HEP-CCE

Investigating Portable Heterogeneous

Solutions with Fast Calorimeter Simulation

C. Leggett, V. Pascuzzi

HSF/WLCG Workshop
November 24 2020
‘_1'_"‘ U.5. DEPARTMENT OF Off f]
© ENERGY I Argonne & BROOKHAVEN 3= Farmilab BBl serkeLEY Las

Why Fast Calorimeter Simulation for GPU Portability Studies? HEP-CCE

» ATLAS needs lots of simulation

« Simulation is paramount for SM and background modeling
iIn most analyses, as well as general detector and upgrade
studies

(

Run 4 (1=88-140) Run 5 (u=165-200)
T T T T Tl

Run 3 (u=55)

L e e B s s
80: ATLAS Preliminary
70 F 2020 Computing Model - CPU

F o Baseline ¢
60I— + Conservative R&D |
E v Aggressive R&D il 3
50— Sustained budget model 4 S
r (+10% +20% capacity/year) __A"',""‘ 3

40 & LHCC common scenario —
= (Conserva tive R&D, 11=200) i ek ,

A significant issue in Run-2 was the lack of MC-based
statistics, which will only worsen in Run-3 and beyond

without faster production 0-
0

3o§

Annual CPU Consumption [MHSO06years]

20[

Tl I 1 Il | Il 1 Il | Il 1 Il | Il 1 Il | Il 1 Il | Il 1 Il | Il 1 Il |\:
2020 2022 2024 2026 2028 2030 2032 2034

computational budget is spent by the
LAr Calorimeter

- Parametrized simulation can speed things
up enormously over full G4 Sim: FastCaloSim

Wall clock consumption per workflow

» FastCaloSim is small, self contained, few
dependencies, already had a CUDA port

) ENERGY JTee Argonne €& BROOKHAWEN 2% Earmilab

NATIONAL LABORATORY

BERKELEY LAB

Bringing Science Salutions to the Warld

CPU Code Profiling HEP-CCE

» LAr Calorimeter has massive inherent parallelism — lots of independent cells and
associated tasks.

» Profiling studies identified
hotspots that are
paralellizable

> TFCSLateralShapeParametrizationHitChain::simulate() is the

most significant routine except

> CUDA kemels created == R e e et e T
to run these parts on the ! =——
GPU

* modified data structures TFCSLateralShapeparametrizationti Timing for 1000 events

Chain::simulate(TFCSSimulationState...
#l 35.59 %

* reimplement Geometry and
parametrization tables for
GPU - no STL allowed

e 3 kernels: 44592 ... ' 127 230 ...

* reinit memory

TFCSHitCellMapping::simulate_hit(
TFCSLateralShapeParametrizationHitBa...
. . .] £—15.82 %
 main simulation —

* reduction

DENERGY ool Argonne & BROOKHEVEN 2t Eormilab B serkeLey LaB

NATIONAL LABORATORY Bringing Science Solutions to the Warld

FCS

g ing\\ 5] it(
S o
56 %

CUDA Performance Studies HEP-CCE

|/O to read/unpack

parametrization files is

expensive: ~15s of 30s _— FastCaloSim Speedup Over CPU (Event Loop)
10000 Events
B Event Loop GPU
Execution only offloaded 2000 g = Event Loop GPUg

if >500 hits, otherwise
CPU is faster

* eg, forward regions

15.00

10.00

GPU kernels very short
* launch latency limited

5.00

0.00

Speedup over CPU event loop time

Better performance if
group work between S
multiple events to give 4

more work to GPU

BT

::-f'“. 1‘ U.S. DEPARTMENT OF Off' f | -
€ ENERGY J™° Argonne & Brookunven 2= Earmilab BBl serkeLEy LaB

-
&\
" MATIONAL LABORATORY Bringing Science Solutions to the Warld

CUDA Performance Studies

HEP-CCE

» GPU performs better for higher energy particles (more hits = more work)

» Grouped work
not as effective
since regular GPU
IS already performant

* also need to send
extra information
to GPU when work
IS grouped
between events

70

60

50

40

30

20

Speedup over CPU

10

FastCaloSim Speedup for Higher Particle Energies

8 GPU Event Loop
8B GPUg Event Loop

v v
S S

v v
S S

v
7
&

< < < <

AN AN AN AN AN AN AN AN
/ / / / / / / /
@ @ 4 @ @ & 4 &
@ @ @ AN AN AN & &

E%, U.S. DEPARTMENT OF Office of

) ENERGY science

Argonne o Nﬁﬁﬁﬂﬂﬂ%@ 2= Fermilab B serkeLey LaB

NATIONAL LABORATORY

Bringing Science Salutions to the Warld

>

Porting to Kokkos HEP-CCE

Build infrastructure
« Kokkos has decent CMake integration

* requires separate binaries for each device backend (CUDA, HIP, Intel) or host parallel backend
(pThread, OpenMP)

* In theory you can run both device/host parallel backends in same code, but then you can’t use
the default execution space for your kernels: have to say which go where

