


EOS+CTA Architecture and Functionality
Meeting with STFC - discuss CTA potential adoption

CTA Architecture/Functionality details
Commonalities and differences with CASTOR
Current status and plans

Eric Cano on behalf of the CTA team

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 2



Architecture

Functionality details (present and planned)

Commonalities and differences with CASTOR

Current status and plans

Summary

Backup slides

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 3



What is CTA?

• CTA is a pure tape system

• One central CTA instance provides the tape backend
to several EOS instances

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 4



EOS+CTA architecture: big picture
• EOS as the interface to the outside world

• is the sole interface to the users (XRootd)
• holds the directory structure, files names and metadata, disk

buffer
• handle locally operations that do not require the tape

backend
• provides an extended XRootd based interface for tape aware

operations
• handles garbage collection

• CTA as the tape backend
• manages transparently file residence on tape
• transfers tape files to/from disk cache on request from EOS
• manages drives, tapes, libraries, file location, queues, and

more. . .

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 5



Typical user operations

• Write file to EOS+CTA buffer

• Is file on tape?

• Queue file for retrieve

• Is file in EOS+CTA buffer?

• Read file from EOS+CTA buffer

• Evict file from EOS+CTA buffer

• Delete file from EOS+CTA

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 6



Fitting EOS+CTA in the bigger picture
A mode of operations validated with Atlas:

• EOS+CTA used as a tape store only
• SSD based EOS+CTA buffer
• Experiment’s EOS instance does the grid transfers
• Multi-step sequence achieved with FTS
• Auto-evict after successful archive
• FTS evicts from buffer after successful retrieve

Other modes of operation possible

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 7



EOS_VO_A
EOSCTA_VO_A

EOS_VO_B EOSCTA_VO_B

TAPES

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 8



A CTA instance in depth
Three daemons:

• cta-taped: Evolution of CASTOR’s tapeserverd. An
extra subprocess for maintenance.

• cta-frontend: XRootd based server allowing EOS and
CLI access to data structures.

• cta-rmcd: also inherited from CASTOR.

Two backend stores:

• Catalogue DB for persistent data.
• Scheduler DB for transient object (requests, queues),

implemented as an object store.

A CLI: cta-admin

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 9



Software architecture
3 main software components, shared by taped and frontend:

• Catalogue
• SchedulerDB (also called object store)
• Scheduler links the two.

Both Catalogue and SchedulerDB have several backends:
• Catalogue:

• Oracle
• MySQL
• PostgreSQL
• SQLite (for unit tests)

• SchedulerDB:
• Rados
• VFS (local file system)

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 10



Functionality details (present and planned)
• Tape server: Tape alert support, HW RAO (enterprise

drives), SW RAO (LTO)1, LBP, encryption, empty file
skip on write1.

• Scheduler: Priorities, drive dedication, fair share
between VOs1, intra-VO weighted fair share
(activites)1, mount pre-emption1, backpressure1,
dataset colocation1, repack request expansion on
demand1

• EOS: Garbage collection, retrieve request filtering,
retrieve request cancellation, disk copy eviction

1Explained in backup slides

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 11



Commonalities with CASTOR: concepts

• Storage class (CTA) ⇔ File class (CASTOR)
• Archive file (CTA) + Directory entry (EOS)
≈ Castorfile

• Libraries, tape pools, tapes
• Migration/archive routes
• Admin users (CTA) ≈ CUPV (CASTOR)
• Requester (group) mount rule (CTA)
≈ Recall (user) group (CASTOR)

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 12



Differences with CASTOR: architecture (I)

• Namespace handled by EOS
• Each EOS instance has a disjoint namespace w.r.t. other

instances.
• The shared CTA instance stores tape files for all
• Tape files simply referenced by numeric archive file Id.
• Archive file Id stored in EOS namespace as file extended

attribute.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 13



Differences with CASTOR: architecture (II)

• Shared backend storage vs per daemon DBs
• In CASTOR, DBs are owned by a specific daemon, and

accessed from one or few instances.
• In CTA, each actor accesses directly the backend data,

effectively running a collapsed stack of CASTOR daemons in
a single process.

