Moving beyond QCD improved parton model

Jianwei Qiu Brookhaven National Laboratory

Spring workshop on electron-nucleus collider physics
The Rockefeller University Center for Studies in Physics and Biology
New York, NY, May 14, 2010

Outline

- ☐ Success of QCD improved parton model (PM)
- ☐ Hadron properties beyond PDFs
- □ Potential observables to probe dynamics beyond PM
- ☐ One example: single transverse spin asymmetries
- ☐ Effect of color Lorentz and magnetic force
- ☐ Summary and outlook

Parton, hadron, and cross section

☐ Theorists' view of hadronic cross section:

Any number of partons could participate in the collision

☐ Large momentum transfer simplifies the picture:

$$\sigma_{AB}(Q, \vec{s}) \approx \sigma_{AB}^{(2)}(Q, \vec{s}) + \frac{Q_s}{Q} \sigma_{AB}^{(3)}(Q, \vec{s}) + \frac{Q_s^2}{Q^2} \sigma_{AB}^{(4)}(Q, \vec{s}) + \cdots$$

Single hard scale > Leading power > Collinear factorization

$$\sigma_{AB}^{(2)}(Q,\vec{s}) = \hat{\sigma}_{ab}(x,x',Q) \otimes f_{a/A}(x,Q,\vec{s}) \otimes \left[f_{b/B}(x',Q) \otimes \cdots \right]$$

☐ Predictive power:

Short-distance dynamics, PDFs, and FFs

It worked beautifully - great success of QCD!

Leading power QCD vs DIS data

Leading power QCD vs hadronic jet data

Success of leading power QCD

☐ Universality of PDFs – one set for all data:

 \square Robust calculation of partonic dynamics in powers of α_s

Consistently fit almost all data with Q > 2 GeV

Question

- □ What have we learned about QCD from high energy collisions and the leading power formalism?
 - Asymptotic freedom of QCD short-distance dynamics < 0.1/fm</p>
 - Collinear factorization works beautifully identified hadron involved approximation: all hard collisions are between collinear partons

$$\sigma_{AB}^{(2)}(Q,\vec{s}) = \hat{\sigma}_{ab}(x,x',Q) \otimes f_{a/A}(x,Q,\vec{s}) \otimes \left[f_{b/B}(x',Q) \otimes \cdots \right]$$

Bottom line:

We learned enough to be confident to use leading power QCD factorization formalism to calculate and to predict the event structure at the LHC, and to discover the new physics ...

More questions

- ☐ How much have we learned about the hadron structure from high energy experiments? NOT much!
 - PDFs: $q_f(x,Q)$, g(x,Q) a "probability density" to find a parton of momentum fraction x probed at a scale Q
 - Helicity distribution functions: $\Delta q_f(x,Q)$, $\Delta g(x,Q)$
 - Hadronization fragmentation functions: $D_{f o h}(z,Q),...$

My 14, 2010

Proton: mass, spin, electric charge, magnetic moment, ...

□ Explain these properties in terms of QCD: quarks, gluons, and their dynamics?
Too hard a problem?

Quark-gluon structure of a hadron?

- ☐ Hadron is a dynamical system of quarks and gluons:
 - Mass: mainly from energy of quarks and gluons
 - Spin: a composite system without localized color charge
 - Structure: quantum fluctuations at various time scales
- ☐ Picture of the structure is "probe" sensitive!

"seen" by a hard probe

- ☐ Localized hard probe: 1/Q >> 1/fm
 - More sensitive to short-distance quantum fluctuation
 - but, not sensitive to long-range coherence hadron structure

Moving beyond the local density?

☐ We measure cross sections:

Too large to compete?

