Moving beyond QCD improved parton model

Jianwei Qiu Brookhaven National Laboratory

> Spring workshop on electron-nucleus collider physics
> The Rockefeller University Center for Studies in Physics and Biology
> New York, NY, May 14, 2010

Outline

\square Success of QCD improved parton model (PM)
\square Hadron properties beyond PDFs
\square Potential observables to probe dynamics beyond PM
\square One example: single transverse spin asymmetries
\square Effect of color Lorentz and magnetic force
\square Summary and outlook

Parton, hadron, and cross section

\square Theorists' view of hadronic cross section:

Any number of partons could participate in the collision
\square Large momentum transfer simplifies the picture:

$$
\sigma_{A B}(Q, \vec{s}) \approx \sigma_{A B}^{(2)}(Q, \vec{s})+\frac{Q_{s}}{Q} \sigma_{A B}^{(3)}(Q, \vec{s})+\frac{Q_{s}^{2}}{Q^{2}} \sigma_{A B}^{(4)}(Q, \vec{s})+\cdots
$$

Single hard scale \Rightarrow Leading power \Rightarrow Collinear factorization

$$
\sigma_{A B}^{(2)}(Q, \vec{s})=\hat{\sigma}_{a b}\left(x, x^{\prime}, Q\right) \otimes f_{a / A}(x, Q, \vec{s}) \otimes\left[f_{b / B}\left(x^{\prime}, Q\right) \otimes \cdots\right]
$$

\square Predictive power:
Short-distance dynamics, PDFs, and FFs
It worked beautifully - great success of QCD!

Leading power QCD vs DIS data

Leading power QCD vs hadronic jet data

Success of leading power QCD

\square Universality of PDFs - one set for all data:

\square Robust calculation of partonic dynamics in powers of $\boldsymbol{\alpha}_{\mathrm{s}}$ Consistently fit almost all data with $\mathrm{Q}>2 \mathrm{GeV}$

Question

\square What have we learned about QCD from high energy collisions and the leading power formalism?

- Asymptotic freedom of QCD - short-distance dynamics < 0.1/fm
- Collinear factorization works beautifully - identified hadron involved approximation: all hard collisions are between collinear partons

$$
\sigma_{A B}^{(2)}(Q, \vec{s})=\hat{\sigma}_{a b}\left(x, x^{\prime}, Q\right) \otimes f_{a / A}(x, Q, \vec{s}) \otimes\left[f_{b / B}\left(x^{\prime}, Q\right) \otimes \cdots\right]
$$

Bottom line:
We learned enough to be confident to use leading power QCD factorization formalism to calculate and to predict the event structure at the LHC, and to discover the new physics ...

More questions

\square How much have we learned about the hadron structure from high energy experiments? NOT much!

- PDFs: $q_{f}(x, Q), g(x, Q)$ - a "probability density" to find a parton of momentum fraction x - probed at a scale Q
- Helicity distribution functions: $\Delta q_{f}(x, Q), \Delta g(x, Q)$
- Hadronization - fragmentation functions: $D_{f \rightarrow h}(z, Q), \ldots$
\square Hadron structure is much more richer!

Proton: mass, spin, electric charge, magnetic moment, ...
\square Explain these properties in terms of QCD: quarks, gluons, and their dynamics?

Too hard a problem?

Quark-gluon structure of a hadron?

\square Hadron is a dynamical system of quarks and gluons:

- Mass: mainly from energy of quarks and gluons
- Spin: a composite system without localized color charge
- Structure: quantum fluctuations at various time scales
\square Picture of the structure is "probe" sensitive!

\square Localized hard probe: 1/Q >> 1/fm
- More sensitive to short-distance quantum fluctuation
- but, not sensitive to long-range coherence - hadron structure

Moving beyond the local density?

