simple in 
principle: 
1. Build a confidence band, treating the 

nuisance parameter as any other 
parameter: p( (x, e) ; (µ, ν) )  

2. Get CR in (µ, ν) from measurement (x0, e0) 
3. Project onto µ space to get rid of 

information on ν 
• There are however significant issues that 

have essentially prevented its practical use: 
– CPU - expensive, especially in large dimensions 
– Typically blows up interval/large over coverage 
– Sensitive to ordering algorithm 
– Limit for 0 uncertainty
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(x0,e0)

µ

ν

µ
min µ

max

Confidence band

Confidence interval on µ

(x0,e0)

parameters

ob
se

rv
ab

le
s
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THE 'PLUG-IN'/'PROFILE' APPROACH
1. Define a new (profile) pdf: 

 pprof(x;µ) = p(x ; µ, νbest(µ))  
where νbest(µ) maximizes  p(x0 ; µ,ν) 

2. Use pprof(x;µ) to obtain Conf. Limits 

Scanning limited to the µ space -> computationally much 
easier ! This is what CKMfit and most others do.  

• Only checks coverage in a small subspace. Also, it 
depends on the observed value x0  

-> "flip-flopping" fallacy, as defined by FC  
-> undercoverage, albeit usually  modest 

• Natural choice of ordering profile-likelihood ratio:  
LRprof(µ) = p(x ; µ, ν'best(µ))/p(x ; µbest , νbest(µ)) 

• Profile method: exploit the asymptotic chi2 
distribution of LR allows cut Lprof(µ) > c with no need 
for MC. Sometimes the chi^2 is used directly.  
-> Very convenient, but further approximated
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These two methods make the bulk of today's papers
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GOING BEYOND: A REAL-LIFE EXAMPLE

• An attempt at moving past the usual approximations, in a full-
fledged flavor physics measurement: CDF measurement of CP-
violating phase s  in  [Phys. Rev. D 85, 072002 (2012)]β Bs → J/ψϕ
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FIG. 9: Cumulative likelihood ratio distribution for the two-dimensional profile likelihood (left) with the likelihood ratios for

all of the “alternate universes” (colored histograms) overlaid on that from the “default” universe (black histogram). Adjusted

two-dimensional profile likelihood of �J/ �
s and �� in 5.2 fb

�1
of data (right). The standard model point is indicated by the

black point with error bars. The p-value at the standard model point is 44%.

ranges are

�J/ �
s 2 [0.02, 0.52] [ [1.08, 1.55] at 68%C.L,

�J/ �
s 2 [�⇡/2,�1.44] [ [�0.13, 0.68] [ [0.89,⇡/2] at 95%C.L.

The p-value at the standard model point is 31%.

In addition to the flavor-tagged 2D and 1D results, we also quote a 2D coverage-adjusted contour in the �J/ �
s �

�� plane for the likelihood fit without flavor tagging, shown in Figs. 11. The coverage adjustment in the untagged
case is completely analogous to the adjustments made in the other cases, with 1,000 pseudo-experiments generated at
the standard model point in both the “default” universe and in sixteen “alternate” ones. The p-value at the standard
model point for the untagged contour is 8%. As in the case of the flavor-tagged contours, the untagged contour
includes any possible contribution from S-wave states to the � mass window.

VI. CROSS-CHECKS OF LIKELIHOOD CONTOURS

A. E↵ect of coverage adjustment

The e↵ect of the coverage adjustment on the one and two-dimensional contours can be seen in Fig. 12, which shows
the unadjusted profile likelihoods. This di↵erence is expected to decrease as statistics becomes high enough that the
errors a Gaussian regime and the nuisance parameters are better constrained.

B. Time-dependence of result

In order to check for possible time-dependence of the result, we have divided the data in three approximately
equal periods of data-taking: 0 - 1.35 fb�1, 1.35 - 2.8 fb�1, and 2.8 - 5.2 fb�1. The unadjusted contours for the
three independent datasets are shown in Fig. 13. The variations observed are consistent with those seen in pseudo-
experiments of similar size [15].

• 2-D relevant parameter space. 