☐ Explore new observables:

- Spin asymmetry: $\sigma_{AB}(Q, \vec{s}) \sigma_{AB}(Q, -\vec{s})$ if the 1st term cancels
- Small-x probes hard probe is NOT local size (or A)-dependence!
- Multiple observed scales TMD, GPD, ... $2R\gg \frac{1}{xp}\gtrsim 2R\,\frac{m}{p}$ $Q\gg Q'\gtrsim 1/{\rm fm}\sim \Lambda_{\rm QCD}$

Large SSA in hadronic collisions

□ Hadronic $p \uparrow + p \rightarrow \pi(l)X$

$$A_N = rac{1}{P_{
m beam}} \, rac{N_{
m left}^\pi - N_{
m right}^\pi}{N_{
m left}^\pi + N_{
m right}^\pi}$$

My 14, 2010

Jianwei Qiu

11

Single transverse spin asymmetry - A_N

- \Box A_N = 0 for inclusive DIS one photon exchange:
- lacksquare DIS cross section: $\sigma(s_T) \propto L^{\mu\nu} \, W_{\mu\nu}(s_T)$
- \Box Leptonic tensor is symmetric: $L^{\mu\nu} = L^{\nu\mu}$ $\overrightarrow{P,s_T}$

- lacksquare Hadronic tensor: $W_{\mu\nu}(s_T) \propto \langle P, s_T | j^\dagger_\mu(0) j_\nu(y) | P, s_T
 angle$
- oxedge Polarized cross section: $\Delta\sigma(s_T)\propto L^{\mu\nu}\left[W_{\mu\nu}(s_T)-W_{\mu\nu}(-s_T)\right]$
- ☐ P and T invariance:

$$\langle P, s_T | j_\mu^\dagger(0) j_\nu(y) | P, s_T \rangle = \langle P, -s_T | j_\nu^\dagger(0) j_\mu(y) | P, -s_T \rangle$$

$$\iff W_{\mu\nu}(-s_T) = W_{\nu\mu}(s_T)$$

$$\implies \Delta\sigma(s_T) \propto L^{\mu\nu} \left[W_{\mu\nu}(s_T) - W_{\mu\nu}(-s_T) \right] = L^{\mu\nu} \left[W_{\mu\nu}(s_T) - W_{\nu\mu}(s_T) \right] = 0$$

Symmetry plays a crucial role in SSAs

Minimum conditions for $A_N = 0$

☐ SSA corresponds to a naively T-odd triple product:

$$A_N \propto i \, \vec{s}_p \cdot (\vec{p} \times \vec{\ell}) \implies i \, \epsilon^{\mu\nu\alpha\beta} \, p_\mu s_\nu \ell_\alpha p'_\beta$$

Novanish A_N requires a phase, enough vectors to fix a scattering plan, and a spin flip at the partonic scattering

☐ Leading power in QCD:

Kane, Pumplin, Repko, PRL, 1978

$A_N=1=0$ in collinear factorization

 \Box A_N – twist-3 effect:

Efremov, Teryaev, 82; Qiu, Sterman, 91

☐ Spin flip:

Qiu, Sterman, 1991

Kang, Yuan, Zhou, 2010

- Interference of single parton and a two-parton composite state
- ☐ The phase:
 - Interference of Real and Imaginary part of scattering amplitude
 - gluonic pole: $\propto T^{(3)}(x,x)$
 - fermionic pole contribution $T^{(3)}(x,0)$ or $T^{(3)}(0,x)$

Features of A_N in collinear factorization

Qiu, Sterman, 91

☐ Factorization is valid (as good as leading power):

$$\Delta\sigma_{AB\to h}(p_T,\vec{s}_T) = \sum_{abc} T_{a/A}^{(3)}(x,\vec{s}_T) \otimes f_{b/B}(x') \otimes \hat{\sigma}_{ab\to c}(p_T,\vec{s}_T) \otimes D_{c\to h}(z)$$
 Qiu, Sterman, 1991,98
$$+ \sum_{abc} \delta q_{a/A}^{(2)}(x,\vec{s}_T) \otimes f_{b/B}(x') \otimes \hat{\sigma}'_{ab\to c}(p_T,\vec{s}_T) \otimes D_{c\to h}^{(3)}(z)$$
 Kanazawa, Koike, 2000
$$+ \sum_{abc} \delta q_{a/A}^{(2)}(x,\vec{s}_T) \otimes f_{b/B}^{(3)}(x') \otimes \hat{\sigma}''_{ab\to c}(p_T,\vec{s}_T) \otimes D_{c\to h}(z)$$

