
bamboo: an RDataFrame-based analysis framework

Pieter David

Université catholique de Louvain

HSF WLCG Virtual Workshop
24 November 2020

mailto:pieter.david@cern.ch
https://indico.cern.ch/event/941278/timetable/?view=standard

What is bamboo? code docs

• an analysis framework based on RDataFrame, in python
• used in several CMS analyses that use NanoAOD

Some context:
• NanoAOD is a centrally produced flat tree format, introduced in 2019 in

CMS to increase the efficiency of analyses on large datasets (aiming to
cover at least half of all analysis use cases), more details here

• Often NanoAODs are “postprocessed” (some branches dropped, and
corrections calculated), but they can also be used directly

• This evolution inspired a rewrite of our analysis framework, taking
advantage of new technology (RDataFrame, cling), which also turned
into an experiment of how simple analysis code could be made without
giving up flexibility

bamboo could not have reached the current state without the feedback and
help from a few early users. Many thanks, in particular to Sébastien Wertz,
Khawla Jaffel, Florian Bury, and Gourab Saha
Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 2

https://gitlab.cern.ch/cp3-cms/bamboo
https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/
https://doi.org/10.5281/zenodo.260230
https://indico.cern.ch/event/708041/papers/3276172/files/8621-nanoaod_acat19_v2.pdf

What is bamboo? code docs

• an analysis framework based on RDataFrame, in python
• used in several CMS analyses that use NanoAOD

Depending on the perspective:
• a set of tools to efficiently build RDF graphs (JIT-compiled)
• an embedded domain-specific language for producing plots, skims etc.

(compact declarative code, similar to analysis description languages)

Design principles and goals:

1 avoid the black box effect: the user makes all the choices that affect the
results (but there are helpers and shared tools for many common things)

2 analysis code should be as simple and compact as possible (given 1)

3 be as fast as possible (main target: turnaround time for plots using the
local T2 batch system)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 3

https://gitlab.cern.ch/cp3-cms/bamboo
https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/
https://doi.org/10.5281/zenodo.260230

Building an analysis with bamboo: code

• build expressions from the decorated NanoAOD and helper functions
muons = op.select(t.Muon, lambda mu : op.AND(mu.mediumId,

mu.pfRelIso03_all < 0.4, mu.pt > 15., op.abs(mu.eta) < 2.4))
leadMuPt = muons[0].pt
dimu = op.combine(muons, N=2, lambda m1,m2 : m1.charge != m2.charge)
ll = dimu[0]
m_ll = (ll[0].p4 + ll[1].p4).M()
cleanedBJets = op.select(t.Jet, lambda j : op.AND(

op.NOT(op.rng_any(muons, lambda m : op.deltaR(m.p4, j.p4) <0.3)),
j.bTag > 0.6))

• cut flow: define Selection objects by adding cuts and weights to the
parent selection (starting from all events in the input, weight 1)
if isMC(sample):

baseSel = baseSel.refine("mcWeight", weight=t.genWeight)
diMuSel = baseSel.refine("hasDimu", cut=(op.rng_len(dimu) >= 1))

• plots: construct Plot objects from axis variable(s) and a Selection
plot = Plot.make1D("dimuM", m_ll, diMuSel, EqB(100, 20., 120.))

• wrap this up in a module
class DimuonPlots(NanoAODHistoModule):

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
analysis code
return plots ## list of Plot objects

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 4

Building an analysis with bamboo: code

• build expressions from the decorated NanoAOD and helper functions
muons = op.select(t.Muon, lambda mu : op.AND(mu.mediumId,

mu.pfRelIso03_all < 0.4, mu.pt > 15., op.abs(mu.eta) < 2.4))
dimu = op.combine(muons, N=2, lambda m1,m2 : m1.charge != m2.charge)
ll = dimu[0]
m_ll = (ll[0].p4 + ll[1].p4).M()

• cut flow: define Selection objects by adding cuts and weights to the
parent selection (starting from all events in the input, weight 1)
if isMC(sample):

baseSel = baseSel.refine("mcWeight", weight=t.genWeight)
diMuSel = baseSel.refine("hasDimu", cut=(op.rng_len(dimu) >= 1))

• plots: construct Plot objects from axis variable(s) and a Selection
plot = Plot.make1D("dimuM", m_ll, diMuSel, EqB(100, 20., 120.))