« cannot expose plain nvcc to Kokkos headers: need selection macros or different files

Shared libraries not compatible with device symbol relocation

« if you want shared libs, all symbols in a kernel must be visible to one compilation unit
« wrap kernels in one file that does a bunch of #include
* needed to do some function/file refactoring to make it all work

CUDA backend of Kokkos interoperable with pure CUDA
 can call CUDA functions from Kokkos kernels
* makes incremental porting and validation much easier

All offloaded data structures need to be converted to Kokkos Views
- for full portability between backends

) ENERGY 2 Argonne & BROOKHRVEN It Fermilab &zl BERKELEY LAB

NATIONAL LABORATORY Bringing Science Salutions to the Warld

Porting to Kokkos: Data Structures and Kernels HEP-CCE

Kokkos: :View<...> can either allocate host/device memory, or wrap existing pointers
* makes incremental porting of cuMalloc’d memory easier

> Supports both row and column major ordering

>

>

>

Jagged multidimensional arrays not well supported by Kokkos Views
« View<View<float>> not meant for this
* |ots of extra boilerplate needed to make work
- easier to flatten to 1D array, or pad to 2D
Requires explicit Host «» Device memory migration
* need to create Views on host to hold copied information
Non-zero overhead to using Views
* both in the extra steps for creating the host/device Views, and operations on them

Kernels: While syntax is different from CUDA, concepts are the same
 functions — lambdas
parallel_for, parallel scan, reductions
« some CUDA features not available in Kokkos (yet?)
atomics (but not between devices or host/device parallel execution spaces)

©kiickey o Argonne & smoowuauen 2 Fermilab B serceLey Lag

NATIONAL LABORATORY Bringing Science Salutions to the Warld

Kokkos: Performance HEP-CCE

» Exercise various backends, compare to original CUDA

« CUDA reference is NVidia 2080
* HIP on AMD GPU (Vega56) FastCaloSim Kokkos Kernel Timing Relative To CUDA

» Serial: host serial via Kokkos ©

H CUDA
* Intel X®LP / X®HP GPU via OpenMP target % e
offload, but | can’t show those results... 30 m pThread
« pThread / OpenMP best performance ’s n PP
with ~15 threads/procs m Original CPU

20

- HIP2is a pure HIP port, run on AMD GPU

» Kokkos/CUDA “simulate” kernel has similar
performance as pure CUDA

» Kokkos does not handle GPU
memory (re)initialization efficiently

15

10

Slowdown Relative to Pure CUDA

» Kokkos increases kernel launch penalties feset smulate reduce copy =0 event loop
» AMD Vegab56 has very large launch latencies

kernel launch latencies / us

» HIP/AMD uses the CPU a lot more than CUDA when c c CUDTKKOSHIP HIP?
executing kernels on GPU ZZOEUMZreq UI;AG 9.4 152 88
V4 - .
» Code was ported from CUDA, not rewritten pr—— 3.4 5 3 60 30

*_likely considerable room for optimization
« U.S. DEPARTMENT OF Ofﬁce Df Ar On ne A Bﬂﬂﬂ““ﬁ“E" * F -I b
EN ERGY Science g NATIONAL LABORATORY erml a

NATIONAL LABORATORY

BERKELEY LAB

Bringing Science Salutions to the Warld

SYCL Build Infrastructure HEP-CCE

» Multiple different flavours of dpcpp/SYCL
* Intel official “beta” releases (CPU, Intel iGPU, Intel FPGA)
Intel closed codedrops at Argonne for A21 development (CPU, Intel iGPU, Intel dGPU)
* OpenCL and LevelZero backends
Intel/llvm git
« CUDA backend available (selectable at compile time)
* RNG issues: no oneMKL/cuRAND implementation
Codeplay (Intel, NVIDIA GPU)
hipSYCL (Intel, NVIDIA, AMD), triSYCL (PoCL, Xilinx FPGA)

» |In theory SYCL is single source, compile once, run anywhere, select backend at
runtime

* in practice need to build with different compilers to target different hardware
* maybe there will be convergence in the future

» Integrates well with CMake
© ENERGY oo Argonne & Brooxnrven 2= Earmilab

NATIONAL LABORATORY

B BERKELEY LAB

SYCL: Performance HEP-CCE
» Timing tests on an integrated Intel GPU (Iris Pro P580) w/ public dpcpp beta10

release
FastCaloSim Kernel Timing Relative To CUDA
» SYCL data/buffers are 40
normally automagically = KokkosICUDA
migrated between < Kokkos/Serial
Host «> Device as 8 B Kokkos/pThread
. 30 B KK/OpenMP
needed, but with iGPU 2 e
is all same RAM S 2 " Svelcry
e uses USM é W Original CPU
. . ©
- resetting dataisnot | @ ”
free — done with a g
kernel, ~180k g
launches & 10
5
» Same code has been J
rl,Jn on XeLP and XeHP ° reset simulate reduce copy d-h event loop
discrete GPUs
1” U.S. DEPARTMENT OF Ofﬁce Of o i *]
© ENERGY 27° Argonne & BROOKHAYEN 2t Farmilab B serkeLey Lag