☐ Generic features:

$$A_N \propto \frac{\epsilon_{\perp}^{\alpha\beta} s_{\alpha} p_{T\beta}}{-\hat{t}} \left[-x \frac{d}{dx} T^{(3)}(x, x) \right] \propto \frac{\epsilon_{\perp}^{\alpha\beta} s_{\alpha} p_{T\beta}}{p_T^2} \left[\frac{n}{1 - x} \right]$$
if $T^{(3)}(x, x) \propto q(x) \propto (1 - x)^n$

- A_N falls as 1/p_T if p_T is large
- A_N increases as x_F if x_F is large

Asymmetries from the $T_F(x,x)$

Kouvaris, Qiu, Vogelsang, Yuan, 2006

Nonvanish twist-3 function --> Nonvanish transverse motion

My 14, 2010 Jianwei Qiu 16

Twist-3 distributions relevant to SSA

Two-sets Twist-3 correlation functions:

$$\widetilde{T}_{q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+}{2} \left[\epsilon^{s_T \sigma n \bar{n}} F_{\sigma}^{+}(y_2^-) \right] \psi_q(y_1) | P, s_T^- \rangle$$

$$\widetilde{T}_{G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[\epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^{+}(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle (-g_{\rho\lambda})$$

$$\widetilde{\mathcal{T}}_{\Delta q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \left[i \, s_T^{\sigma} \, F_{\sigma}^{\ +}(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$$

$$\widetilde{T}_{\Delta G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[i \, s_T^{\sigma} \, F_{\sigma}^{+}(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right)$$

☐ Twist-2 distributions: No probability interpretation!

 $G(x) \propto \langle P|F^{+\mu}(0)F^{+\nu}(y)|P\rangle(-g_{\mu\nu})$

 $\Delta q(x) \propto \langle P, S_{\parallel} | \overline{\psi}_q(0) \frac{\gamma \cdot \gamma^{\circ}}{2} \psi_q(y) | P, S_{\parallel} \rangle$

 $q(x) \propto \langle P | \overline{\psi}_q(0) \frac{\gamma^+}{2} \psi_q(y) | P \rangle$

Kang, Qiu, 2009 Braun, et al 2009

$$\Delta G(x) \propto \langle P, S_{||}|F^{+\mu}(0)F^{+\nu}(y)|P, S_{||}
angle (i\epsilon_{\perp\mu
u})$$
 Jianwei Qiu

Model calculation for twist-3 distributions

Quark-diquark model of nucleon:

Kang, Qiu, Zhang, 2010

18

Scalar or axial-vector spectator

$$\begin{array}{c|c} & & \\ & &$$

☐ Only diagonal quark-gluon distribution is finite:

At this order:
$$T_{q,F}(x,0)=T_{q,F}(0,x)=0$$

$$T_{\Delta q,F}(x,0)=T_{\Delta q,F}(0,x)=0$$

$$T_{\Delta q,F}(x,x)=0$$

$$T_{q,F}(x,x)\bigg|_{\text{dipol}_{\text{i}}}=\left.\frac{N_cC_Fg\lambda_s^2g_s}{16(2\pi)^3}(1-x)^3(m+xM)\left(\frac{\Lambda_s^2}{L_s^2(\Lambda_s^2)}\right)^2\right.$$

$$T_{q,F}^{(v)}(x,x)\bigg|_{\text{dipolar}}=\frac{N_cC_Fg\lambda_v^2g_v}{16(2\pi)^3}x(1-x)^2(m+xM)\left(\frac{\Lambda_s^2}{L_s^2(\Lambda_s^2)}\right)^2$$
 My 14, 2010 Jianwei Qiu

What the twist-3 distribution can tell us?