• wrap this up in a module
class DimuonPlots(NanoAODHistoModule):

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
analysis code
return plots ## list of Plot objects

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 5

Building an analysis with bamboo: code

• build expressions from the decorated NanoAOD and helper functions
muons = op.select(t.Muon, lambda mu : op.AND(mu.mediumId,

mu.pfRelIso03_all < 0.4, mu.pt > 15., op.abs(mu.eta) < 2.4))
dimu = op.combine(muons, N=2, lambda m1,m2 : m1.charge != m2.charge)
ll = dimu[0]
m_ll = (ll[0].p4 + ll[1].p4).M()

• cut flow: define Selection objects by adding cuts and weights to the
parent selection (starting from all events in the input, weight 1)
if isMC(sample):

baseSel = baseSel.refine("mcWeight", weight=t.genWeight)
diMuSel = baseSel.refine("hasDimu", cut=(op.rng_len(dimu) >= 1))

• plots: construct Plot objects from axis variable(s) and a Selection
plot = Plot.make1D("dimuM", m_ll, diMuSel, EqB(100, 20., 120.))

• wrap this up in a module
class DimuonPlots(NanoAODHistoModule):

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
analysis code
return plots ## list of Plot objects

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 6

Building an analysis with bamboo: code

• build expressions from the decorated NanoAOD and helper functions
muons = op.select(t.Muon, lambda mu : op.AND(mu.mediumId,

mu.pfRelIso03_all < 0.4, mu.pt > 15., op.abs(mu.eta) < 2.4))
dimu = op.combine(muons, N=2, lambda m1,m2 : m1.charge != m2.charge)
ll = dimu[0]
m_ll = (ll[0].p4 + ll[1].p4).M()

• cut flow: define Selection objects by adding cuts and weights to the
parent selection (starting from all events in the input, weight 1)
if isMC(sample):

baseSel = baseSel.refine("mcWeight", weight=t.genWeight)
diMuSel = baseSel.refine("hasDimu", cut=(op.rng_len(dimu) >= 1))

• plots: construct Plot objects from axis variable(s) and a Selection
plot = Plot.make1D("dimuM", m_ll, diMuSel, EqB(100, 20., 120.))

• wrap this up in a module
class DimuonPlots(NanoAODHistoModule):

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
analysis code
return plots ## list of Plot objects

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 7

From this code to stack plots

bambooRun -m dimu.py:DimuonPlots dimu_example.yml -o test_dimu1

• Samples (input files, name, scaling) are defined in a YAML file, e.g.

samples:
DY_M10to50_2017:

group: DY
era: "2017"
db: "das:/DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8/..."
cross-section: 18610
generated-events: 'genEventSumw'
split: 2

• definePlots gets all sample metadata, so can adjust the graph
(scalefactors, corrections etc.); it is only called once per sample (or batch
job) to construct the RDF graph, which then runs at compiled speed

• by default combined in a stack plot with plotIt, but easy to customize
• Running on a batch system, implicit multi-threading, verbose logging,

only the plotting step… configured through command-line arguments

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 8

https://github.com/cp3-llbb/plotIt

From this code to stack plots

bambooRun -m dimu.py:DimuonPlots dimu_example.yml -o test_dimu1

• Samples (input files, name, scaling) are defined in a YAML file, e.g.

samples:
DY_M10to50_2017:

group: DY
era: "2017"
db: "das:/DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8/..."
cross-section: 18610
generated-events: 'genEventSumw'
split: 2

• definePlots gets all sample metadata, so can adjust the graph
(scalefactors, corrections etc.); it is only called once per sample (or batch
job) to construct the RDF graph, which then runs at compiled speed

• by default combined in a stack plot with plotIt, but easy to customize
• Running on a batch system, implicit multi-threading, verbose logging,

only the plotting step… configured through command-line arguments

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 9

https://github.com/cp3-llbb/plotIt

From this code to stack plots

bambooRun -m dimu.py:DimuonPlots dimu_example.yml -o test_dimu1

• Samples (input files, name, scaling) are defined in a YAML file, e.g.

samples:
DY_M10to50_2017:

group: DY
era: "2017"
db: "das:/DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8/..."
cross-section: 18610
generated-events: 'genEventSumw'
split: 2

