
HSF Training :
Making “that thing my postdoc taught me once”

available for everyone

Sam Meehan on behalf of
HSF-Training

19 November 2020

1

Link to the main
training portal :

hsf-training

https://hepsoftwarefoundation.org/workinggroups/training.html

Reminder from First Talk

2

“That thing my
postdoc taught
me that once”

StackOverflow
cplusplus.com/docs.python.org
YouTube videos (from that enterprising
faculty member at Univ of XYZ)

TWikis (experiment/lab specific)

…
Non-standard format
Non-targetted for HEP needs

Markus Diefenthaler
Talk at this workshop

https://indico.cern.ch/event/941278/timetable/?view=standard#33-future-trends-in-nuclear-ph
https://indico.cern.ch/event/941278/timetable/?view=standard#33-future-trends-in-nuclear-ph

3

Mission & Philosophy
● Mission : “to help the research community to provide training in the computing

skills needed for researchers to produce high quality and sustainable software”
● Philosophy : largely inspired by Software Carpentries

○ [1] Hands-on
○ [2] Student-centric
○ [3] Experiment Agnostic
○ [4] Re-useable
○ [5] Open and Accessible

● Goal : Sustainability ← → Scalability

https://software-carpentry.org/

The Preserved Lessons
● ala Software Carpentry

○ Created our own “style”
○ Uniform contextualization and

pedagogy of learning materials

● Housed in hsf-training
○ Encourage to *fork* and develop

lessons → push back any relevant
improvements to main lesson

■ Different from
○ How-to page for potential

developers

● Supplementing with videos
○ Housed on HSF YouTube account

■ 133 followers in one week! 4

https://github.com/hsf-training
https://www.youtube.com/channel/UCv4hukXGkCYvBClQMKzypnQ?view_as=subscriber

The Fully Preserved Lessons
● ala Software Carpentry

○ Created our own “style”
○ Uniform contextualization and

pedagogy of learning materials

● Housed in hsf-training
○ Encourage to *fork* and develop

lessons → push back any relevant
improvements to main lesson

■ Different from
○ How-to page for potential

developers

● Supplementing with videos
○ Housed on HSF YouTube account

■ 133 followers in one week! 5

https://github.com/hsf-training
https://www.youtube.com/channel/UCv4hukXGkCYvBClQMKzypnQ?view_as=subscriber

1. Git/vcs essentials/github (“How to”)
2. Advanced module for git
3. Python foundations
4. Building programs with python
5. Data analysis: numpy, pandas
6. Advanced data analysis
7. Advanced python and pyroot, uproot
8. Build systems: from gcc to cmake
9. Continuous Integration/Development

10. Docker and Containerization
11. Unix (shell, bash, scripting, ...)
12. Advanced unix (shell, bash, scripting, ...)
13. Suggestion: Advanced Unix/terminal
14. Jupyter notebooks and Binder/SWAN
15. ROOT 6

1. Git/vcs essentials/github (“How to”)
2. Advanced module for git
3. Python foundations
4. Building programs with python
5. Data analysis: numpy, pandas
6. Advanced data analysis
7. Advanced python and pyroot, uproot
8. Build systems: from gcc to cmake
9. Continuous Integration/Development

10. Docker and Containerization
11. Unix (shell, bash, scripting, ...)
12. Advanced unix (shell, bash, scripting, ...)
13. Suggestion: Advanced Unix/terminal
14. Jupyter notebooks and Binder/SWAN
15. ROOT
16. C++
17. Package managers and RPMs
18. Distributed file systems (mounting, access protocols)
19. Batch systems (common scheduler concepts):

20. Distributed computing
21. Best practices and “software engineering”
22. Text editors (vim/emacs/...?) and IDEs
23. Authentication in general; SSH; keys; ssh config; tunneling
24. Machine Learning
25. Debuggers (gdb)
26. Parallel programming
27. Workflows (e.g. yadage) & Reproducibility (e.g REANA)
28. Monte Carlo (pythia, sherpa, madgraph, …)
29. Simulations (e.g. GEANT)
30. Documentation (doxygen, sphinx …)