☐ The operator in Red – a classical Abelian case:

rest frame of (p,s_T)

☐ Change of transverse momentum:

$$\frac{d}{dt}p_2' = e(\vec{v}' \times \vec{B})_2 = -ev_3B_1 = ev_3F_{23}$$

☐ In the c.m. frame:

$$(m, \vec{0}) \rightarrow \bar{n} = (1, 0, 0_T), \quad (1, -\hat{z}) \rightarrow n = (0, 1, 0_T)$$

$$\Longrightarrow \frac{d}{dt} p_2' = e \; \epsilon^{s_T \sigma n \bar{n}} \; F_{\sigma}^{\; +}$$

 \Box The total change: $\triangle p_2^2$

$$\Delta p_2' = e \int dy^- \epsilon^{s_T \sigma n \bar{n}} F_{\sigma}^{+}(y^-)$$

Net quark transverse momentum imbalance caused by color Lorentz force inside a transversely polarized proton

Evolution equations and evolution kernels

□ Evolution is a prediction of QCD:

Like twist-2 PDFs, both collinear and UV divergence are logarithmic, and share the same slope

Kang, Qiu, 2009

- **Evolution equation for factorization scale dependence**
- = renormalization group equation for UV renormalization
- □ Evolution kernels are process independent:
 - Calculate directly from the variation of process independent twist-3 distributions

Yuan, Zhou, 2009

- Extract from the scale dependence of the NLO hard part of any physical process
 Vogelsang, Yuan, 2009
- UV renormalization of the twist-3 operators

Braun et al, 2009

• All approaches are equivalent and should give the same kernel

My 14, 2010 Jianwei Qiu 20

Scaling violation of twist-3 correlations

- Follow DGLAP at large x
- Large deviation at low x (stronger correlation)

Kang, Qiu, PRD, 2009

Multi-gluon correlation functions

☐ Diagonal tri-gluon correlations:

Ji, PLB289 (1992)

$$T_{G}(x,x) = \int_{1}^{1} \frac{dy_{1}^{-}dy_{2}^{-}}{2\pi} e^{ixP^{+}y_{1}^{-}} \times \frac{1}{xP^{+}} \langle P, s_{\perp} | F^{+}_{\alpha}(0) \left[\epsilon^{s_{\perp}\sigma n\bar{n}} F_{\sigma}^{+}(y_{2}^{-}) \right] F^{\alpha+}(y_{1}^{-}) | P, s_{\perp} \rangle$$

☐ Two tri-gluon correlation functions – color contraction:

$$T_G^{(f)}(x,x) \propto i f^{ABC} F^A F^C F^B = F^A F^C (\mathcal{T}^C)^{AB} F^B$$

$$T_G^{(d)}(x,x) \propto d^{ABC}F^AF^CF^B = F^AF^C(\mathcal{D}^C)^{AB}F^B$$

a c b assesses

Quark-gluon correlation: $T_F(x,x) \propto \overline{\psi}_i F^C(T^C)_{ij} \psi_j$

- □ D-meson production at EIC:
 - Clean probe for gluonic twist-3 correlation functions
 - $lacktriangledow T_G^{(f)}(x,x)$ could be connected to the gluonic Sivers function

My 14, 2010

D-meson production at future EIC

☐ Dominated by the tri-gluon subprocess:

Kang, Qiu, PRD, 2008

- Active parton momentum fraction cannot be too large
- Intrinsic charm contribution is not important
- Sufficient production rate

☐ Single transverse-spin asymmetry:

$$A_N = \frac{\sigma(s_\perp) - \sigma(-s_\perp)}{\sigma(s_\perp) + \sigma(-s_\perp)} = \frac{d\Delta\sigma(s_\perp)}{dx_B dy dz_h dP_{h\perp}^2 d\phi} / \frac{d\sigma}{dx_B dy dz_h dP_{h\perp}^2 d\phi}$$

- SSA is directly proportional to tri-gluon correlation functions
- Any small A_N discovers the tri-gluon correlation!

