
Analysis Description Language for LHC-type analyses

G. Unel (UCI/ATLAS) S.Sekmen (KNU/CMS). H. Prosper (FSU/CMS)

HSF WLCG Virtual Workshop

19-24 November 2020

Analyses in HEP

 Analysis frameworks based on general purpose languages (GPL): A computer language that is broadly applicable across many application domains (C++, Python, ...).

What is next?

- Analysis Description Language for HEP analyses:
 - A domain specific declarative language capable of describing the physics content of an LHC analysis in a standard and unambiguous way.
 - Domain-specific language (DSL): a computer language specialized to a particular application domain (regular expressions, Makefile, SQL, ...).
 - Designed to model how domain experts think about specific problems they wish to solve.
 - Declarative language: A language that expresses the logic of a computation without describing its control flow. Describes what needs to be done, but not how to do it.
 - Human readable with the aim of shifting the focus from programming to physics.
- ADL consists of
 - a plain text file describing the analysis using an easy-to-read DSL with clear syntax rules.
 - a library of self-contained functions encapsulating variables that are non-trivial to express with the ADL syntax (e.g. MT2, ML algorithms). Internal or external (user) functions.

LHADA (Les Houches Analysis Description Accord): Les Houches 2015 new physics WG report (arXiv:1605.02684, sec 17) CutLang: Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727), ACAT 2019 proceedings (arXiv:1909.10621)

WHY ADL?

Motivation / use case	Exp	TH/ Pheno	Public
Analysis preservation			
Analysis design, implementation			
Analysis communication, clarification, synchronization, visualization		✓	
Analysis review by referees			
Interpretation studies, analysis reimplementation			
Easier comparison/combination of analyses			

Currently cern.ch/adl

- LHADA U CutLang = ADL
 - syntax rules: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL
- Execution is based on ROOT
 - Math., Logical, HEP specific functions
 - New variables, objects & user functions
 - Histograms, Tables, efficiencies
 - Reducers, optimizers, etc
- Interpreter & Framework
 - CutLang v2 : https://github.com/unelg/CutLang
 - Multiple input data types: OpenData, NanoAOD, Delphes,...
 - Recently used in ATLAS exotics + FCC pheno analyses
- Transpiler
 - ADL2TNM: https://github.com/hbprosper/adl2tnm
- database for LHC analyses:
 - https://github.com/ADL4HEP/ADLLHCanalyses

```
object goodEle : ELE
          Pt(ELE)
                             10
  select
                             2.4
  select abs({ELE}Eta ) <</pre>
             {ELE}AbsEta ][ 1.442 1.556
define goodZreco : goodEle[0] goodEle[1]
algo
            preselection
  select
              ALL
                               # to count all events
  select
              Size(ELE)
                            >= 2 # events with 2 or more electrons
algo
            testg
  preselection
  select
              Size(goodEle) >= 2 # events with 2 or more electrons
              h1mgoodReco, "Z candidate mass (GeV)", 100, 0, 200, {goodZreco}m
  histo
  select
              {goodZreco}q == 0 # Z is neutral
  histo
              h2mgoodReco, "Z candidate mass (GeV)", 100, 0, 200, m(goodZreco)
```

Outlook

- ADL concept and tools are actively being developed
 - US: UCI, FSU
 - KR: KNU
 - TR: BOUN, IU
 - CERN via summer students
- The available analysis database is growing
- The interpreter is ready for public testing
- Planning for
 - Systematic error evaluation
 - Statistical tool integration