\square We measure cross sections:

$\sigma_{A B}(Q, \vec{s}) \approx \sigma_{A B}^{(2)}(Q, \vec{s})+\frac{Q_{s}}{Q} \sigma_{A B}^{(3)}(Q, \vec{s})+\frac{Q_{s}^{2}}{Q^{2}} \sigma_{A B}^{(4)}(Q, \vec{s})+\cdots$
Too large to compete?
\square Explore new observables:

- Spin asymmetry: $\quad \sigma_{A B}(Q, \vec{s})-\sigma_{A B}(Q,-\vec{s})$ if the $1^{\text {st }}$ term cancels
- Small-x probes - hard probe is NOT local - size (or A)-dependence!
- Multiple observed scales - TMD, GPD, ... $2 R \gg \frac{1}{x p} \gtrsim 2 R \frac{m}{p}$

$$
Q \gg Q^{\prime} \gtrsim 1 / \mathrm{fm} \sim \Lambda_{\mathrm{QCD}}
$$

Large SSA in hadronic collisions

\square Hadronic $p \uparrow+p \rightarrow \pi(l) X \quad$:

$$
A_{N}=\frac{1}{P_{\text {beam }}} \frac{N_{\text {left }}^{\pi}-N_{\text {right }}^{\pi}}{N_{\text {left }}^{\pi}+N_{\text {right }}^{\pi}}
$$

Single transverse spin asymmetry - A_{N}

$\square A_{N}=0$ for inclusive DIS - one photon exchange:
\square DIS cross section: $\quad \sigma\left(s_{T}\right) \propto L^{\mu \nu} W_{\mu \nu}\left(s_{T}\right)$
\square Leptonic tensor is symmetric: $L^{\mu \nu}=L^{\nu \mu}$

\square Hadronic tensor: $\quad W_{\mu \nu}\left(s_{T}\right) \propto\left\langle P, s_{T}\right| j_{\mu}^{\dagger}(0) j_{\nu}(y)\left|P, s_{T}\right\rangle$
\square Polarized cross section: $\quad \Delta \sigma\left(s_{T}\right) \propto L^{\mu \nu}\left[W_{\mu \nu}\left(s_{T}\right)-W_{\mu \nu}\left(-s_{T}\right)\right]$
$\square \mathrm{P}$ and T invariance:

$$
\begin{aligned}
&\left\langle P, s_{T}\right| j_{\mu}^{\dagger}(0) j_{\nu}(y)\left|P, s_{T}\right\rangle=\left\langle P,-s_{T}\right| j_{\nu}^{\dagger}(0) j_{\mu}(y)\left|P,-s_{T}\right\rangle \\
& \Longleftrightarrow W_{\mu \nu}\left(-s_{T}\right)=W_{\nu \mu}\left(s_{T}\right) \\
& \Longrightarrow \Delta \sigma\left(s_{T}\right) \propto L^{\mu \nu}\left[W_{\mu \nu}\left(s_{T}\right)-W_{\mu \nu}\left(-s_{T}\right)\right]=L^{\mu \nu}\left[W_{\mu \nu}\left(s_{T}\right)-W_{\nu \mu}\left(s_{T}\right)\right]=0
\end{aligned}
$$

Symmetry plays a crucial role in SSAs
My 14, 2010
Jianwei Qiu

Minimum conditions for $\mathrm{A}_{\mathrm{N}}=1=0$

\square SSA corresponds to a naively T-odd triple product:

$$
A_{N} \propto i \vec{s}_{p} \cdot(\vec{p} \times \vec{\ell}) \Rightarrow i \epsilon^{\mu \nu \alpha \beta} p_{\mu} s_{\nu} \ell_{\alpha} p_{\beta}^{\prime}
$$

Novanish A_{N} requires a phase, enough vectors to fix a scattering plan, and a spin flip at the partonic scattering
\square Leading power in QCD:

Kane, Pumplin, Repko, PRL, 1978

$A_{N}=1=0$ in collinear factorization

$\square A_{N}-$ twist-3 effect:
Efremov, Teryaev, 82; Qiu, Sterman, 91

$$
\Delta\left(s_{T}\right) \propto T^{(3)}(x, x) \otimes \hat{\sigma}_{T} \otimes D_{f}(z)+\delta q_{f}(x) \otimes \hat{\sigma}_{D} \otimes D^{(3)}(z, z)
$$