• Multiple solutions 

• Highly non-gaussian/non 
linear contours 

• 25 nuisance parameters
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A HELPFUL LITTLE THEOREM
[R.Berger and D.Boos, JASA 89, 427 (1994) 1012]

• One can limit the scan of nuisance parameters to a confidence region (1- ) for their 
values, provide one then corrects (1-CL) -> (1-CL)+ .   

• Example: set =0.01 and derive limits at CL=96% to obtain valid limits at 
CL=95% accounting for nuisance paramenters 

• Reduced scanning computational load, reduce overcoverage, limit variations  

β
β

β

µ

ν

µmin µmax

UNDERESTIMATED 
UNCERTAINTY ON µ

(x0,e0)

overcoverage

νbest(µ)
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IMPROVED EVALUATION OF SYSTEMATICS
• Use profile-LR ordering, with MC simulation to get actual distribution 

•  Instead of plugging in a single ν value, sample a few points on boundary of 
'box' defined by Berger-Boos 

• Picked 5-  for nuisance, to be prepared to exclude SM with high significance. 

• Lesson learned: significant effects from both non-asymptotic of LR, and systematic 
uncertainties. NB: event yields in the thousands.

σ
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FIG. 18. Likelihood scan in βJ/ψφ
s with no constraint (left) and with ∆Γs constrained to the SM prediction (right). After

coverage adjustment the solid (blue) and dot-dashed (red) horizontal lines indicate the 68% (95%) C.L. range above the global
minimum.

Within the Bayesian approach to statistical inference,
Bayes’ theorem defines the posterior probability density
given the observed data set x⃗

p(θ⃗ | x⃗) =
p(x⃗ | θ⃗ ) p(θ⃗ )

∫

p(x⃗ | θ⃗ ) p(θ⃗ ) dNθ
, (32)

where p(x⃗ | θ⃗ ) is the likelihood function L(x⃗ | θ⃗ ) and p(θ⃗ )
is the prior probability density for θ⃗, which describes the
knowledge about parameters θ⃗ that we assume prior to
our measurement. The projection of the N -dimensional
posterior density onto M parameters of physical interest

23

compatibility of our data with the standard model expec-

tation for βJ/ψφ
s , we start by calculating the SM p-value.

We generate pseudoexperiments at the standard model

expected point in the βJ/ψφ
s -∆Γs plane (βJ/ψφ

s = 0.02,
∆Γs = 0.090 ps−1). When generating the pseudoexper-
iments, we use the best fit values for all nuisance pa-

rameters as observed in our data while βJ/ψφ
s and ∆Γs

are fixed to the SM expected values. The likelihood
function corresponding to each pseudoexperiment is first
maximized with all parameters floating, and then maxi-

mized a second time with βJ/ψφ
s and ∆Γs fixed to their

SM values while the remaining fit parameters (nuisance
parameters) are independently floating. We then form
twice the negative difference between the logarithms of
the likelihood values obtained in each of the two steps to
obtain a profile-likelihood ratio value −2∆ logL. The
profile-likelihood ratio distribution from 1000 pseudo-
experiments is used to obtain the standard model p-
value, which is the fraction of pseudoexperiments with
−2∆ logL larger than the corresponding quantity ob-
served in data.

We construct the cumulative distribution of −2∆ logL
to obtain a mapping between the p-value = 1−C.L. and
−2∆ logL, as shown in Fig. 14 by the solid black his-
togram which has been interpolated. In an ideal situa-
tion, when the likelihood function is Gaussian with re-

spect to βJ/ψφ
s and ∆Γs, this dependence should be a

χ2 distribution with two degrees of freedom as indicated
by the green line. It is evident from Fig. 14 that, at
least with our current data sample size, we are not in an
asymptotic, Gaussian regime. To test the dependence of

the obtained mapping on the chosen SM point for βJ/ψφ
s

and ∆Γs, we construct similar maps between the con-
fidence level and −2∆ logL for other random points in

the βJ/ψφ
s -∆Γs plane and find very similar dependencies.

Consequently, we consider the mapping determined at

the SM point to apply for all points in the βJ/ψφ
s -∆Γs

plane.