• This was a constraint at the time of the design of CASTOR,
not anymore.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 14



Differences with CASTOR: architecture (III)

• Global decision vs partial decision
• In CASTOR each actor took decision based on partial

information. Action is based on a chain of partial
information based decisions, leading to inefficiencies. Typical
example: the VMGR decides to write to a tape located in a
library where all the drives are busy.

• In CTA, the decisions are taken at mount time, by the tape
server, when it is free. The frontend just updates the shared
queues. Drives share their status with each other to allow a
fully informed mount decision.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 15



Differences with CASTOR: architecture (IV)

• Queueing: DB vs object store
• Queueing in DBs is a hard problem. Some algorithms are
O(n) and executed on each scheduling. Oracle does not
handle well tables that grow and shrink. The
optimizer.

• Shared object allow ≈ O(1) algorithms. Each queue
instance is in a separate object, minimizing contention.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 16



Differences with CASTOR: Daemons
Far less daemons in CTA:

• Front end: allow manipulation of queues and
persistent data by EOS and CLI

• Tape server
• One process per drive: schedules the mounts for its own

drive, does the data transfer and the minimum amount of
metadata management.

• One maintenance process per box: does the backoffice
maintenance: repack management, cleanup in case of
process crashes.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 17



Differences with CASTOR: Disk/buffer

Handled in EOS. Will be presented in detail by Julien and
Luca.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 18



Current status and plans
• Already implemented:

• Tape server: Tape alert support, HW RAO (enterprise
drives), LBP, encryption, empty file skip on write

• Scheduling: Priorities, fair share between VOs, intra-VO
weighted fair share (activites), backpressure, repack request
expansion on demand

• EOS: all
• Upcoming features:

• Tape server: SW RAO (LTO)
• Scheduling: drive dedication, mount pre-emption, dataset

colocation (Pending PhD study)

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 19



Summary

• CTA+EOS provides a system conceptually similar to
CASTOR

• It uses newer backends to approach “full speed, full
time”

• Preparing the terrain for tape intensive workloads
(tape carousel)

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 20



home.cern

http://home.cern


Backup slides

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 22



New features in detail (I)

• SW RAO: Software recommended access order: store
physical location (wrap, position) of files in catalogue
and implement a “traveling salesman” algorithm on
retrieve.

• Empty file skip: leave a place holder when we discover
that the file was deleted by user between queueing
and writing to tape. Avoids unmounts.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 23



New features in detail (II)

• Fair share between VOs: try to give each VO the
same proportion of their maximum number of drives
(when conditions permit).

• Intra-VO fair share (activities): each file retrieve can
be tagged with an activity. Activities are weighted and
given a fair share of mounts. Intra VO, and weight
based. The feature already exists in FTS and is
mirrored in CTA.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 24



New features in detail (III)

• Mount pre-emption: mount scheduling also happens
during the mount (at a low rate) to ensure no higher
priority mount could be served. If so, we stop the low
priority mount and start the higher priority one. Goal
is to run the drives “full speed, full time”.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 25



New features in detail (IV)

• Backpressure: disk space reservation before
committing for retrieve, allowing prevention of limited
buffer overrun. Prevents error and enables “full speed,
full time”.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 26



New features in detail (V)

• Dataset colocation: allow experiments to tag files
with a (possibly hierarchical) dataset. Make sure each
dataset is locally contiguous in the tape, to minimize
positioning at retrieve time and ensure maximum read
performance.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 27



New features in detail (VI)

• Repack request expansion on demand: repack
requests are queued as very small object. A few of
them only are blown up into per-file sub requests and
actually visible to the tape drives. As the requests get
processes, more get expanded. This avoids clogging
the queueing system, and to queue an arbitrary
number of tapes to be repacked.

Meeting with STFC on CTA, 3 Oct 2019 EOS+CTA Architecture and Functionality 28