• definePlots gets all sample metadata, so can adjust the graph
(scalefactors, corrections etc.); it is only called once per sample (or batch
job) to construct the RDF graph, which then runs at compiled speed

• by default combined in a stack plot with plotIt, but easy to customize
• Running on a batch system, implicit multi-threading, verbose logging,

only the plotting step… configured through command-line arguments

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 10

https://github.com/cp3-llbb/plotIt

From this code to stack plots

bambooRun -m dimu.py:DimuonPlots dimu_example.yml -o test_dimu1

• Samples (input files, name, scaling) are defined in a YAML file, e.g.

samples:
DY_M10to50_2017:

group: DY
era: "2017"
db: "das:/DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8/..."
cross-section: 18610
generated-events: 'genEventSumw'
split: 2

• definePlots gets all sample metadata, so can adjust the graph
(scalefactors, corrections etc.); it is only called once per sample (or batch
job) to construct the RDF graph, which then runs at compiled speed

• by default combined in a stack plot with plotIt, but easy to customize

• Running on a batch system, implicit multi-threading, verbose logging,
only the plotting step… configured through command-line arguments

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 11

https://github.com/cp3-llbb/plotIt

From this code to stack plots

bambooRun -m dimu.py:DimuonPlots dimu_example.yml -o test_dimu1

• Samples (input files, name, scaling) are defined in a YAML file, e.g.

samples:
DY_M10to50_2017:

group: DY
era: "2017"
db: "das:/DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8/..."
cross-section: 18610
generated-events: 'genEventSumw'
split: 2

• definePlots gets all sample metadata, so can adjust the graph
(scalefactors, corrections etc.); it is only called once per sample (or batch
job) to construct the RDF graph, which then runs at compiled speed

• by default combined in a stack plot with plotIt, but easy to customize
• Running on a batch system, implicit multi-threading, verbose logging,

only the plotting step… configured through command-line arguments

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 12

https://github.com/cp3-llbb/plotIt

What goes on behind the scenes

• Decorated tree attributes (collections, groups), collection items etc. are in
fact proxy objects that behave like the value they refer to, but instead
build up the expression graph. The intermediate results (e.g. a filtered
list, physics object, combination, which are conceptually close to how we
talk and think about analysis) can be used freely in the analysis code.

• When adding selections and plots, the cuts, weights, and axis variables
(and expensive intermediate results) are defined as columns in the RDF

This may sound a bit heavy, but it works well so far, and has advantages:
• exploit C++ JITting from python analysis code
• automation by transforming expressions: systematics without code

duplication. Technically, inputs (weight, SF, kinematics…) are marked as
having systematic variations, and producing the histogram with the
alternative value of this in any of the cuts/weights/axis variables it
needs, can be done automatically.

• in principle this allows for optimisations of the graph, and conversion to
other formats or backends

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 13

Decorated trees and expressions versus plain RDataFrame

With split collections (Muon_pt[nMuon] etc.) a lot of bookkeeping of indices
can be done automatically. As an example, without the builtin helper
method, the RDataFrame code to calculate a dimuon invariant mass
(without any selection) on NanoAOD would be something like
using ROOT::Math::VectorUtil::InvariantMass;
using LV = ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<float>>;
df.Define("Dimuon_mass",

[] (const auto& pt, const auto& eta, const auto& phi, const auto& m) {
return InvariantMass(LV(pt[0], eta[0], phi[0], m[0]),

LV(pt[1], eta[1], phi[1], m[1]));
}, {"Muon_pt", "Muon_eta", "Muon_phi", "Muon_mass"}
).Histo1D(..., "Dimuon_mass", ...);

or, using the JIT instead of fully compiled code,
df.Define("Dimuon_mass_v2",

"InvariantMass("
"LorentzVector(Muon_pt[0], Muon_eta[0], Muon_phi[0], Muon_mass[0]),"
"LorentzVector(Muon_pt[1], Muon_eta[1], Muon_phi[1], Muon_mass[1]))"

).Histo1D(..., "Dimuon_mass_v2", ...);

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 14

Other available ingredients

• Data-driven background estimates (recipe)

• Printout or LaTeX table of cutflow (recipe)

• rerunning the combination step on previously produced histograms

• running on slurm or HTCondor (and recovering failed jobs)

