
HEP-CCE

Investigating Portable Heterogeneous
Solutions with Fast Calorimeter Simulation

HSF/WLCG Workshop
November 24 2020

C. Leggett, V. Pascuzzi

2

HEP-CCE

Why Fast Calorimeter Simulation for GPU Portability Studies?
► ATLAS needs lots of simulation

• Simulation is paramount for SM and background modeling
in most analyses, as well as general detector and upgrade
studies

• A significant issue in Run-2 was the lack of MC-based
statistics, which will only worsen in Run-3 and beyond
without faster production

► A very large fraction of the simulation’s
computational budget is spent by the
LAr Calorimeter

• Parametrized simulation can speed things
up enormously over full G4 Sim: FastCaloSim

► FastCaloSim is small, self contained, few
dependencies, already had a CUDA port

3

HEP-CCE

CPU Code Profiling

► LAr Calorimeter has massive inherent parallelism – lots of independent cells and
associated tasks.

► Profiling studies identified
hotspots that are
paralellizable

► CUDA kernels created
to run these parts on the
GPU
• modified data structures

• reimplement Geometry and
parametrization tables for
GPU – no STL allowed

• 3 kernels:
• reinit memory
• main simulation
• reduction

PERFORMANCE PROFILING 6

➢ TFCSLateralShapeParametrizationHitChain::simulate() is the
most significant routine except I/O (~30%).

➢ TFCSLateralShapeParametrizationHitChain::simulate() The
running time scales with the number of events.

➢ TFCSLateralShapeParametrizationHitChain::simulate() is our
target to parallelize/port to GPUs.

I/O routines
Timing for 1000 events

L
o

o
p

 o
ve

r
h

it
s

4

HEP-CCE

CUDA Performance Studies

► I/O to read/unpack
parametrization files is
expensive: ~15s of 30s

► Execution only offloaded
if >500 hits, otherwise
CPU is faster
• eg, forward regions

► GPU kernels very short

• launch latency limited

► Better performance if
group work between
multiple events to give
more work to GPU

e
 E

=65
.5

M
eV

 η
=0.

0

e
 E

=65
.5

M
eV

 η
=0.

2

e
 E

=65
.5

M
eV

 η
=2.

2

e
 E

=65
.5

M
eV

 η
=3.

4

ɣ
 E

=32
.8

M
eV

 η
=0

.2

ɣ
 E

=65
.5

M
eV

 η
=0.

2

π E
=16

.4
M

eV
 η

=0.
2

π E
=32

.8
M

eV
 η

=0.
2

π E
=65

.5
M

eV
 η

=0.
2

0.00

5.00

10.00

15.00

20.00

25.00
FastCaloSim Speedup Over CPU (Event Loop)

10000 Events
Event Loop GPU

Event Loop GPUg

S
p

ee
d

u
p

 o
ve

r
C

P
U

 e
ve

n
t l

o
o

p
 t

im
e

5

HEP-CCE

e
 E

=1
T

eV
 η

=0
.2

e
 E

=2
T

eV
 η

=0
.2

e
 E

=4
T

eV
 η

=0
.2

ɣ
 E

=1
T

eV
 η

=0
.2

ɣ
 E

=2
T

eV
 η

=0
.2

ɣ
 E

=4
T

eV
 η

=0
.2

π
 E

=1
T

eV
 η

=0
.2

π
 E

=2
T

eV
 η

=0
.2

0

10

20

30

40

50

60

70

FastCaloSim Speedup for Higher Particle Energies

GPU Event Loop

GPUg Event Loop

S
p

e
ed

u
p

 o
v

e
r

C
P

U

CUDA Performance Studies

► GPU performs better for higher energy particles (more hits = more work)

► Grouped work
not as effective
since regular GPU
is already performant

• also need to send
extra information
to GPU when work
is grouped
between events

6

HEP-CCE

Porting to Kokkos
► Build infrastructure

• Kokkos has decent CMake integration
• requires separate binaries for each device backend (CUDA, HIP, Intel) or host parallel backend