Features of the SSA in D-production at EIC

Dependence on tri-gluon correlation functions:

$$D - \text{meson} \propto T_G^{(f)} + T_G^{(d)}$$
 $\overline{D} - \text{meson} \propto T_G^{(f)} - T_G^{(d)}$

$$\overline{D} - \text{meson} \propto T_G^{(f)} - T_G^{(d)}$$

Separate $T_G^{(f)}$ and $T_G^{(d)}$ by the difference between D and $ar{D}$

■ Model for tri-gluon correlation functions:

$$T_G^{(f,d)}(x,x) = \lambda_{f,d}G(x)$$

$$T_G^{(f,d)}(x,x) = \lambda_{f,d}G(x)$$
 $\lambda_{f,d} = \pm \lambda_F = \pm 0.07 \text{GeV}$

☐ Kinematic constraints:

$$x_{min} = \begin{cases} x_B \left[1 + \frac{P_{h\perp}^2 + m_c^2}{z_h (1 - z_h) Q^2} \right], & \text{if } z_h + \sqrt{z_h^2 + \frac{P_{h\perp}^2}{m_c^2}} \ge 1 \\ x_B \left[1 + \frac{2m_c^2}{Q^2} \left(1 + \sqrt{1 + \frac{P_{h\perp}^2}{z_h^2 m_c^2}} \right) \right], & \text{if } z_h + \sqrt{z_h^2 + \frac{P_{h\perp}^2}{m_c^2}} \le 1 \end{cases}$$

$$x_B \left[1 + \frac{2m_c^2}{Q^2} \left(1 + \sqrt{1 + \frac{P_{h\perp}^2}{z_h^2 m_c^2}} \right) \right],$$

if
$$z_h + \sqrt{z_h^2 + \frac{P_{h\perp}^2}{m_c^2}} \le 1$$

Note: The $z_h(1-z_h)$ has a maximum

Minimum in the SSA of D-production at EIC

 \square SSA for D^0 production (λ_f only):

Kang, Qiu, PRD, 2008

- **❖** Derivative term dominates, and small φ dependence
- **riangle Opposite for the \bar{D} meson**
- **❖** Asymmetry has a minimum ~ z_h ~ 0.5

My 14, 2010

TMD vs collinear factorization

TMD factorization and collinear factorization cover different regions of kinematics:

Collinear: $Q_1...Q_n >> \Lambda_{QCD}$

TMD: $Q_1 \gg Q_2 \sim \Lambda_{QCD}$

- ♦ One complements the other, but, cannot replace the other!
- Predictive power of both formalisms relies on the validity of their own factorization

Consistency check – overlap region – perturbative region

☐ "Formal" operator relation between TMD distributions and collinear factorized distributions:

$$\begin{array}{ll} \textbf{spin-averaged:} & \int d^2k_\perp\Phi_f^{\rm SIDIS}(x,k_\perp) + {\rm UVCT}(\mu_F^2) = \phi_f(x,\mu_F^2) \\ \textbf{Transverse-spin:} & \frac{1}{M_P}\int d^2k_\perp\,\vec{k}_\perp^2\,q_T(x,k_\perp) + {\rm UVCT}(\mu_F^2) = T_F(x,x,\mu_F^2) \\ \end{array}$$

But, TMD factorization is only valid for low k_T- TMD PDFs at low k_T

The consistency check

- □ IF both factorizations are proved to be valid,
 - ♦ both formalisms should yield the same result in overlap region
 - ♦ Case studies Drell-Yan/SIDIS

Ji, Qiu, Vogelsang, and Yuan Koike, Vogelsang, and Yuan

 $Q^2 \gg q_T^2 \gg \Lambda_{QCD}^2$ In this overlap region, both formalisms indeed give the same result

☐ TMD factorization fails for processes involving three or more identified hadrons! Collins, Qiu, 2007

New challenges!

Vogelsang, Yuan, 2007, Collins, 2007 Rogers, Mulders, 2010

Summery and outlook

- QCD has been very successful in interpreting high energy data from collisions with hadron(s)
- Beyond the leading power (twist) QCD:
 - QCD at high temperature and density
 - QCD and hadron structure at zero temperature
- □ Single transverse spin asymmetry opens up many opportunities to explore the parton's transverse motion and test QCD in a completely new domain
- ☐ Future Electron-Ion Collider could be a QCD machine

Thank you!