• MVA inference with Tensorflow, TMVA, torchscript, and lwtnn

• on-demand calculation of various corrections (lepton and jet energy
scale, propagated to missing transverse momentum)

• many customisation points: analysis-specific command-line switches,
other types of plots etc.; loading C++ extensions from user code is also
possible (as in ROOT)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 15

https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/recipes.html#data-driven-backgrounds
https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/apiref.html#bamboo.plots.CutFlowReport
https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/treefunctions.html#bamboo.treefunctions.mvaEvaluator
https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/recipes.html#jet-and-met-systematics

Analysis workflows with bamboo

• Not the only option, but most users run bamboo on centrally produced
NanoAOD, with on-demand calculation of corrections (fast standalone
C++ implementation of what we need): this eliminates the grid jobs to
obtain a format for analysis, and gives a lot more flexibility (also
interesting for deriving corrections and calibrations)

• Analysis preservation: a bamboo analysis is a collection of python
classes, a few YAML files (samples), and commands to chain the steps.
bamboo is installed with pip (so also easy in conda or docker), and
requires only a recent ROOT and python3 with a few standard packages.
The main challenge to running on CI is fast enough data access (we use
locally available files, xrootd is the fallback option, but may be slow)

• (biased opinion) bamboo encourages compact, simple and, therefore,
readable analysis code

• Performance: small overhead from python code in typical use cases,
acceptable turnaround times (see this talk for some more details)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 16

https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/install.html#installation
https://github.com/pieterdavid/bamboo-docker
https://indico.cern.ch/event/963454/#1-bamboo-a-python-framework-ba

Conclusions

• Introduced bamboo, a Python+RDataFrame analysis framework (with a
focus on CMS NanoAOD, but extensible)

• The declarative paradigm in RDataFrame allows for code that is both
simple and efficient, bamboo provides generic analysis building blocks

• bamboo-based analysis code is similar to analysis description languages,
but embedded: take advantage of python for building the computation
graph, and of (Cling-JITted) C++ during the “event loop”

• Complete enough for many CMS analysis use cases, more developments
and additions are in progress (e.g. fully compiled code) or planned

• Open source, so if you think it may be useful for you feel free to give it a
try (and do not hestitate to reach out if something is not working or
missing), contributions are also welcome

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 17

Additional material

Performance

• bamboo uses mostly JITted code, so some overhead is expected — so far
acceptable, in return for simpler analysis code

• No detailed benchmarking done so far, but speed is in the target range:
turnaround of a few hours for O(100) plots (thousands of histograms) of
the CMS Run2 data on a batch system

• Memory usage has been a bigger worry, but ROOT 6.22/00 brought a
huge improvement (factor 3–5), details in this forum thread

• Implicit multi-threading mostly “just works”, can be useful in case of
large graphs or a lot of calculation (otherwise I/O and decompression
dominate)

• Filling a list of histograms with the same value but different weights is a
common pattern, some repetition (bin lookup) could be avoided there

• Is it possible to evaluate an MVA on inputs from a batch of events?
More generally: how is, or could, vectorisation be used?

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 19

https://root-forum.cern.ch/t/bamboo-an-analysis-framework-based-on-rdataframe/39496/7

bamboo ingredients

• High-level python analysis code to define plots and selections
(using loops, higher-order functions etc.)

• Decorated version of the input TTree: an event looks like a set of
containers of physics objects (jets, leptons, tracks etc.) and
(groups of) per-event quantities

• Expressions (selection, weight, variable) are composed of simple
python objects, built from decorators, and decorated to behave
as a value (to construct derived expressions)

• When the analysis is complete: convert expressions to strings for
RDataFrame, run over all samples, and make plots

• Every analysis derives from a base class, such that e.g. splitting
in batch jobs, and plotting code can be reused

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 20

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases
• add a correction that a) is a

per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 21

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

Personal experience: need for speed
makes analysis code messy (hard to
find bugs), inflexible, or both

but with modern ROOT (RDataFrame
+ cling + PyROOT), an event loop can
be built declaratively, with compiled
code, from python — so this
performance versus readability and
flexibility tradeoff can be avoided

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 22

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

image credit: Claudio Caputo

bamboo is an attempt to turn this
idea into a framework usable for
analysis of CMS NanoAODs (and
similar formats)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 23