To obtain confidence regions in βJ/ψφ
s and ∆Γs, we de-

termine profile-likelihood ratios for a grid on the βJ/ψφ
s -

∆Γs plane. In a Gaussian regime, the points with p-
value = 0.05, corresponding to a confidence level of 95%,
are identified by the intersection of the two-dimensional
profile-likelihood function and a horizontal plane which
is 5.99 units above the global minimum. The value 5.99
is the point on the −2∆ logL axis where the χ2 distribu-
tion with two degrees of freedom (green line) intersects
the 1 − 0.95 = 0.05 level (red dashed line) in Fig. 14.
The 68% C.L. is correspondingly obtained by the top
horizontal (blue) line. The intersection between the 0.05
level and the actual mapping (black histogram) is at
−2∆ logL = 7.34 which means that the 95% confidence
region is obtained by taking the intersection of the two-
dimensional profile-likelihood function and a horizontal
plane which is 7.34 units above the global minimum. In

this case we find the standard model p-value for βJ/ψφ
s
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FIG. 14. (color online). Mapping of p-value (1 − C.L.) as
a function of twice the negative difference of log-likelihoods
(−2∆ logL) as evaluated in pseudoexperiments. The ideal
dependence is a χ2 distribution with two degrees of freedom
as shown by the solid (green) line. The actual observed map-
ping for our data is shown by the black histogram, while the
corresponding distributions for the alternative ensembles are
displayed by the colored, dashed histograms.

to be 0.27. Clearly, this procedure leads to confidence
regions larger than in the ideal, Gaussian case.
In order to guarantee additional coverage over a con-

servative range of possible values of nuisance parame-
ters, sixteen alternative ensembles are generated. As
we do not know the true values for these nuisance pa-
rameters, we compute the coverage over a wide range
of possible values but always within their physically al-
lowed range [61]. In particular, each alternative ensem-
ble is produced by generating pseudoexperiments with
nuisance parameters randomized uniformly within ±5 σ
of their best fit values as obtained from maximizing the
likelihood function on data. In these pseudoexperiments,

the parameters βJ/ψφ
s and ∆Γs are again fixed to their

standard model expectation. We choose a random vari-
ation of ±5 σ over the nuisance parameters because we
aim to cover the space of nuisance parameters with a
C.L. much larger than the anticipated C.L. for our final
result. Exceptions to this approach are the strong phases
which are generated only within the range from zero to
2π and the dilution scale factors which are generated so
that the dilution is always between zero and one. The
other exception to applying a ±5 σ range is the phase
δSW , which is generated flat between 0 and 2π. Since
the S-wave fraction fSW is consistent with zero as dis-
cussed in Sec. VIII B, we lack sensitivity to the associated
phase and choose to vary it over its full range possible.

11



G. Punzi - PHYSTAT - Flavor 2020

F-C VS BAYESIAN

Fully frequentist, FC w/ systematics  (B-B clipped)
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the left-hand side. In a Gaussian scenario the 68% (95%)
C.L. range is between the points of intersection of the
profile-likelihood scan curve and a horizontal line which
is one unit (four units) above the global minimum. In
our case after coverage adjustment the solid (blue) and
dot-dashed (red) horizontal lines which indicate the 68%
and 95% C.L. ranges are at 2.74 and 7.11 units above the
global minimum, respectively. We obtain

βJ/ψφ
s ∈ [0.02, 0.52]∪ [1.08, 1.55] at 68% confidence level,

∈ [−π/2,−1.46]∪ [−0.11, 0.65]∪ [0.91,π/2] at

95% confidence level.

We find the standard model p-value for βJ/ψφ
s to be 0.30

corresponding to about one Gaussian standard deviation
from the SM expectation as is also evidenced in Fig. 16.

