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Why Fast Calorimeter Simulation for GPU Portability Studies?
► ATLAS needs lots of simulation

• Simulation is paramount for SM and background modeling 
in most analyses, as well as general detector and upgrade 
studies

• A significant issue in Run-2 was the lack of MC-based 
statistics, which will only worsen in Run-3 and beyond 
without faster production

► A very large fraction of the simulation’s
computational budget is spent by the 
LAr Calorimeter

• Parametrized simulation can speed things
up enormously over full G4 Sim: FastCaloSim

► FastCaloSim is small, self contained, few
dependencies, already had a CUDA port
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CPU Code Profiling

► LAr Calorimeter has massive inherent parallelism – lots of independent cells and 
associated tasks.

► Profiling studies identified 
hotspots that are
paralellizable

► CUDA kernels created 
to run these parts on the 
GPU
• modified data structures

• reimplement Geometry and 
parametrization tables for 
GPU – no STL allowed

• 3 kernels:
• reinit memory
• main simulation
• reduction

PERFORMANCE PROFILING 6

➢ TFCSLateralShapeParametrizationHitChain::simulate() is the 
most significant routine except I/O (~30%). 

➢ TFCSLateralShapeParametrizationHitChain::simulate() The 
running time scales with the number of events. 

➢ TFCSLateralShapeParametrizationHitChain::simulate() is our 
target to parallelize/port to GPUs.

I/O routines
Timing for 1000 events
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CUDA Performance Studies

► I/O to read/unpack 
parametrization files is
expensive: ~15s of 30s

► Execution only offloaded
if >500 hits, otherwise
CPU is faster
• eg, forward regions

► GPU kernels very short

• launch latency limited

► Better performance if
group work between
multiple events to give
more work to GPU
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CUDA Performance Studies

► GPU performs better for higher energy particles (more hits = more work)

► Grouped work
not as effective
since regular GPU
is already performant

• also need to send
extra information
to GPU when work
is grouped 
between events
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Porting to Kokkos
► Build infrastructure

• Kokkos has decent CMake integration
• requires separate binaries for each device backend (CUDA, HIP, Intel) or host parallel backend 

(pThread, OpenMP)
• In theory you can run both device/host parallel backends in same code, but then you can’t use 

the default execution space for your kernels: have to say which go where
• cannot expose plain nvcc to Kokkos headers: need selection macros or different files

► Shared libraries not compatible with device symbol relocation
• if you want shared libs, all symbols in a kernel must be visible to one compilation unit

• wrap kernels in one file that does a bunch of #include
• needed to do some function/file refactoring to make it all work

► CUDA backend of Kokkos interoperable with pure CUDA 
• can call CUDA functions from Kokkos kernels
• makes incremental porting and validation much easier

► All offloaded data structures need to be converted to Kokkos Views
• for full portability between backends
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Porting to Kokkos: Data Structures and Kernels

► Kokkos::View<...> can either allocate host/device memory, or wrap existing pointers
• makes incremental porting of cuMalloc’d memory easier

► Supports both row and column major ordering
► Jagged multidimensional arrays not well supported by Kokkos Views

• View<View<float>>  not meant for this
• lots of extra boilerplate needed to make work
• easier to flatten to 1D array, or pad to 2D

► Requires explicit Host ↔ Device memory migration
• need to create Views on host to hold copied information

► Non-zero overhead to using Views
• both in the extra steps for creating the host/device Views, and operations on them

► Kernels: While syntax is different from CUDA, concepts are the same
• functions → lambdas
• parallel_for, parallel_scan, reductions

• some CUDA features not available in Kokkos (yet?)
• atomics (but not between devices or host/device parallel execution spaces)
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Kokkos: Performance
► Exercise various backends, compare to original CUDA