Kang, Yuan, Zhou, 2010

- Interference of single parton and a two-parton composite state
\square The phase:
- Interference of Real and Imaginary part of scattering amplitude
- gluonic pole: $\quad \propto T^{(3)}(x, x)$
- fermionic pole contribution $x T^{(3)}(x, 0)$ or $T^{(3)}(0, x)$

Features of A_{N} in collinear factorization

Qiu, Sterman, 91
\square Factorization is valid (as good as leading power):

$$
\Delta \sigma_{A B \rightarrow h}\left(p_{T}, \vec{s}_{T}\right)=\sum_{a b c} T_{a / A}^{(3)}\left(x, \vec{s}_{T}\right) \otimes f_{b / B}\left(x^{\prime}\right) \otimes \hat{\sigma}_{a b \rightarrow c}\left(p_{T}, \vec{s}_{T}\right) \otimes D_{c \rightarrow h}(z)
$$

Qiu, Sterman, 1991,98
Kang, Yuan, Zhou, 2010

$$
+\sum_{a b c} \delta q_{a / A}^{(2)}\left(x, \vec{s}_{T}\right) \otimes f_{b / B}\left(x^{\prime}\right) \otimes \hat{\sigma}_{a b \rightarrow c}^{\prime}\left(p_{T}, \vec{s}_{T}\right) \otimes D_{c \rightarrow h}^{(3)}(z)
$$

Kanazawa, Koike, 2000

$$
+\sum_{a b c} \delta q_{a / A}^{(2)}\left(x, \vec{s}_{T}\right) \otimes f_{b / B}^{(3)}\left(x^{\prime}\right) \otimes \hat{\sigma}_{a b \rightarrow c}^{\prime \prime}\left(p_{T}, \vec{s}_{T}\right) \otimes D_{c \rightarrow h}(z)
$$

\square Generic features:

$$
\begin{aligned}
A_{N} \propto \frac{\epsilon_{\perp}^{\alpha \beta} s_{\alpha} p_{T \beta}}{-\hat{t}}\left[-x \frac{d}{d x} T^{(3)}(x, x)\right] \propto & \frac{\epsilon_{\perp}^{\alpha \beta} s_{\alpha} p_{T \beta}}{p_{T}^{2}}\left[\frac{n}{1-x}\right] \\
& \quad \text { if } T^{(3)}(x, x) \propto q(x) \propto(1-x)^{n}
\end{aligned}
$$

- A_{N} falls as $1 / p_{T}$ if p_{T} is large
- A_{N} increases as X_{F} if X_{F} is large

Asymmetries from the $T_{F}(x, x)$

(FermiLab E704)

(RHIC STAR)

Kouvaris,Qiu,Vogelsang,Yuan, 2006

Nonvanish twist-3 function
My 14, 2010
Jianwei Qiu

Twist-3 distributions relevant to SSA

\square Two-sets Twist-3 correlation functions:

$$
\begin{aligned}
& \widetilde{\mathcal{T}}_{q, F}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}}\left\langle P, s_{T}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+}}{2}\left[\epsilon^{s_{T} \sigma n \bar{n}} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] \psi_{q}\left(y_{1}\right)\left|P, s_{T}\right\rangle \\
& \widetilde{\mathcal{T}}_{G, F}^{(f, d)}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}} \frac{1}{P^{+}}\left\langle P, s_{T}\right| F^{+\rho}(0)\left[\epsilon^{s_{T} \sigma n \bar{n}} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] F^{+\lambda}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle\left(-g_{\rho \lambda}\right) \\
& \widetilde{\mathcal{T}}_{\Delta q, F}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}}\left\langle P, s_{T}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+} \gamma^{5}}{2}\left[i s_{T}^{\sigma} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] \psi_{q}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle \\
& \widetilde{\mathcal{T}}_{\Delta G, F}^{(f, d)}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}} \frac{1}{P^{+}}\left\langle P, s_{T}\right| F^{+\rho}(0)\left[i s_{T}^{\sigma} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] F^{+\lambda}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle\left(i \epsilon_{\perp \rho \lambda}\right)
\end{aligned}
$$

\square Twist-2 distributions:
No probability interpretation!