In comparison with the recent measurement of βJ/ψφ
s

from the D0 collaboration using a data sample based on
8 fb−1 of integrated luminosity [19], we find a similar

region to constrain βJ/ψφ
s at the 68% C.L. and obtain

a similar p-value for comparison with the SM expecta-

tion. However, our result constrains βJ/ψφ
s to a narrower

region at the 95% confidence level.
In addition, we quote a confidence interval for the

S-wave fraction after performing a likelihood scan for
fSW as shown in Fig. 19. We also show a quadratic
fit overlaid indicating the parabolic shape of the likeli-
hood around the minimum which we integrate to cal-

culate upper limits on the S-wave fraction. The up-
per limit on the S-wave fraction over the mass interval
1.009 < m(K+K−) < 1.028 GeV/c2 corresponding to
the selected K+K− signal region is 4% of the total signal
at the 68% confidence level, and fSW < 6% at 95% C.L.
Since the analysis is limited to events in a narrowK+K−

mass range around the φ signal, the observed S-wave
fraction is small and its effect on the observables quoted
in this analysis is minor. We verified with pseudoexperi-
ments that a sizeable amount of S-wave would affect the
measured value of βJ/ψφ

s . In contrast to our result, the
recent D0 publication [19] quotes a sizeable fraction of
17.3±3.6% for the S-wave fraction over almost the same
K+K− mass range. We also perform a likelihood scan
to determine the associated S-wave phase, but, as ex-
pected from simulated experiments, we find that we are
not sensitive to δSW with the current data sample size.
Finally, we perform a flavor tagged analysis with ∆Γs

Gaussian constrained to the theoretical prediction of
2 |Γs

12| = (0.090± 0.024) ps−1 [9]. Under this constraint,

βJ/ψφ
s is found in the range [0.05, 0.40] ∪ [1.17, 1.49] at

the 68% confidence level, and within [−π/2,−1.51] ∪
[−0.07, 0.54]∪ [1.03,π/2] at 95% C.L. as shown in Fig. 18
on the right-hand side. The p-value for the SM expected

value of βJ/ψφ
s from this constrained fit is 0.21, corre-

sponding to a deviation from the SM expectation of 1.3 σ
significance. We note that the likelihood scans in Fig. 18

exhibit small deviations from the symmetry in βJ/ψφ
s that

is expected according to our discussion above. The rea-
son is given by the small S-wave fraction that our like-
lihood fit finds as well as the choice of binning and nu-
merical precision in determining the displayed −2∆ logL
values.

IX. RESULTS ON β
J/ψφ
S AND ∆ΓS IN A

BAYESIAN APPROACH

In addition to the frequentist results shown in the pre-
vious section, we use a Bayesian analysis to provide cross-
checks on the determination of the physics parameters.
We use Bayesian inference via integration of the posterior
density obtained from the likelihood function described
in Sec. VI over the nuisance parameters and over those
physics parameters in which we are not presently inter-
ested.
The starting point for this Bayesian approach is the

likelihood function, L(x⃗ | θ⃗, ν⃗ ), where x⃗ are the exper-
imental measurements including the B0

s candidate de-
cay time and invariant mass, the transversity angles and
tagging information, while µ⃗ = (θ⃗, ν⃗ ) is a vector distin-
guishing the physics parameters θ⃗ described in Table II
from the remaining nuisance parameters ν⃗ in the fit de-
scribing features such as background shapes, tagging per-
formance, and detector resolution (see Sec. VI). In our

analysis the dimensionality of θ⃗ and ν⃗ is 11 and 24, re-
spectively.
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FIG. 20. (color online). Bayesian posterior densities for the variables βJ/ψφ
s (top) and ∆Γs (bottom). The left plots show

projections of sixteen independent Markov Chains, while the right two plots show the posterior densities with 68% and 95%
credible intervals in dark-solid (blue) and light-solid (red) areas, respectively.
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FIG. 21. (color online). Joint posterior probability density in

the βJ/ψφ
s -∆Γs plane for the combined analysis. The dark-

solid (blue) and light-solid (red) contours show the 68% and
95% credible regions, respectively. The narrow band (green)
is the theoretical prediction of mixing-induced CP violation.

in cos δ⊥, and third, the prior is taken flat in cos δ∥. Af-
terwards, all three conditions are applied together at the
same time. Fifth, the prior is taken flat in the amplitudes
A∥(0) and A⊥(0) rather than in their squares and finally,
the mixing-induced CP violation constraint is taken as a
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FIG. 22. (color online). Posterior density in the strong phases
δ⊥ versus δ∥ overlaid with the prediction that the phases in
B0

s → J/ψφ match those in B0 → J/ψK0∗ decays to within
10◦ [63]. The dark-solid (blue) and light-solid (red) contours
show the 68% and 95% credible regions, respectively. The
width of the light-shaded (green) ellipse includes the 10◦ the-
oretical uncertainty added in quadrature with the experimen-
tal uncertainties on δ∥ and δ⊥ from B0 → J/ψK0∗.