• CUDA reference is NVidia 2080
• HIP on AMD GPU (Vega56)
• Serial: host serial via Kokkos
• Intel XeLP / XeHP GPU via OpenMP target

offload, but I can’t show those results…
• pThread / OpenMP best performance

with ~15 threads/procs
• HIP2

 is a pure HIP port, run on AMD GPU

► Kokkos/CUDA “simulate” kernel has similar 
performance as pure CUDA

► Kokkos does not handle GPU 
memory (re)initialization efficiently

► Kokkos increases kernel launch penalties 
► AMD Vega56 has very large launch latencies
► HIP/AMD uses the CPU a lot more than CUDA when

executing kernels on GPU
► Code was ported from CUDA, not rewritten

• likely considerable room for optimization

CPU Freq CUDA

Kokkos

HIP2CUDA HIP

2200 MHz 5.6 9.4 152 88

3700 MHz 3.4 5.3 60 30

kernel launch latencies / µs
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SYCL Build Infrastructure
► Multiple different flavours of dpcpp/SYCL

• Intel official “beta” releases (CPU, Intel iGPU, Intel FPGA)

• Intel closed codedrops at Argonne for A21 development (CPU, Intel iGPU, Intel dGPU)

• OpenCL and LevelZero backends

• Intel/llvm git

• CUDA backend available (selectable at compile time)

• RNG issues: no oneMKL/cuRAND implementation

• Codeplay (Intel, NVIDIA GPU)

• hipSYCL (Intel, NVIDIA, AMD), triSYCL (PoCL, Xilinx FPGA)

► In theory SYCL is single source, compile once, run anywhere, select backend at 
runtime
• in practice need to build with different compilers to target different hardware

• maybe there will be convergence in the future

► Integrates well with CMake
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SYCL: Performance

► Timing tests on an integrated Intel GPU (Iris Pro P580) w/ public dpcpp beta10 
release

► SYCL data/buffers are
normally automagically 
migrated between 
Host ↔ Device as 
needed, but with iGPU
is all same RAM
• uses USM
• resetting data is not 

free – done with a
kernel, ~180k 
launches

► Same code has been
run on XeLP and XeHP
discrete GPUs 
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Lessons Learned
► Build configuration requirements may be challenging

• Kokkos shared libs vs relocatable device code: code reorganization
• dpcpp changing (too?) rapidly, things that worked last week may not work today

► Separate binaries for different device backends
• Kokkos explicitly, SYCL because you need different compiler flavours
• major implications for production code distribution

► CUDA→ Portability Layer concepts translate well
• Views / Buffers / USM memory management come with overhead / penalties

► Launch latencies for tiny kernels kills performance on all platforms
• Portability layers make it worse
• AMD is really bad. Will RDNA2 / CDNA2 / Instinct improve things?

► High performance single source (single core) CPU/GPU may be a pipe dream

► GPU very underutilized in FastCaloSim
• grouping data between events helps: may require significant refactoring of frameworks
• a single GPU can be shared between multiple processes
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Next Steps
► Other Parallel Portability Layers:

• OpenMP / OpenACC : very different pragma based directives
• Alpaka : strong presence at CERN
• Raja : will we learn anything that Kokkos didn’t teach us?

► Other backends

• SYCL w/ CUDA on NVidia : apples to apples comparison
• Work started on cuRAND support for oneMKL

• Intel discrete GPU (Arctic Sound/XeHP and Ponte Vecchio/XeHPC) via Kokkos and SYCL
• we can already run FCS/SYCL on XeLP and XeHP nodes at Argonne JLSE

• AMD RDNA2 / CDNA2

► Better understanding/evaluation/reporting of metrics

• in coordination with other testbeds

► Update FastCaloSim to reflect what ATLAS is currently using
• more realistic particle scenarios
• integrate into ATLAS repositories
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Validation
► CUDA has a very good random number generator (cuRAND)

• FCS needs lots of random numbers

• 3 per hit x ~5k hits per event

• much faster than generating on CPU

• but can’t do bitwise comparisons 
with CPU – only statistical

• after looking at lots of histograms,
results look statistically equivalent

► If we sacrifice speed, we can generate random number on CPU, and transfer them to GPU, using 
these for all calculations on GPU

• compared the results of 62 million hits in the Electron 64 GeV run

• found only 2 hits calculations that ended up in different calorimeter cell

• slightly different float rounding policies on CPU/GPU

• if we use double precision variables for certain calculations, difference vanishes

► Confident that GPU code does the same thing as CPU

RESULTS VALIDATION 10

CPU GPU

‣ Use of different random numbers on CPU and GPU: results not bit-wise reproducible 
‣ Statistically equivalent 
‣ Looking at ways for better reproducibility
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