- Unpolarized PDFs:
- Polarized PDFs:

My 14, 2010

$$
\begin{aligned}
& q(x) \propto\langle P| \bar{\psi}_{q}(0) \frac{\gamma^{+}}{2} \psi_{q}(y)|P\rangle \\
& G(x) \propto\langle P| F^{+\mu}(0) F^{+\nu}(y)|P\rangle\left(-g_{\mu \nu}\right) \\
& \Delta q(x) \propto\left\langle P, S_{\|}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+} \gamma^{5}}{2} \psi_{q}(y)\left|P, S_{\|}\right\rangle \\
& \Delta G(x) \propto\left\langle P, S_{\|}\right| F^{+\mu}(0) F^{+\nu}(y)\left|P, S_{\|}\right\rangle\left(i \epsilon_{\perp \mu \nu}\right) \\
& \text { Jianwei Qiu }
\end{aligned}
$$

Model calculation for twist-3 distributions

\square Quark-diquark model of nucleon:
Scalar or axial-vector spectator

$$
\begin{aligned}
\mathcal{V}_{q, F}^{\mathrm{LC}} & =\frac{\gamma^{+}}{2 p^{+}} 2 \pi g \delta\left(x-\frac{k^{+}}{p^{+}}\right) y \delta\left(y-\frac{q^{+}}{p^{+}}\right)\left(i \epsilon^{s_{T} \mu n \bar{n}}\right)\left[-g_{\mu \sigma}\right] \mathcal{C}_{q} \\
\mathcal{V}_{\Delta q, F}^{\mathrm{LC}} & =\frac{\gamma^{+} \gamma^{5}}{2 p^{+}} 2 \pi g \delta\left(x-\frac{k^{+}}{p^{+}}\right) y \delta\left(y-\frac{q^{+}}{p^{+}}\right)\left(-s_{T}^{\mu}\right)\left[-g_{\mu \sigma}\right] \mathcal{C}_{q}
\end{aligned}
$$

\square Only diagonal quark-gluon distribution is finite:
At this order:

$$
\begin{aligned}
& T_{q, F}(x, 0)=T_{q, F}(0, x)=0 \\
& T_{\Delta q, F}(x, 0)=T_{\Delta q, F}(0, x)=0 \\
& T_{\Delta q, F}(x, x)=0
\end{aligned}
$$

$$
\left.T_{q, F}^{(s)}(x, x)\right|_{\text {dipola }}=\frac{N_{c} C_{F} g \lambda_{s}^{2} g_{s}}{16(2 \pi)^{3}}(1-x)^{3}(m+x M)\left(\frac{\Lambda_{s}^{2}}{L_{s}^{2}\left(\Lambda_{s}^{2}\right)}\right)^{2}
$$

$$
\left.T_{q, F}^{(v)}(x, x)\right|_{\text {dipolar }}=\frac{N_{c} C_{F} g \lambda_{v}^{2} g_{v}}{\begin{array}{c}
16(2 \pi)^{3} \\
\text { Jianwei Qiu }
\end{array} x(1-x)^{2}(m+x M)\left(\frac{\Lambda_{s}^{2}}{L_{s}^{2}\left(\Lambda_{s}^{2}\right)}\right)^{2}, ~}
$$

What the twist-3 distribution can tell us?

\square The operator in Red - a classical Abelian case:

```
rest frame of (p,sT)
```


\square Change of transverse momentum:

$$
\frac{d}{d t} p_{2}^{\prime}=e\left(\vec{v}^{\prime} \times \vec{B}\right)_{2}=-e v_{3} B_{1}=e v_{3} F_{23}
$$

\square In the c.m. frame:

$$
\begin{aligned}
& (m, \overrightarrow{0}) \rightarrow \bar{n}=\left(1,0, o_{T}\right), \quad(1,-\hat{z}) \rightarrow n=\left(0,1, o_{T}\right) \\
& \Longrightarrow \frac{d}{d t} p_{2}^{\prime}=e \epsilon^{s_{T} \sigma n \bar{n}} F_{\sigma}^{+}
\end{aligned}
$$