(pThread, OpenMP)
• In theory you can run both device/host parallel backends in same code, but then you can’t use

the default execution space for your kernels: have to say which go where
• cannot expose plain nvcc to Kokkos headers: need selection macros or different files

► Shared libraries not compatible with device symbol relocation
• if you want shared libs, all symbols in a kernel must be visible to one compilation unit

• wrap kernels in one file that does a bunch of #include
• needed to do some function/file refactoring to make it all work

► CUDA backend of Kokkos interoperable with pure CUDA
• can call CUDA functions from Kokkos kernels
• makes incremental porting and validation much easier

► All offloaded data structures need to be converted to Kokkos Views
• for full portability between backends

7

HEP-CCE

Porting to Kokkos: Data Structures and Kernels

► Kokkos::View<...> can either allocate host/device memory, or wrap existing pointers
• makes incremental porting of cuMalloc’d memory easier

► Supports both row and column major ordering
► Jagged multidimensional arrays not well supported by Kokkos Views

• View<View<float>> not meant for this
• lots of extra boilerplate needed to make work
• easier to flatten to 1D array, or pad to 2D

► Requires explicit Host ↔ Device memory migration
• need to create Views on host to hold copied information

► Non-zero overhead to using Views
• both in the extra steps for creating the host/device Views, and operations on them

► Kernels: While syntax is different from CUDA, concepts are the same
• functions → lambdas
• parallel_for, parallel_scan, reductions

• some CUDA features not available in Kokkos (yet?)
• atomics (but not between devices or host/device parallel execution spaces)

8

HEP-CCE

Kokkos: Performance
► Exercise various backends, compare to original CUDA

• CUDA reference is NVidia 2080
• HIP on AMD GPU (Vega56)
• Serial: host serial via Kokkos
• Intel XeLP / XeHP GPU via OpenMP target

offload, but I can’t show those results…
• pThread / OpenMP best performance

with ~15 threads/procs
• HIP2

 is a pure HIP port, run on AMD GPU

► Kokkos/CUDA “simulate” kernel has similar
performance as pure CUDA

► Kokkos does not handle GPU
memory (re)initialization efficiently

► Kokkos increases kernel launch penalties
► AMD Vega56 has very large launch latencies
► HIP/AMD uses the CPU a lot more than CUDA when

executing kernels on GPU
► Code was ported from CUDA, not rewritten

• likely considerable room for optimization

CPU Freq CUDA

Kokkos

HIP2CUDA HIP

2200 MHz 5.6 9.4 152 88

3700 MHz 3.4 5.3 60 30

kernel launch latencies / µs

reset simulate reduce copy d→h event loop
0

5

10

15

20

25

30

35

40
FastCaloSim Kokkos Kernel Timing Relative To CUDA

CUDA
HIP
Serial
pThread
OpenMP
HIP²
Original CPU

S
lo

w
d

o
w

n
 R

el
at

iv
e

to
 P

u
re

 C
U

D
A

9

HEP-CCE

SYCL Build Infrastructure
► Multiple different flavours of dpcpp/SYCL

• Intel official “beta” releases (CPU, Intel iGPU, Intel FPGA)

• Intel closed codedrops at Argonne for A21 development (CPU, Intel iGPU, Intel dGPU)

• OpenCL and LevelZero backends

• Intel/llvm git

• CUDA backend available (selectable at compile time)

• RNG issues: no oneMKL/cuRAND implementation

• Codeplay (Intel, NVIDIA GPU)

• hipSYCL (Intel, NVIDIA, AMD), triSYCL (PoCL, Xilinx FPGA)

► In theory SYCL is single source, compile once, run anywhere, select backend at
runtime
• in practice need to build with different compilers to target different hardware

• maybe there will be convergence in the future

► Integrates well with CMake

10

HEP-CCE

SYCL: Performance

► Timing tests on an integrated Intel GPU (Iris Pro P580) w/ public dpcpp beta10
release