MATIONAL LABORATORY Bringing Science Solutions to the Warld

10

Lessons Learned HEP-CCE

Build configuration requirements may be challenging
« Kokkos shared libs vs relocatable device code: code reorganization
» dpcpp changing (too?) rapidly, things that worked last week may not work today

Separate binaries for different device backends
« Kokkos explicitly, SYCL because you need different compiler flavours
* major implications for production code distribution
CUDA— Portability Layer concepts translate well
* Views / Buffers / USM memory management come with overhead / penalties

Launch latencies for tiny kernels kills performance on all platforms

« Portability layers make it worse
* AMD is really bad. Will RDNA2 / CDNAZ2 / Instinct improve things?

High performance single source (single core) CPU/GPU may be a pipe dream

GPU very underutilized in FastCaloSim
* grouping data between events helps: may require significant refactoring of frameworks
 a single GPU can be shared between multiple processes
© ENERGY CMe Argonne & BRooKHAVEN 2% Farmilab Bl serkeLEy Las

NATIONAL LABORATORY Bringing Science Salutions to the Warld

12

>

>

Next Steps
Other Parallel Portability Layers

* OpenMP / OpenACC : very different pragma based directives
» Alpaka : strong presence at CERN
« Raja : will we learn anything that Kokkos didn’t teach us?

Other backends

« SYCL w/ CUDA on NVidia : apples to apples comparison
» Work started on cuRAND support for oneMKL

* Intel discrete GPU (Arctic Sound/X®HP and Ponte Vecchio/X®*HPC) via Kokkos and SYCL
* we can already run FCS/SYCL on X®LP and X®HP nodes at Argonne JLSE

 AMD RDNAZ2 / CDNA2

Better understanding/evaluation/reporting of metrics
* in coordination with other testbeds

Update FastCaloSim to reflect what ATLAS is currently using

* more realistic particle scenarios

* integrate into ATLAS repositories

HEP-CCE

@ U.S. DEPARTMENT OF Office Of

; EN ERGY Science

Argonne &

NATIONAL LABORATORY

BROOKHIAEN

NATIONAL LABORATORY

2= Fermilab

22 BERKELEY LAB

Bringing Science Saluticns to the Warld

HEP-CCE

BERKELEY LAB

Bringing Science Salutions to the Warld

© ENERGY T Argonne & BROOKHAUEN 2= Fermilab

NATIONAL LABORATORY

HEP-CCE

Validation

» CUDA has a very good random number generator (CURAND)
 FCS needs /ots of random numbers

° 3 pe r h it X ~5 k h itS pe r, eve nt _) Energy: sample=2, electron, E=655j.(; MeIV, 0.20<[n|<0.25, all pca) Energy: sample=2, electron, E=655?;8 Me:[}o.20<h1|<0.25, all pca
. 80 ;_ o °-753-":’°‘ %0 ;_ + ++ 07':;:::m
- much faster than generating on CPU ol ﬁ%ﬂi + = ﬁ{ﬁ% oy
: L : : ot IS Foo o
* but can’t do bitwise comparisons 3 ﬂ* *1 el B il ﬂ s
with CPU — only statistical i { | = i ! {;{
150~ '} jrfﬂ 1501 ik
100 Eﬁj H' 100 Jr*# ;ui
. . E 4 E £
- after looking at lots of histograms, sof o *3% sof ﬁﬁ* y
T . E s E £ kY
results look statistically equivalent N S R A S— L A R A R
[—+— G4iinput —— Energy+shape sim] E2E [—+— G4input —— Energy+shape sim] E2/E

» |f we sacrifice speed, we can generate random number on CPU, and transfer them to GPU, using
these for all calculations on GPU

« compared the results of 62 million hits in the Electron 64 GeV run
« found only 2 hits calculations that ended up in different calorimeter cell
- slightly different float rounding policies on CPU/GPU
* if we use double precision variables for certain calculations, difference vanishes

» Confident that GPU code does the same thing as CPU
©ENERGY o Argonne & BROOKHAVEN 2t Formilab B serkeLey Lag

NATIONAL LABORATORY Bringing Science Salutions to the Warld

14

15

>

>

>

Acknowledgments

Really want to thank all the people who contributed to this project

CUDA port:

Zhihua Dong (BNL)

Meifeng Lin (BNL)

Kwangmin Yu (BNL)
Kokkos port:

Zhihua Dong (LBL)
Charles Leggett (LBL)

SYCL port:
Charles Leggett (LBL)
Vincent Pascuzzi (LBL)

Physics Validation:
Doug Benjamin (ANL)
Tadej Novak (DESY)

HEP-CCE

e » Office of

" U.S. DEPARTME
E N E RGY Science

Argonne &

NATIONAL LABORATORY

BROOKHIAEN

NATIONAL LABORATORY

2= Fermilab

2| BERKELEY LAB

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