\square The total change:

$$
\Delta p_{2}^{\prime}=e \int d y^{-} \epsilon^{s_{T} \sigma n \bar{n}} F_{\sigma}^{+}\left(y^{-}\right)
$$

Net quark transverse momentum imbalance caused by color Lorentz force inside a transversely polarized proton

Evolution equations and evolution kernels

\square Evolution is a prediction of QCD:
Like twist-2 PDFs, both collinear and UV divergence are logarithmic, and share the same slope

Kang, Qiu, 2009
\Rightarrow Evolution equation for factorization scale dependence = renormalization group equation for UV renormalization
\square Evolution kernels are process independent:

- Calculate directly from the variation of process independent twist-3 distributions
- Extract from the scale dependence of the NLO hard part of any physical process

Vogelsang, Yuan, 2009

- UV renormalization of the twist-3 operators
- All approaches are equivalent and should give the same kernel

My 14, 2010

Scaling violation of twist-3 correlations

- Follow DGLAP at large x
- Large deviation at low \times (stronger correlation)

Kang, Qiu, PRD, 2009
My 14, 2010
Jianwei Qiu

Multi-gluon correlation functions

\square Diagonal tri-gluon correlations:

$$
\begin{aligned}
T_{G}(x, x) & =\int \frac{d y_{1}^{-} d y_{2}^{-}}{2 \pi} e^{i x P^{+} y_{1}^{-}} \\
& \times \frac{1}{x P^{+}}\left\langle P, s_{\perp}\right| F_{\alpha}^{+}(0)\left[\epsilon^{s_{\perp} \sigma n \bar{n}} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] F^{\alpha+}\left(y_{1}^{-}\right)\left|P, s_{\perp}\right\rangle
\end{aligned}
$$

\square Two tri-gluon correlation functions - color contraction:
$T_{G}^{(f)}(x, x) \propto i f^{A B C} F^{A} F^{C} F^{B}=F^{A} F^{C}\left(\mathcal{T}^{C}\right)^{A B} F^{B}$
$T_{G}^{(d)}(x, x) \propto d^{A B C} F^{A} F^{C} F^{B}=F^{A} F^{C}\left(\mathcal{D}^{C}\right)^{A B} F^{B}$
Quark-gluon correlation: $\quad T_{F}(x, x) \propto \bar{\psi}_{i} F^{C}\left(T^{C}\right)_{i j} \psi_{j}$
\square D-meson production at EIC:

* Clean probe for gluonic twist-3 correlation functions
* $T_{G}^{(f)}(x, x)$ could be connected to the gluonic Sivers function My 14, 2010

D-meson production at future EIC

\square Dominated by the tri-gluon subprocess:

(a)

(b)

(c)

(d)

- Active parton momentum fraction cannot be too large
- Intrinsic charm contribution is not important
- Sufficient production rate
\square Single transverse-spin asymmetry:

$$
A_{N}=\frac{\sigma\left(s_{\perp}\right)-\sigma\left(-s_{\perp}\right)}{\sigma\left(s_{\perp}\right)+\sigma\left(-s_{\perp}\right)}=\frac{d \Delta \sigma\left(s_{\perp}\right)}{d x_{B} d y d z_{h} d P_{h \perp}^{2} d \phi} / \frac{d \sigma}{d x_{B} d y d z_{h} d P_{h \perp}^{2} d \phi}
$$

- SSA is directly proportional to tri-gluon correlation functions
- Any small A_{N} discovers the tri-gluon correlation!

Features of the SSA in D-production at EIC

\square Dependence on tri-gluon correlation functions:
$D-$ meson $\propto T_{G}^{(f)}+T_{G}^{(d)}$
$\bar{D}-\operatorname{meson} \propto T_{G}^{(f)}-T_{G}^{(d)}$