The Lesson Wishlist
Taken from the IRIS-HEP Training
February Blueprint Meeting

https://docs.google.com/document/d/1QpWWK5ZYEY6kLofqUESwzuNTqUGRHAVj7Y_FeCPHt6c/edit?ts=5e53908e#

1. Git/vcs essentials/github (“How to”)
2. Advanced module for git
3. Python foundations
4. Building programs with python
5. Data analysis: numpy, pandas
6. Advanced data analysis
7. Advanced python and pyroot, uproot
8. Build systems: from gcc to cmake
9. Continuous Integration/Development

10. Docker and Containerization
11. Unix (shell, bash, scripting, ...)
12. Advanced unix (shell, bash, scripting, ...)
13. Suggestion: Advanced Unix/terminal
14. Jupyter notebooks and Binder/SWAN
15. ROOT 7

1. Git/vcs essentials/github (“How to”)
2. Advanced module for git
3. Python foundations
4. Building programs with python
5. Data analysis: numpy, pandas
6. Advanced data analysis
7. Advanced python and pyroot, uproot
8. Build systems: from gcc to cmake
9. Continuous Integration/Development

10. Docker and Containerization
11. Unix (shell, bash, scripting, ...)
12. Advanced unix (shell, bash, scripting, ...)
13. Suggestion: Advanced Unix/terminal
14. Jupyter notebooks and Binder/SWAN
15. ROOT
16. C++
17. Package managers and RPMs
18. Distributed file systems (mounting, access protocols)
19. Batch systems (common scheduler concepts):

20. Distributed computing
21. Best practices and “software engineering”
22. Text editors (vim/emacs/...?) and IDEs
23. Authentication in general; SSH; keys; ssh config; tunneling
24. Machine Learning
25. Debuggers (gdb)
26. Parallel programming
27. Workflows (e.g. yadage) & Reproducibility (e.g REANA)
28. Monte Carlo (pythia, sherpa, madgraph, …)
29. Simulations (e.g. GEANT)
30. Documentation (doxygen, sphinx …)

The Lesson Wishlist From the SWC Curriculum
Production Ready
In (various stages of) Development

1. Git/vcs essentials/github (“How to”)
2. Advanced module for git
3. Python foundations
4. Building programs with python
5. Data analysis: numpy, pandas
6. Advanced data analysis
7. Advanced python and pyroot, uproot
8. Build systems: from gcc to cmake
9. Continuous Integration/Development

10. Docker and Containerization
11. Unix (shell, bash, scripting, ...)
12. Advanced unix (shell, bash, scripting, ...)
13. Suggestion: Advanced Unix/terminal
14. Jupyter notebooks and Binder/SWAN
15. ROOT
16. C++
17. Package managers and RPMs
18. Distributed file systems (mounting, access protocols)
19. Batch systems (common scheduler concepts):
20. Distributed computing
21. Best practices and “software engineering”
22. Text editors (vim/emacs/...?) and IDEs
23. Authentication in general; SSH; keys; ssh config; tunneling
24. Machine Learning
25. Debuggers (gdb)
26. Parallel programming
27. Workflows (e.g. yadage) & Reproducibility (e.g REANA)
28. Monte Carlo (pythia, sherpa, madgraph, …)
29. Simulations (e.g. GEANT)
30. Documentation (doxygen, sphinx …)

1. Git/vcs essentials/github (“How to”)
2. Advanced module for git
3. Python foundations
4. Building programs with python
5. Data analysis: numpy, pandas
6. Advanced data analysis
7. Advanced python and pyroot, uproot
8. Build systems: from gcc to cmake
9. Continuous Integration/Development

10. Docker and Containerization
11. Unix (shell, bash, scripting, ...)

12. Advanced unix (shell, bash, scripting, ...)
13. Suggestion: Advanced Unix/terminal
14. Jupyter notebooks and Binder/SWAN
15. ROOT 8

The Lesson Wishlist A link exists to some lesson, of varying quality, in
various formats, that need access to “that
postdoc that wrote it” to be useful

1. Git/vcs essentials/github (“How to”)
2. Advanced module for git
3. Python foundations
4. Building programs with python
5. Data analysis: numpy, pandas
6. Advanced data analysis
7. Advanced python and pyroot, uproot
8. Build systems: from gcc to cmake
9. Continuous Integration/Development