Gaussian rather than flat constraint. The effect of chang-

ing the priors on the 68% credibility intervals on βJ/ψφ
s

Bayesian w/systematics MCMC (no prior variations)

• The same paper also reports a (fully) Bayesian analysis as 'crosscheck'. Includes 
prior variations (non pictured). 

• Bayesian yields similar regions (a bit smaller, if you do not include prior variations) 
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CAN ORDERING ALSO BE IMPROVED?  
[ARXIV:0511202 (PHYSTAT05)]

• LR ordering is a good thing - but can't tell nuisance from physics parameters. 

• Things can be improved by choosing an ad-hoc nuisance-aware ordering function:  

 

where f0(x) is the ordering function in absence of systematics 

• This particular ordering is independent of nuisance (facilitates computation) and ensures 
efficient use of the confidence band, minimizing "wasted coverage" 

• Integration must still be done for several values of ν  
(but the previous tricks still apply) 

• If LR is used as f0(x), it is approximated by the profile-LR: 

              

(note this is different from ) 

• This ordering has an additional good property (next slide)

f(x, e; μ) = ∫f0(x′�)<f0(x)
p(x′�|e; μ, ̂ν(e))dx′�

LRprof =
supν p(x; μ, ν)

supμ supν p(x; μ, ν)

LR =
p(x; μ, ν)

supμ supν p(x; μ, ν) µ

ε

µ
min

µ
max

(x0,e0)

ideal shape of conf. region

13
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THE 0-LIMIT ISSUE

σ

µ max

• In most approaches, the confidence region does not approach  the result 
obtained without systematics when σ(syst)→0 ! 

• Annoying, especially considering the limit is often tighter than in absence of 
systematics (I believe it was pointed out by G.Feldman at CL workshop@FNAL) 

• This is prevented by the ordering shown in previous page  
(fine print: in discrete cases may require some parameter tuning)

[ARXIV:PHYSICS/0511202]

Both these improvements have not been exploited much yet 
14
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A SUMMARY ON FREQUENTIST SYSTEMATICS
Orderin

g
Integration Nuisance scan Flip- 

flop
0-

limit
Computation

MINOS,PROB,"P
rofile", TRolke LRprof

Approximate, 
assumes chi2 

distrib.
ν= νbest(µ,x0) ~N NO Easy

"Plugin",  
CKMFIT-RFit, 

Stat Sin 19, 301  
LRprof Exact

ν= νbest(µ,x0) 
(CKMFIT/RFit 

assumes ranges)
Y NO Moderate

"Bayesian","Sme
ared","Hybrid" any Exact Averaged over N OK Easy

PRD 85, 072002 
(sin 2betas) 

LRprof Exact
Exact  

(BB-clipped, 
boundary 

N NO Moderate

CKMfit-Scan LRprof Exact Exact (numerical) N NO Heavy

physics/0511202 *Special Exact Exact (projection) N OK Moderate

15
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SPEAKING OF POWER: 
OPTIMIZING YOUR ANALYSIS

• Another topic of interest is optimization of the measurement 
(selection/other user choices) 

• Back to the "point-H0 vs continuous-H1" scenario: a recurring 
issue is the choice between "optimizing for limits" vs 
"optimizing for discovery".  
In flavor physics, excluding  H0 is not necessarily a remote, if 
lucky, possibility. H0 may be a null BR for a quite reasonably 
existing rare process; of CPV in a channel where it has not 
been observed, but may quite be (and at times, is). 

• The multi-D nature of many flavor physics measurements 
comes as an additional complication

16
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EXAMPLE OF MULTI-D SENSITIVITIES

29

Fig. 21 The experimental sensitivities in terms of reference model parameters MV � ✏ for M = 0.4 GeV, M� = 5 MeV, and
�M = M�0 � M� = 10 MeV (top-left panel) and M = 2 GeV, M�0 = 50 MeV, and �M = 10 MeV (top-right panel). The left
panels are for Scenario 1 and the right ones are for Scenario 2. The bottom panels compare di↵erent reference points in the
p-scattering channel. See the text for the details.