Separate $T_{G}^{(f)}$ and $T_{G}^{(d)}$ by the difference between D and \bar{D}
\square Model for tri-gluon correlation functions:
$T_{G}^{(f, d)}(x, x)=\lambda_{f, d} G(x) \quad \lambda_{f, d}= \pm \lambda_{F}= \pm 0.07 \mathrm{GeV}$
\square Kinematic constraints:
$x_{\text {min }}= \begin{cases}x_{B}\left[1+\frac{P_{h \perp}^{2}+m_{c}^{2}}{z_{h}\left(1-z_{h}\right) Q^{2}}\right], & \text { if } z_{h}+\sqrt{z_{h}^{2}+\frac{P_{h \perp}^{2}}{m_{c}^{2}}} \geq 1 \\ x_{B}\left[1+\frac{2 m_{c}^{2}}{Q^{2}}\left(1+\sqrt{1+\frac{P_{h \perp}^{2}}{z_{h}^{2} m_{c}^{2}}}\right)\right], & \text { if } z_{h}+\sqrt{z_{h}^{2}+\frac{P_{h \perp}^{2}}{m_{c}^{2}}} \leq 1\end{cases}$
Note: The $z_{h}\left(1-z_{h}\right)$ has a maximum
SSA should have a minimum if the derivative term dominates

Minimum in the SSA of D-production at EIC

\square SSA for D^{0} production (λ_{f} only):

* Derivative term dominates, and small φ dependence
* Asymmetry is twice if $T_{G}^{(f)}=+T_{G}^{(d)}$, or zero if $T_{G}^{(f)}=-T_{G}^{(d)}$
* Opposite for the \bar{D} meson
* Asymmetry has a minimum $\sim \mathrm{z}_{\mathrm{h}} \sim 0.5$

My 14, 2010
Jianwei Qiu

TMD vs collinear factorization

\square TMD factorization and collinear factorization cover different regions of kinematics:
$\begin{array}{ll}\text { Collinear: } & Q_{1} \ldots Q_{n} \gg \Lambda_{\text {QCD }} \\ \text { TMD: } & Q_{1} \gg Q_{2} \sim \Lambda_{Q C D}\end{array}$
\diamond One complements the other, but, cannot replace the other!
\diamond Predictive power of both formalisms relies on the validity of their own factorization

Consistency check - overlap region - perturbative region
\square "Formal" operator relation between TMD distributions and collinear factorized distributions:
spin-averaged: $\quad \int d^{2} k_{\perp} \Phi_{f}^{\mathrm{SIDIS}}\left(x, k_{\perp}\right)+\operatorname{UVCT}\left(\mu_{F}^{2}\right)=\phi_{f}\left(x, \mu_{F}^{2}\right)$
Transverse-spin: $\frac{1}{M_{P}} \int d^{2} k_{\perp} \vec{k}_{\perp}^{2} q_{T}\left(x, k_{\perp}\right)+\operatorname{UVCT}\left(\mu_{F}^{2}\right)=T_{F}\left(x, x, \mu_{F}^{2}\right)$
But, TMD factorization is only valid for low $k_{T}-$ TMD PDFs at low k_{T}

The consistency check

\square IF both factorizations are proved to be valid,
\diamond both formalisms should yield the same result in overlap region
\diamond Case studies - Drell-Yan/SIDIS Ji, Qiu, Vogelsang, and Yuan

\square TMD factorization fails for processes involving three or more identified hadrons!

New challenges!
Collins, Qiu, 2007
Vogelsang, Yuan, 2007, Collins, 2007
Rogers, Mulders, 2010

Summery and outlook

\square QCD has been very successful in interpreting high energy data from collisions with hadron(s)
\square Beyond the leading power (twist) QCD:

- QCD at high temperature and density
- QCD and hadron structure at zero temperature
\square Single transverse spin asymmetry opens up many opportunities to explore the parton's transverse motion and test QCD in a completely new domain
\square Future Electron-Ion Collider could be a QCD machine

> Thank you!

Backup slices

QCD and hadrons

\square For condensed matter physicists, chemists, ...
Protons, neutrons, \ldots, and hadrons are simple objects with mass, charge, spin, magnetic moment, ...
\square For us: particle and nuclear physicists, ...
Protons, neutrons, ..., and hadrons are complicate bound states of quarks and gluons, though we have not seen them directly
\square The challenge:
Explain the properties of hadrons in terms of quarks, gluons, and their dynamics - QCD - the theory we believe!