10. Docker and Containerization
11. Unix (shell, bash, scripting, ...)
12. Advanced unix (shell, bash, scripting, ...)
13. Suggestion: Advanced Unix/terminal
14. Jupyter notebooks and Binder/SWAN
15. ROOT
16. C++
17. Package managers and RPMs
18. Distributed file systems (mounting, access protocols)
19. Batch systems (common scheduler concepts):
20. Distributed computing
21. Best practices and “software engineering”
22. Text editors (vim/emacs/...?) and IDEs
23. Authentication in general; SSH; keys; ssh config; tunneling
24. Machine Learning
25. Debuggers (gdb)
26. Parallel programming
27. Workflows (e.g. yadage) & Reproducibility (e.g REANA)
28. Monte Carlo (pythia, sherpa, madgraph, …)
29. Simulations (e.g. GEANT)
30. Documentation (doxygen, sphinx …)

1. Git/vcs essentials/github (“How to”)
2. Advanced module for git
3. Python foundations
4. Building programs with python
5. Data analysis: numpy, pandas
6. Advanced data analysis
7. Advanced python and pyroot, uproot
8. Build systems: from gcc to cmake
9. Continuous Integration/Development

10. Docker and Containerization
11. Unix (shell, bash, scripting, ...)

12. Advanced unix (shell, bash, scripting, ...)
13. Suggestion: Advanced Unix/terminal
14. Jupyter notebooks and Binder/SWAN
15. ROOT 9

The Lesson Wishlist A link exists to some lesson, of varying quality, in
various formats, that need access to “that
postdoc that wrote it” to be useful

Think you know one of these things?

Join us for “meta hackathon” for lesson development to

be held December 16-18 in the virtual realm!

(https://indico.cern.ch/event/975487/)

https://indico.cern.ch/event/975487/

Example #1 : In Person
● Attendance : few dozen
● Positives

○ Active/efficient engagement of participants
○ Professional networking and additional “events”

● Negatives
○ Travel costs (education should not be exclusive)
○ Long lead time for planning logistics

■ Related to travel/room booking
○ Requires participant “sacrifice”

● Important things
○ Room setup is crucial

■ Two projects/screens
■ Not an auditorium
■ Ample power

10

Lunch

ATLAS
[Lukas &

Sam]

Lunch

Dinner
@ Meyrinoise

Cont. Integration
[Giordon]

Docker
[Danicka]

Monday Tuesday Wednesday

11

CERN Re-Ana
[Tibor]

Lunch

Discussion with
Theorists + Reception

CMS
[Savannah
& Clemens]

ATLAS
[Lukas &

Sam]

CMS
[Savannah
& Clemens]

ATLAS
[Lukas &

Sam]

CMS
[Savannah
& Clemens]

Catch-up TimeCatch-up Time

Awesome
H(tautau) Analysis

Pre-workshop

Kickoff/Orientation

Cont. Integration
[Giordon]

IRIS-HEP blog
post by Lukas

https://iris-hep.org/2020/02/17/analysis-preservation.html
https://iris-hep.org/2020/02/17/analysis-preservation.html

Lunch

ATLAS
[Lukas &

Sam]

Lunch

Dinner
@ Meyrinoise

Cont. Integration
[Giordon]

Docker
[Danicka]

Monday Tuesday Wednesday

12

CERN Re-Ana
[Tibor]

Lunch

Discussion with
Theorists + Reception

CMS
[Savannah
& Clemens]

ATLAS
[Lukas &

Sam]

CMS
[Savannah
& Clemens]

ATLAS
[Lukas &

Sam]

CMS
[Savannah
& Clemens]

Catch-up TimeCatch-up Time

Awesome
H(tautau) Analysis

Pre-workshop

Kickoff/Orientation

Cont. Integration
[Giordon]

IRIS-HEP blog
post by Lukas

New Subject Matter
- Driven by the Instructor
- Mentors move around room to

spot-check participation and
debug simple issues

https://iris-hep.org/2020/02/17/analysis-preservation.html
https://iris-hep.org/2020/02/17/analysis-preservation.html