In both scenarios, the proton scattering channel en-
ables us to explore di↵erent regions of parameter space
as it allows heavier �0 to be accessible which would be
kinematically forbidden to access in the electron scat-
tering channel. Inspired by this potential of the proton
scattering channel, we study other reference parame-
ters and compare them with the original ones in the
top panels of Fig. 21, and show the results in the bot-
tom panels. We see that di↵erent parameter choices in
the proton scattering channel allow us to cover a wider
or di↵erent range of parameter space.

We next discuss model-independent experimental
sensitivities. The experimental sensitivities are deter-
mined by the number of signal events excluded at 90%
CL in the absence of an observed signal. The expected
number of signal events, Nsig, is given by

Nsig = �✏FA(`lab)texpNT , (22)

where T stands for the target that � scatters o↵, �✏ is
the cross section of the primary scattering �T ! �0T ,
F is the flux of �, texp is the exposure time, and A(`lab)
is the acceptance that is defined as 1 if the event oc-
curs within the fiducial volume and 0 otherwise. Here
we determine the acceptance for an iBDM signal by the
distance between the primary and secondary vertices in
the laboratory frame, `lab, so A(`lab) = 1 when both the
primary and secondary events occur inside the fiducial
volume. (Given this definition, obviously, A(`lab) = 1
for elastic BDM.) Our notation �✏ includes additional
realistic e↵ects from cuts, threshold energy, and the de-
tector response, hence it can be understood as the fidu-
cial cross section.
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The 90% CL exclusion limit, N90
s , can be obtained

with a modified frequentist construction [214, 215]. We
follow the methods in Refs. [216–218] in which the Pois-
son likelihood is assumed. An experiment becomes sen-
sitive to the signal model independently if Nsig � N90

s .
Plugging Eq. (22) here, we find the experimental sensi-
tivity expressed by

�✏F � N90
s

A(`lab)texpNT
. (23)

Since `lab di↵ers event-by-event, we take the maximally
possible value of laboratory-frame mean decay length,
i.e., ¯̀max

lab
⌘ �max

�0 ¯̀
rest where �max

�0 is the maximum boost
factor of �0 and ¯̀

rest is the rest-frame mean decay
length. We emphasize that this is a rather conservative
approach, because the acceptance A is inversely pro-
portional to `lab. We then show the experimental sensi-
tivity of any kind of experiment for a given background
expectation, exposure time, and number of targets, in
the plane of ¯̀max

lab
� �✏ · F . The top panel of Fig. 22

demonstrates the expected model-independent sensitiv-
ities at the DUNE experiment. The green (blue) line is
for the DUNE FD with a background-free assumption
and 20 (40) kt · year exposure.

The bottom panel of Fig. 22 reports model-
dependent sensitivities for ¯̀max

lab
= 0 m and 100 m

corresponding to the experiments in the top panel.
Note that this method of presentation is reminiscent of
the widely known scheme for showing the experimen-
tal reaches in various DM direct detection experiments,
i.e., MDM � �DM�target where MDM is the mass of DM
and �DM�target is the cross section between the DM and
target. For the case of non-relativistic DM scattering in
the direct-detection experiments, MDM determines the
kinetic energy scale of the incoming DM, just like M 

sets out the incoming energy of boosted � in the iBDM
search.

8.3 Elastic Boosted Dark Matter from the Sun

In this section, we focus on Benchmark Model ii) de-
scribed by Eq. (15). This study uses DUNE’s full FD
event generation and detector simulation. We focus on
BDM flux sourced by DM annihilation in the core of
the sun. DM particles can be captured through their
scattering with the nuclei within the sun, mostly hy-
drogen and helium. This makes the core of the sun a
region with concentrated DM distribution. The BDM
flux is

� = f
A

4⇡D2
, (24)

Fig. 22 Top: model-independent experimental sensitivities
of iBDM search in ¯̀max

lab � �✏ · F plane. The reference experi-
ments are DUNE 20 kt (green), and DUNE 40 kt (blue) with
zero-background assumption for 1-year time exposure. Bot-
tom: Experimental sensitivities of iBDM search in M � �✏
plane. The sensitivities for ¯̀max

lab = 0 m and 100 m are shown
as solid and dashed lines for each reference experiment in the
top panel.

where A is the annihilation rate, and D = 1AU is the
distance from the sun. f is a model-dependent parame-
ter, where f = 2 for two-component DM as considered
here.