Scale dependence of SSA

\square Almost all existing calculations of SSA are at LO:

* Strong dependence on renormalization and factorization scales
* Artifact of the lowest order calculation
\square Improve QCD predictions:
* Complete set of twist-3 correlation functions relevant to SSA
* LO evolution for the universal twist-3 correlation functions
* NLO partonic hard parts for various observables
* NLO evolution for the correlation functions, ...
\square Current status:
* Two sets of twist-3 correlation functions
* LO evolution kernel for $T_{q, F}(x, x)$ and $T_{G, F}^{(f, d)}(x, x)$
* NLO hard part for SSA of p_{T} weighted Drell-Yan

A_{N} at low p_{T}

\square Collinear factorization does not work at low p_{T} :
$A_{N}^{(3)} \propto \frac{\epsilon_{\perp}^{\alpha \beta} s_{\alpha} p_{T \beta}}{p_{T}^{2}} \longrightarrow \frac{1}{p_{T}} \longrightarrow \infty$ as $p_{T} \rightarrow 0$
Should not apply for $p_{T}<Q_{S}$
\square Symmetry requirement:

$$
A_{N} \longrightarrow 0 \text { as } p_{T} \rightarrow 0
$$

\square Role of Q_{s} :

$$
A_{N}^{(3)} \propto \frac{\epsilon_{\perp}^{\alpha \beta} s_{\alpha} p_{T \beta}}{p_{T}^{2}} \longrightarrow \frac{\epsilon_{\perp}^{\alpha \beta} s_{\alpha} p_{T \beta}}{p_{T}^{2}+\kappa Q_{s}^{2}} \longrightarrow 0 \text { as } p_{T} \rightarrow 0
$$

\square Transition region:

- probe the scale where the fixed order pQCD fails!

Consistency Check!

\square New STAR data:

STAR PRL, 101, 222001, 2008

My 14, 2010
Jianwei Qiu

Maximum in the SSA of D-production at EIC

\square SSA for D^{0} production (λ_{f} only):
Kang, Qiu, PRD, 2008

* The SSA is a twist-3 effect, it should fall off as $1 / P_{T}$ when $P_{T} \gg m_{c}$
$\%$ For the region, $\mathrm{P}_{\mathrm{T}} \sim \mathrm{m}_{\mathrm{c}}$,
$A_{N} \propto \epsilon^{P_{h} s_{\perp} n \bar{n}} \frac{1}{\tilde{t}}=-\sin \phi_{s} \frac{P_{h \perp}}{\tilde{t}}$
Jianwei Qiu

$$
\begin{aligned}
& \tilde{t}=\left(p_{c}-q\right)^{2}-m_{c}^{2}=-\frac{1-\hat{z}}{\hat{x}} Q^{2} \\
& \hat{z}=z_{h} / z, \quad \hat{x}=x_{B} / x
\end{aligned}
$$

Interpretation of twist-3 distributions?

\square Quark-gluon correlation as an example:

$$
\begin{aligned}
T_{F}(x, x)=\int & \frac{d y_{1}^{-}}{4 \pi} \mathrm{e}^{i x P^{+}} y_{1}^{-} \\
& \times\left\langle P, \vec{s}_{T}\right| \bar{\psi}_{a}(0) \gamma^{+}\left[\int d y_{2}^{-} \epsilon^{s_{T} T^{m} \bar{n}} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] \psi_{a}\left(y_{1}^{-}\right)\left|P, \vec{s}_{T}\right\rangle
\end{aligned}
$$

Normal twist-2 quark distribution:

$$
q(x)=\int \frac{d y_{1}^{-}}{4 \pi} \mathrm{e}^{i x P^{+} y_{1}^{-}}\left\langle P, \vec{s}_{T}\right| \bar{\psi}_{a}(0) \gamma^{+} \psi_{a}\left(y_{1}^{-}\right)\left|P, \vec{s}_{T}\right\rangle
$$

\square Difference - the operator in Red:

$$
\left[\int d y_{2}^{-} \epsilon^{s T^{\sigma n \bar{n}}} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right]
$$

How can we interpret the "expectation value" of this operator?