Lunch

ATLAS
[Lukas &

Sam]

Lunch

Dinner
@ Meyrinoise

Cont. Integration
[Giordon]

Docker
[Danicka]

Monday Tuesday Wednesday

13

CERN Re-Ana
[Tibor]

Lunch

Discussion with
Theorists + Reception

CMS
[Savannah
& Clemens]

ATLAS
[Lukas &

Sam]

CMS
[Savannah
& Clemens]

ATLAS
[Lukas &

Sam]

CMS
[Savannah
& Clemens]

Catch-up TimeCatch-up Time

Awesome
H(tautau) Analysis

Pre-workshop

Kickoff/Orientation

Cont. Integration
[Giordon]

IRIS-HEP blog
post by Lukas

Free-Form Technical Discussion
- Loosely organized
- Can be application/experiment specific
- Explicit time for personalized help

https://iris-hep.org/2020/02/17/analysis-preservation.html
https://iris-hep.org/2020/02/17/analysis-preservation.html

Location, location, location
● Success of the workshop is highly dependent on the location

○ Is this event “vidyo-able” and can be held remotely?
■ No [Sam’s opinion in Aug 2019] → Maybe [Sam’s new opinion]

14

Location, location, location

15

Two screens :
[1] Projection of material - students follow along as well
[2] Display of instructor terminal - coding on the fly

Awesome local coordination/help

Whiteboards for describing concepts
(e.g. git branching/merging)

NOT an auditorium - participants face
each other → promotes discussion

Big tables to allow for {notebook,
laptop, coffee/snacks}

Large/open space → instructors can
move around and help participants

The Golden Ratio
● Ratio of Participant : Educator <= 5

○ This is *essential* to allow for the “hands on” aspect of the workshop to be successful

● Large time commitment on behalf of the educators
○ Can’t just “do your talk” and then leave

Matthew
Dan

Matthew

Dan

Dan

Karol Karol

Matthew Henry

Zach : “I’m confused that …” Zach : “Yeah, I already tried that …” Zach : “Ahhhh, that makes sense!”

16

Example #2 : Virtual
● Attendance : few hundred
● Positives

○ Broader reach : >100 registrants for both events
■ 2 times greater likelihood to participate

○ No travel costs → critical for some supervisors
○ Don’t need to plan in as much advance
○ Materials are more fully preserved (i.e. videos)

● Negatives
○ Difficult educator/participant interactions
○ Need mentors spaced in (potentially) different time zones
○ Challenging to keep everyone on same page
○ Higher attrition rate from registrants → participants

● Important things
○ Have well defined roles
○ Effective chat application is essential

■ e.g. mattermost/discord/slack 17

I would not
have attended

I would have
still attended

These people would
have missed out

responses

Watch and work through
recorded tutorials
payload by Kevin

Monday
Welcome

Tues/Wed
Work on your own, when you want

Thursday
hands-on

18

Block 1:
[8-10 CET]

Kickoff/Orientation
[15-16 CET]

Block 2:
[10-12 CET]

Block 3:
[12-14 CET]

Block 4:
[14-16 CET]

Watch and work through
recorded tutorials
CI/CD by Giordon

https://www.youtube.com/playlist?list=PLt-F9pA2Txte8b-2YoipRoSAe5YSMA_vP
https://www.youtube.com/playlist?list=PLWZ1NKCZTdqcnTEx_CkfTP_3uZWcDOgxY

Watch and work through
recorded tutorials
payload by Kevin

Monday
Welcome

Thursday
hands-on

19

Block 1:
[8-10 CET]

Kickoff/Orientation
[15-16 CET]

Block 2:
[10-12 CET]

Block 3:
[12-14 CET]

Block 4:
[14-16 CET]

Tues/Wed
Work on your own, when you want

Watch and work through
recorded tutorials
CI/CD by Giordon

New Subject Matter
- Pre-recorded by the Instructor and posted to YouTube
- Participants work at their own pace
- Active assistance provided via Slack (or something like it)

by Instructors & Mentors

https://www.youtube.com/playlist?list=PLt-F9pA2Txte8b-2YoipRoSAe5YSMA_vP
https://www.youtube.com/playlist?list=PLWZ1NKCZTdqcnTEx_CkfTP_3uZWcDOgxY