Backup slices

QCD and hadrons

☐ For condensed matter physicists, chemists, ...

Protons, neutrons, ..., and hadrons are simple objects with mass, charge, spin, magnetic moment, ...

☐ For us: particle and nuclear physicists, ...

Protons, neutrons, ..., and hadrons are complicate bound states of quarks and gluons, though we have not seen them directly

☐ The challenge:

Explain the properties of hadrons in terms of quarks, gluons, and their dynamics – QCD – the theory we believe!

Scale dependence of SSA

- ☐ Almost all existing calculations of SSA are at LO:
 - Strong dependence on renormalization and factorization scales
 - Artifact of the lowest order calculation
- ☐ Improve QCD predictions:
 - Complete set of twist-3 correlation functions relevant to SSA
 - **❖ LO** evolution for the universal twist-3 correlation functions
 - * NLO partonic hard parts for various observables
 - **❖ NLO** evolution for the correlation functions, ...
- ☐ Current status:
 - Two sets of twist-3 correlation functions
 - \clubsuit LO evolution kernel for $T_{q,F}(x,x)$ and $T_{G,F}^{(f,d)}(x,x)$ Kang, Qiu, 2009 Braun et al, 2009
 - ❖ NLO hard part for SSA of p_T weighted Drell-Yan

Vogelsang, Yuan, 2009

A_N at low p_T

□ Collinear factorization does not work at low p_T:

$$A_N^{(3)} \propto \frac{\epsilon_{\perp}^{\alpha\beta} s_{\alpha} p_{T\beta}}{p_T^2} \longrightarrow \frac{1}{p_T} \longrightarrow \infty \text{ as } p_T \to 0$$

Should not apply for $p_T < Q_s$

□ Symmetry requirement:

$$A_N \longrightarrow 0$$
 as $p_T \to 0$

$$A_N^{(3)} \propto \frac{\epsilon_{\perp}^{\alpha\beta} s_{\alpha} p_{T\beta}}{p_T^2} \longrightarrow \frac{\epsilon_{\perp}^{\alpha\beta} s_{\alpha} p_{T\beta}}{p_T^2 + \kappa Q_s^2} \longrightarrow 0 \text{ as } p_T \to 0$$

- ☐ Transition region:
 - probe the scale where the fixed order pQCD fails!

Consistency Check!

Maximum in the SSA of D-production at EIC

 \square SSA for D^0 production (λ_f only):

Kang, Qiu, PRD, 2008

- ❖ The SSA is a twist-3 effect, it should fall off as 1/P_T when P_T >> m_c
- ❖ For the region, P_T ~ m_c,

$$A_N \propto \epsilon^{P_h s_\perp n ar n} rac{1}{ ilde t} = -\sin\phi_s rac{P_{h\perp}}{ ilde t}$$
 My 14, 2010 Jianwei Qiu

$$\tilde{t} = (p_c - q)^2 - m_c^2 = -\frac{1 - \hat{z}}{\hat{x}}Q^2$$
 $\hat{z} = z_h/z, \quad \hat{x} = x_B/x$

Interpretation of twist-3 distributions?

□ Quark-gluon correlation as an example:

$$T_{F}(x,x) = \int \frac{dy_{1}^{-}}{4\pi} e^{ixP^{+}y_{1}^{-}} \times \langle P, \vec{s}_{T} | \bar{\psi}_{a}(0) \gamma^{+} \left[\int dy_{2}^{-} \epsilon^{s_{T}\sigma n\bar{n}} F_{\sigma}^{+}(y_{2}^{-}) \right] \psi_{a}(y_{1}^{-}) | P, \vec{s}_{T} \rangle$$

□ Normal twist-2 quark distribution:

$$q(x) = \int \frac{dy_1^-}{4\pi} e^{ixP^+y_1^-} \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \psi_a(y_1^-) | P, \vec{s}_T \rangle$$

□ Difference – the operator in Red:

$$\left[\int dy_2^- \epsilon^{s_T\sigma n\bar{n}} \, F_\sigma^{\,+}(y_2^-)\right]$$

How can we interpret the "expectation value" of this operator?