For the parameter space of interest, assuming that
the DM annihilation cross section is not too small, the
DM distribution in the sun has reached an equilibrium
between capture and annihilation. This helps to elim-
inate the annihilation cross section dependence in our
study. The chain of processes involved in giving rise to
the boosted DM signal from the sun is illustrated in
Fig. 23.

Two additional comments are in order. First, the
DM particles cannot be too light, i.e., lighter than
4 GeV [219,220], otherwise we will lose most of the cap-
tured DM through evaporation rather than annihila-
tion; this would dramatically reduce the BDM flux. Ad-
ditionally, one needs to check that BDM particles can-
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Fig. 5 The impact of non-unitarity on the DUNE CPV discovery potential. See the text for details.

Fig. 6 Expected frequentist allowed regions at the 1�, 90% and 2� CL for DUNE. All new physics parameters are assumed to
be zero so as to obtain the expected non-unitarity sensitivities. A value ✓23 = 0.235⇡ ⇡ 0.738 rad is assumed. The solid lines
correspond to the analysis of DUNE data alone, while the dashed lines include the present constraints on non-unitarity. The
values of ✓23 are shown in radians.

Table 5 Oscillation parameters and priors implemented in
MCMC for calculation of Fig. 7.

Parameter Nominal 1� Range (±)

✓12 0.19⇡ 2.29%
sin2(2✓13) 0.08470 0.00292
sin2(2✓23) 0.9860 0.0123

�m2
21 7.5 ⇥10�5eV2 2.53%

�m2
31 2.524 ⇥10�3eV2 free

�CP 1.45⇡ free

non-negligible NSI and the standard-only credible re-
gions at 90% CL. In the blue filled areas we assume
only standard oscillation. In the regions delimited by

the red, black dashed, and green dotted lines we con-
strain standard oscillation parameters allowing NSI to
vary freely.

An important degeneracy appears in the measure-
ment of the mixing angle ✓23. Notice that this degen-
eracy appears because of the constraints obtained for
✏⌧⌧ � ✏µµ shown in Fig. 7. We also see that the sensi-
tivity of the CP phase is strongly a↵ected.

The e↵ects of matter density variation and its aver-
age along the beam path from Fermilab to SURF were
studied considering the standard neutrino oscillation
framework with three flavors [81, 82]. In order to ob-
tain the results of Figs. 7 and 8, we use a high-precision

• Recent DUNE paper (Aug 28) [ArXiv:
2008.12769], exemplifies typical 
paradigms for quantifying sensitivity 
of a future experiment:  
- 'average' limits (assuming H0) 
- 'expected' signal reach  
(# signal events > median limit)
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Fig. 26 Expected 5� discovery reach with one year of DUNE
livetime for one 10 kt module including neutrons in recon-
struction (top) and excluding neutrons (bottom).

ters of the light DM model and a range of two free pa-
rameters, a sensitivity map was produced. Within the
context of the vector portal DM model and the chosen
parameter constraints along with the electron scatter-
ing as the signal event, this result sets stringent limits
on DM parameters that are comparable or even better
than recent experimental bounds in the sub-GeV mass
range.

By contrast, in the case of the FD modules, we as-
sumed that the signal events are due to DM coming
from the galactic halo and the sun with a significant
boost factor. For the inelastic scattering case, the DM
scatters o↵ either an electron or proton in the detector
material into a heavier unstable dark-sector state. The
heavier state, by construction, decays back to DM and
an electron-positron pair via a dark-photon exchange.
Therefore, in the final state, a signal event comes with
an electron or proton recoil plus an electron-positron
pair. This distinctive signal feature enabled us to per-
form (almost) background-free analyses.