► SYCL data/buffers are
normally automagically
migrated between
Host ↔ Device as
needed, but with iGPU
is all same RAM
• uses USM
• resetting data is not

free – done with a
kernel, ~180k
launches

► Same code has been
run on XeLP and XeHP
discrete GPUs

reset simulate reduce copy d→h event loop
0

5

10

15

20

25

30

35

40
FastCaloSim Kernel Timing Relative To CUDA

Kokkos/CUDA

Kokkos/HIP

Kokkos/Serial

Kokkos/pThread

KK/OpenMP

HIP²

SYCL/CPU

SYCL/iGPU

Original CPU

S
lo

w
d

o
w

n
 R

e
la

ti
ve

 t
o

 P
u

re
 C

U
D

A

11

HEP-CCE

Lessons Learned
► Build configuration requirements may be challenging

• Kokkos shared libs vs relocatable device code: code reorganization
• dpcpp changing (too?) rapidly, things that worked last week may not work today

► Separate binaries for different device backends
• Kokkos explicitly, SYCL because you need different compiler flavours
• major implications for production code distribution

► CUDA→ Portability Layer concepts translate well
• Views / Buffers / USM memory management come with overhead / penalties

► Launch latencies for tiny kernels kills performance on all platforms
• Portability layers make it worse
• AMD is really bad. Will RDNA2 / CDNA2 / Instinct improve things?

► High performance single source (single core) CPU/GPU may be a pipe dream

► GPU very underutilized in FastCaloSim
• grouping data between events helps: may require significant refactoring of frameworks
• a single GPU can be shared between multiple processes

12

HEP-CCE

Next Steps
► Other Parallel Portability Layers:

• OpenMP / OpenACC : very different pragma based directives
• Alpaka : strong presence at CERN
• Raja : will we learn anything that Kokkos didn’t teach us?

► Other backends

• SYCL w/ CUDA on NVidia : apples to apples comparison
• Work started on cuRAND support for oneMKL

• Intel discrete GPU (Arctic Sound/XeHP and Ponte Vecchio/XeHPC) via Kokkos and SYCL
• we can already run FCS/SYCL on XeLP and XeHP nodes at Argonne JLSE

• AMD RDNA2 / CDNA2

► Better understanding/evaluation/reporting of metrics

• in coordination with other testbeds

► Update FastCaloSim to reflect what ATLAS is currently using
• more realistic particle scenarios
• integrate into ATLAS repositories

13

HEP-CCE

f in

14

HEP-CCE

Validation
► CUDA has a very good random number generator (cuRAND)

• FCS needs lots of random numbers

• 3 per hit x ~5k hits per event

• much faster than generating on CPU

• but can’t do bitwise comparisons
with CPU – only statistical

• after looking at lots of histograms,
results look statistically equivalent

► If we sacrifice speed, we can generate random number on CPU, and transfer them to GPU, using
these for all calculations on GPU

• compared the results of 62 million hits in the Electron 64 GeV run

• found only 2 hits calculations that ended up in different calorimeter cell

• slightly different float rounding policies on CPU/GPU

• if we use double precision variables for certain calculations, difference vanishes

► Confident that GPU code does the same thing as CPU

RESULTS VALIDATION 10

CPU GPU

‣ Use of different random numbers on CPU and GPU: results not bit-wise reproducible
‣ Statistically equivalent
‣ Looking at ways for better reproducibility

15

HEP-CCE

Acknowledgments
► Really want to thank all the people who contributed to this project

► CUDA port:

Zhihua Dong (BNL)
Meifeng Lin (BNL)
Kwangmin Yu (BNL)

► Kokkos port:

Zhihua Dong (LBL)
Charles Leggett (LBL)

► SYCL port:

Charles Leggett (LBL)

Vincent Pascuzzi (LBL)

► Physics Validation:

Doug Benjamin (ANL)

Tadej Novak (DESY)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