Watch and work through
recorded tutorials
payload by Kevin

Monday
Welcome

Thursday
Hands-on

20

Block 1:
[8-10 CET]

Kickoff/Orientation
[15-16 CET]

Block 2:
[10-12 CET]

Block 3:
[12-14 CET]

Block 4:
[14-16 CET]

Watch and work through
recorded tutorials
CI/CD by Giordon

Free-Form Technical Discussion
- Use individual sessions and assign 1 mentor : 5

participants per Zoom/Vidyo/Bluejeans session
- Can center discussion on some “challenge topics” or let it

be driven by participants

Tues/Wed
Work on your own, when you want

https://www.youtube.com/playlist?list=PLt-F9pA2Txte8b-2YoipRoSAe5YSMA_vP
https://www.youtube.com/playlist?list=PLWZ1NKCZTdqcnTEx_CkfTP_3uZWcDOgxY

GitLab CI/CD Videos

● 13 videos following the tutorials

Almost “In Person”

turn on caption here!

https://www.youtube.com/watch?v=NxhDGMo9ILM&list=PLWZ1NKCZTdqcnTEx_CkfTP_3uZWcDOgxY
https://hsf-training.github.io/hsf-training-cicd/index.html

Does it work?
● We do our best to diligently collect

before/after data via surveys
○ Pre-survey

■ Demographics
■ How much do you know?

○ Post-survey
■ How much do you now know?
■ What can we do better next time?

○ Would like to have further out “follow
up” surveys (takes more work …)

● Self-reported learning *does*
happen!

22

Virtual vs. In Person

23

From c++ event in early November :
https://indico.cern.ch/event/969325/

https://indico.cern.ch/event/969325/

Virtual vs. In Person

24

Status-quo
[“go ask google”+StackOverflow]

Status-quo + Supporting Material + Videos
[HSF-Training Approach]

Virtual vs. In Person

25

Virtual Workshops
[covid-forced]

In-Person Workshops
[pre-covid preference]

All Trainings to Date

26

Python & Stuff @ FNAL
(25 participants / 5 educators)

LBNL ATLAS Software Bootcamp
(40 participants / 8 educators)

Software Carpentry @ CERN
(60 participants / 5 educators)

“The Awesome Workshop”
(30 participants / 10 educators)

Software Carpentry @ CERN
(85 participants)

CICD with GitLab/Pipelines [virtual]
(250 participants / 15 educators)

Containerization with Docker [virtual]
(173 participants / 15 educators)

US+CA ATLAS Computing Bootcamp [virtual]
(50 participants / 15 educators)

Sebastien and Stefan’s C++ [virtual]
(50 participants / 12 educators)

Machine Learning + GPUs [virtual]
(40 participants / 7 educators)

Reproducible Analyses and
Workflows (lesson content)

Sebastien and Stefan’s C++
… Take #2

CICD with GitHub/Actions
(lesson content)

2020 2021

✘

https://indico.cern.ch/event/827230/
https://indico.cern.ch/event/827232/
https://indico.cern.ch/event/834411/
https://indico.cern.ch/event/854880/
https://indico.cern.ch/event/882660/
https://indico.cern.ch/event/904759/
https://indico.cern.ch/event/934651/
https://indico.cern.ch/event/933434/
https://indico.cern.ch/event/946584/
https://indico.cern.ch/event/958112/
https://awesome-workshop.github.io/reproducible-analyses/index.html
https://hsf-training.github.io/hsf-training-cicd-github/

Conclusions

27

● Are we filling a niche that wasn’t filled
before? No

○ HEP PhD ← → “learning to compute”

● Are we making that niche more
uniform/accessible/efficient/approachable?

○ Definitely - Look at the statistics

● For the immediate future
○ Develop/fill out core curriculum

■ Challenge : Teaching of c++
○ Understand what factorizes

■ What is “someone else’s responsibility”?

● For the further future
○ Establish official MoU with SWC
○ Formalize HEP education (e.g. “career path”)

