Reconstruction for LArTPC Neutrino Detectors Using Parallel Architectures

Sophie Berkman

for the SciDAC HEP Reconstruction and HEP at HPC groups

November 24, 2020

LArTPC Neutrino Experiment Reconstruction

- Reconstruction time scales with the size of the detector: MicroBooNE: 8,256 wires DUNE: 384,000 wires/ 10 kTon cryostat
- Use parallelism and modern computing architectures to improve reconstruction time for an event
 - Many levels of parallelism in LArTPCs: wires, planes, cryostats

GausHitFinder Optimization

- GausHitFinder: part of wire signal processing
 - Algorithm: Charged particles produce pulses on wires. Identify and extract parameters associated with pulses (position, amplitude, width).
 - Suited for parallel implementation: Wires are independent; can be processed independently
 - **Potential for impact:** Up to 30% of reconstruction time, depending on the experiment
- Parallel developments tested using stand-alone code:
 - Implement Levenberg-Marquardt algorithm to do the fitting instead of ROOT/Minuit: ~8x faster than ROOT version
 - **Vectorization:** Compiler using avx512, explicit pragma calls on most time consuming loops as determined by profiling
 - Multi-threading: Nested OMP parallel for over events and regions of interest using dynamic scheduling

Optimized GausHitFinder Results

- Stand alone code:
 - Compiled with avx512 and icc
 - Vectorization: 2 times faster on KNL and Skylake
 - Multi-threading:
 - Near ideal scaling at low thread counts
 - Up to 30 times faster on Skylake,
 100 times faster on KNL
- Integrated code into LArSoft for general use by LArTPC experiments
 - Single threaded: 12 times faster for MicroBooNE, 7 for Icarus
 - Both Icarus and ProtoDUNE use this version of the hit finder

arXiv:2002.06291

HPC Workflow

- Developing workflow to run part of next lcarus production on Theta HPC at ALCF
- Strategy:
 - Local build of LArSoft with **spack** on Theta:
 - Take advantage of parallelism not available in a typical grid production environment.
 - Customize compiler options for specific pieces of code: ie. avx512+icc for optimal vector speed increases with GausHitFinder
 - HDF5-HEPNOS to organize the data
 - DIY to distribute the data across nodes
- First spack LArSoft/icaruscode build on non-Fermilab computer complete; work ongoing to compile on Theta

MATHEMATICS AND COMPUTER SCIENCE DIVISION

DIY: Do-it-Yourself Analysis

Conclusions

- Vectorization and multi-threading can be used to optimize LArTPC reconstruction algorithms
- GausHitFinder algorithm vectorized and multi-threaded:
 - Levenberg-Marquardt algorithm implemented to do the fitting instead of ROOT
 - Up to 200x faster in stand alone version
 - **O(10x)** faster in LArSoft depending on the experiment, and before multi-threading
 - Paper in preparation
- Work ongoing to run production for Icarus at the Theta ALCF HPC to take full advantage of parallelization speed increases