As ProtoDUNE detectors are prototypes of DUNE
FD modules, the same study was conducted [188] and
corresponding results were compared with the ones of
the DUNE FD modules. We first investigated the exper-
imental sensitivity in a dark-photon parameter space,
dark-photon mass MV versus kinetic mixing parame-
ter ✏. The results are shown separately for Scenarios 1

5 10 15 20 25 30 35 40
10�6

10�5

10�4

� = 1.25

MB (GeV)

g4 Z
0

Fig. 27 Comparison of sensitivity of DUNE for 10 years
of data collection and 40 kt of detector mass with Super
Kamiokande, assuming 10% and 100% of the selection e�-
ciency on the atmospheric neutrino analysis in Ref. [224], and
with the reinterpretations of the current results from PICO-
60 [225] and PandaX [226]. The samples with two boosted
factors, � = 1.25 (top) and � = 10 (bottom), are also pre-
sented.

and 2 in Fig. 21. They suggest that DUNE FD modules
would probe a broad range of unexplored regions; they
would allow for reaching ⇠ 1 � 2 orders of magnitude
smaller ✏ values than the current limits along MeV to
sub-GeV-range dark photons. We also examined model-
independent reaches at DUNE FD modules, providing
limits for models that assume the existence of iBDM (or
iBDM-like) signals (i.e., a target recoil and a fermion
pair).

For the elastic scattering case, we considered the
case in which BDM comes from the sun. With one year
of data, the 5� sensitivity is expected to reach a cou-
pling of g4

Z0 = 9.57 ⇥ 10�10 for a boost of 1.25 and
g4

Z0 = 1.49 ⇥ 10�10 for a boost of 10 at a DM mass of
10 GeV without including neutrons in the reconstruc-
tion.
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A DIFFERENT APPROACH: 
“SENSITIVITY"AS A REGION  
[ARXIV:PHYSICS/0308063]

● Differs from usual notion of sensitivity as a number 

● Def:  The sensitivity region of a search is the set: 

S = {µ: 1 - βα(µ) > CL} 

● Theorem: the following two facts hold simultaneously: 

1) If the true  , the probability of  discovery is at least CL  
("discovery" = excluding H0@ signif. α ) 

2) In case H0 is accepted instead, every  will always be excluded @CL  
(independently of the true value of µ !)  

Optimization means to make S as large as possibile (“Unified” view of sensitivity). If it is 
not growing in all directions, it means there are physics choices - but this is good. 

● NB: Independent of metrics and of expected signal. Independent of ordering for limits (fine print: acceptance 
region of the test should be excluded before any critical region is excluded. F-C usually works fine)

μ ∈ S

μ ∈ S

18
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APPLICATION TO 'COUNTING EXPERIMENTS'

Simplest expression: approximate b~a

Tail-improved Gaussian approx.

• For the Poisson+Background 
problem, the sensitive region 
is a half-line in the number of 
expected signal events 
S(µ)>Smin(B). Optimization 
then simply amount to 
minimizing Smin(B) 

• This can be recast in terms of 
maximizing a function of the 
efficiency � , independent of 
absolute cross section for 
signal 

• Convenient approximate 
expressions can be written as 
functions of (a,b) = # of � for 
(α,1-CL)

ϵ(t)

σ

19
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USAGE IN FLAVOUR PHYSICS
• Increasingly popular in HEP, particularly in Flavour 

• Vast majority of existing papers simply maximize: 
                            

• This "out-of-the box" solution isn't bad - but was initially 
intended as a pedagogical example for the simplest 
possible case. There is still room to do better: 

1. Can adapt to the actual likelihood fit -> more accurate 
optimization 

Not too difficult to explicitly solve the equation 1 - 
βα(µ) > CL in your specific case, and maximize the 
resulting region  

2. Apply it to multi-D problems, not just counting 
experiments. The concept can be exploited also to make 
physics-driven choices.  A bonus for Flavor physics.

ϵ

a /2 + B
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CONCLUSIONS

• There has been progress in interval estimation over time, and 
Flavor physics has benefitted. I like to think PHYSTAT helped. 

• Analyses today more sophisticated and more conscious of 
issues. Often use several methods in parallel. 

• There is still room for more progress. In particular, we are not 
yet making full use of the increased availability of computing 
power to get rid of old approximations that aren't necessary 
anymore.  

• Computing power brought a revolution to deep learning and 
AI - there is no reason it should not do the same for Statistics.
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