Implementation: tree decorations

• Tree proxy class generated on the fly, based on
the branches that are found

• By default, each branch is an attribute of the tree
proxy (the class is generated with type())

• Groups of non-array branches: “group proxy” in
between: t.HLT.MuXX, t.pdf.x1

• Groups of array branches: container proxy, and a
proxy for the elements: t.Muon[0].IDLoose

• Can also add references and arbitrary functions:
t.Jet[0].Mu1.pt, t.Muon[0].p4.E()

• Needs to be adapted to recognize different tree
formats, but for flat trees (most common) this is
fairly straightforward (examples are from CMS
NanoAOD, one other format is implemented) image credit

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 24

https://commons.wikimedia.org/wiki/File:Yarn_bombing_St_Patricks_Cathedral_Park_1.JPG

Implementation: expressions and proxies

Expressions
• are composed of simple python

objects, e.g. t.Muon[0].pt
(Muon_pt[0]) becomes
GetItem(GetArrayLeaf("Muon_pt"),0)

• can be converted to a string for
RDataFrame/JIT

• are considered immutable as soon
as they are fully constructed and
passed around (but a fresh clone
can be modified by the owner)

Proxies
• Wrap an expression

• Emulate the value type of
expression’s result (through
python operator overloading and
other magic methods)

• float-like, integer-like, object-like,
and a few list-like classes — but no
complete type system (yet), so
limited checks at construction

Currently each of these interfaces has about 25 implementations – the user
should only need the decorated tree and the bamboo.treefunctions module

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 25

Selections and plots

Zooming in on the currently main use
case of different selections and
histograms now (skims also work)

• This only needs two fundamental
RDataFrame actions: Filter and
Histo{1D,2D} (and Define, to
calculate intermediate values)

• Important distinction: Filter
changes control flow, whereas the
others do not — so there is some
freedom in ordering the Define
nodes (in between the Filter
that makes sure the expression is
valid and the first use)

Current solution (bamboo.plots):
• Selection class, with each

instance (optionally) holding a set
of selection requirements (cuts)
and weight factors

• Selections are defined by adding
cuts or weights to a more inclusive
selection (starting point: all events
in the input, unit weight)

• Plot instances are defined by a
Selection, variable(s), binning(s),
and layout options

• RDataFrame nodes are created
when Selection and Plot
objects are constructed

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 26

Extending the basic functionality

Written in python, and tried to keep things loosely coupled (interfaces), so
many things are straightforward to customise and extend:

• Loading additional C++ headers and libraries in the interpreter
Examples: good runs/events filter and scale factors from JSON files,
jet and muon energy scale corrections calculated on the fly

• Alternative analysis (base) classes, e.g. for different tree formats, to
customise plotting, or to calculate efficiencies in addition

• There is a hook to specify additional command-line arguments from the
analysis module

• The sample definition (YAML) is open-ended, the base class only looks at
the attributes it needs (e.g. input files, to do the job splitting), and the
plotting library at a few more (normalisation for MC, grouping and
ordering, colors…)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 27

Structure of a bamboo analysis module

from bamboo.analysismodules import NanoAODHistoModule
class DimuonPlots(NanoAODHistoModule):

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
from bamboo.plots import Plot
from bamboo.plots import EquidistantBinning as EqB
from bamboo import treefunctions as op
if self.isMC(sample):

noSel = noSel.refine("mcWeight", weight=t.genWeight)
plots = []
muons = op.select(t.Muon, lambda mu : op.AND(mu.mediumId,

mu.pfRelIso03_all < 0.4, mu.pt > 15.))
twoMuSel = noSel.refine("has2mu", cut=(op.rng_len(muons) > 1))
plots.append(Plot.make1D("dimuM", (muons[0].p4+muons[1].p4).M(),

twoMuSel, EqB(100, 20., 120.), title="Invariant mass"))
return plots

RResultPtrs to all histograms collected in the base class, then filled
Selection represents a subsample (Filter node), with a weight column;
constructed with parent.refine(name, cut=..., weight=...)
Plot (Histo1D node): name, variable, binning, Selection, and options
Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 28

Building expressions from decorated flat TTrees
• Decorations group related branches. As an example: how to plot the

invariant mass of the two highest-pT b-tagged jets that are not within
ΔR < 0.3 from any isolated muon with pT > 15GeV?

muons = op.select(t.Muon, lambda mu : op.AND(mu.pt > 15., mu.iso < 0.4))
cleanedBJets_unsorted = op.select(t.Jet, lambda j : op.AND(

op.NOT(op.rng_any(muons, lambda mu : op.deltaR(mu.p4, j.p4) < 0.3)),
j.bTag > 0.6))

cleanedBJets = op.sort(cleanedBJets_unsorted, lambda j : -j.pt)
has2b = noSel.refine("2b", cut=(op.rng_len(cleanedBJets) >= 2))
Plot.make1D("mbb", (cleanedBJets[0].p4+cleanedBJets[1].p4).M(), has2b,

EqB(100, 0., 500.))

• Derived “collections” only exist in python, at the RDataFrame level they
are vectors of indices, and the other columns are used directly

• Also allows to add some extensions for convenience (p4 is not in the
NanoAOD, but constructed from X_pt, X_eta, X_phi, and X_mass)

• Can convert to code and RDataFrame nodes when constructing plots
and selections, or in one go later

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 29

Implementation: interface to RDataFrame and Cling

• Plot and Selection interact with a wrapper
(for bookkeeping) around the RDataFrame

• A tree of “selection nodes” is built up, each
grouping a Filter node with an attached set
of Define nodes

• When converting an expensive expression to a
C++ string, values are defined on-demand by
attaching Define nodes (and functions
declared with the interpreter as needed;
global scope, so can be reused everywhere)

• Main python challenge: fast traversal and
comparison of (sub)expressions to avoid
redefinition. Caching of a value-based hash of
every expression (they are effectively
immutable) solved this for almost all cases

image credit

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 30

https://commons.wikimedia.org/wiki/File:Beffroi_Hôtel_de_ville_de_Bruxelles_04.jpg

Pushing the limits: automatic systematic variations

• Many systematic uncertainties are
taken into account in very similar
ways: as a change in per-event
weight, or as a different value for
some quantities (e.g. jet energy)

• If expressions are marked as
changing under a certain
systematic effect (in the
decorations, or explicitly when
constructing the expression), the
correspondingly varied histograms
can be automatically produced

• On by default, but can be disabled
for a selection (and everything
attached to it) or a plot

Implementation: the backend code
scans cuts, weights, and variables for
marked nodes, and defines the
additional RDataFrame nodes as
needed: alternative weights only add
Define and Histo1D, but anything used
in a Filter (e.g. jet pT) clones the
whole attached subgraph

Quite some bookkeeping, but fully
generic (changes to analysis code are
minimal), and the code for this is
localised in a handful of places —
killer feature, but also a performance
stress-test (much larger graph)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 31

What is in bamboo.treefunctions?

The main module with helper methods to construct expressions
• (most importantly) per-event range operations, using array branches

(first, min/max, select, combine etc.). These are implemented using a
range version of STL algorithms like find_if, copy_if, accumulate… and
converting the result of the python lambda to a C++ lambda

• evaluating multivariate classifiers (we are actively using TMVA and
tensorflow; torchscript and lwtnn are also implemented)

• indicating if/when expressions should be defined as columns

and also (since everything needs to become an expression)
• basic math, boolean logic, special functions etc.

• more C++-specific: construct an object, call a method

• some kinematic operations (using ROOT::Math::VectorUtil)
full list

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 32

https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/treefunctions.html

RDF Development experience

• RDataFrame provides a nice and consistent API to build on
• One thing “missing” is combining results (e.g. adding up histograms) from

different analysis categories (different Filter branches of the graph) — the
limitation makes sense (and can be worked around in the analysis code)

• Count and Sum are nice, but ended up using 1-bin histograms for counters
because they collect entries, sum of weights, and the uncertainty together

• JIT C++ support is really complete (templates) and solid (the compiler
warnings and errors prevented a few bugs)

• Dynamically adding code, with automatic python bindings, makes it
very easy to load extensions (e.g. for reading weights from a file, or
evaluating a multivariate classifier)

• Main annoyance so far: logical errors in analysis code (read beyond
array end) give a segmentation fault at runtime, and are hard to debug
(removing parts of the graph to isolate the problem is time-consuming)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 24 November 2020 33

