Machine Learning for Detector Simulation

Kevin Pedro (FNAL) on behalf of ATLAS, CMS, LHCb November 23, 2020

Computing Challenges

<u>AtlasComputingandSoftwarePublicResults</u>

LHCb CPU Usage Forecast

Year

Motivation

- Beginning of Run 2: full detector simulation (Geant4) took ~40% (plurality) of grid CPU resources for CMS & ATLAS [arXiv:1803.04165]
 - o Detector upgrades for HL-LHC: increased complexity [arXiv:2004.02327]
 - o Further technical improvements expected to be limited [arXiv:2005.00949]
- Reconstruction CPU usage scales superlinearly with pileup
- ➤ Simulation needs to deliver more events w/ more complexity
 - ...while using smaller fraction of CPU
 - o LHCb detailed simulation exceeds available CPU even for Run 3

Classical Simulation Engines

- "FullSim": Geant4
 - o Common software framework
 - Experiments can provide additional code via user actions
 - o Explicit modeling of detector geometry, materials, interactions w/ particles
 - o Physics lists include many models of particle interactions (for different energy ranges, etc.)
- "FastSim":
 - o Usually experiment-specific framework
 - o Implement approximations: analytical shower shapes (e.g. GFLASH), truth-assisted track reconstruction, etc.
- Delphes:
 - o Ultra-fast parametric simulation
 - o Used for phenomenological studies, future projections, etc.

Generative Machine Learning

- Machine learning algorithms (e.g. deep neural networks):
 - o Typically trained for classification or regression tasks
 - o Can also do generation tasks: creating novel output from some input
- Industry has demonstrated impressive, but not foolproof, results, e.g.:
 - o Images (<u>StyleGAN2</u>)
 - o Text (GPT-3)

from thispersondoesnotexist.com

Machine Learning for Simulation

• Pros:

- o Achieve higher accuracy than "simple" fast simulations
- o Produce faster results than Geant4
 - ML inference can be accelerated on coprocessors (GPUs, FPGAs, etc.)
 - avenue to utilize HPCs
- o Generate various quantities
 - Particle showers, 4-vectors, particle ID, high-level features, etc.

• Cons:

- o May need large training datasets and training time
 - StyleGAN2: 25M images, 5-10 days to train on 8 V100 GPUs
 - Cost-benefit analysis should include CPU and GPU usage for training
- o Statistical validity needs careful consideration
 - Extrapolation outside of training dataset may be unreliable
- Any claimed speedup is <u>only</u> meaningful if results are physically accurate

Speed vs. Accuracy

Several different approaches:

- Replace (part of) FullSim: increase speed, preserve accuracy
- Replace (part of) FastSim: decrease speed (slightly), increase accuracy
- End-to-end: map generated → reconstructed events directly (no dedicated simulation step)

Techniques

Generative Adversarial Network (GAN)

Variational Autoencoder (VAE)

Fully Connected Network (FCN, regression)

Normalizing Flow (NF)

n hidden layers, m_{ℓ} units in layer ℓ

Considerations for GANs

- GANs seem like a natural solution, but difficult to train:
 - o Iterative process: alternate between training discriminator & generator
 - → not mathematically guaranteed to converge
 - o Mode collapse: starts to ignore part of input data/features
 - o Vanishing gradient: unable to improve weights in training
- Some improvements are possible:
 - o e.g. Wasserstein loss function helps avoid mode & gradient issues

More GAN Results

- 3D GAN w/ several physics terms included in loss function
- Generation: 4 ms/event on GPU (GTX 1080)
- Geant4: 17 sec/event on CPU (Xeon 8180)
- ➤ 4250× speedup, with reasonable agreement in many physics quantities

Further GAN Developments

• Demonstration that GANs *can* reduce statistical uncertainty beyond training sample by learning to interpolate:

Possible to improve GAN results with an additional classifier: "DCTRGAN"

Trained to reweight events after GAN training finishes

Autoencoders

- Basic: learn compressed representation ("latent space") of inputs, then "reconstruct" output
- Variational: learn *probability distribution* of latent space
 - o Better for generative output
 - o Still need to make sure important information isn't discarded
- Bounded Information Bottleneck:
 - Generalization/combination of VAE and GAN
 - Aimed at ILC imaging calorimeters
 - Similar to CMS HGCal
 - o Improves on standard GANs, but still needs postprocessor network for best results

Regression

- Directly map inputs to outputs
- Can be used for either simulation or end-to-end
 - o Promising results for end-to-end approach: analysis-specific targets (known backgrounds, variables)
 - Mitigates concerns about rapidly changing conditions & algorithms
- Other architectures also being explored: auto-regressive, etc.

Experiment Perspective

- ML for simulation provides natural avenue to utilize *heterogeneous* computing resources (GPUs, FPGAs, HPCs, etc.)
 - o Inference as a service can facilitate this
- Need to balance *tradeoffs*:
 - o Continuing to find significant developments in architectures and mathematical foundations for generative ML
 - Primarily via demonstrations in limited-author papers
 - Crucial work toward ultimately better results
 - o Experiments need solutions implemented and tested for Run 4 (at least)
 - Much larger scale than limited-author papers can achieve
 - Technical details to be worked out: Integration w/ Geant4? Standalone implementations? etc.

ATLAS: FastCaloGAN

- Calorimeters use majority of CPU in (full) detector simulation
- Training: detector segmented into 100 η slices; separate electron, photon, pion samples
- Total of 300 GANs created

(more info)

Subdetector CPU fraction for 50 ttbar events MC16 Candidate Release

FastCaloGAN Results

- Significant improvement over previous fast simulation (AFII)
- Good modeling of both electromagnetic and hadronic objects, including boosted regime

16

LHCb: Particle ID in Lamarr

LamarrRecoSummary Fill other event

level info (nTracks...)

- Full simulation uses 95–99% of CPU time
 - Dominated by optical photon propagation
 & calorimeter showering
- Developing custom ultra-fast simulation: Lamarr
 - o Faster than similar Delphes setup!
- Stacked GANs for PID
- Also investigating GANs for calorimeter response (and VAE+GAN)

CHEP2019 (1) CHEP2019 (2) ICHEP2020

LHCb GAN Results

- Promising initial results for PID
 - o Further optimizations ongoing

- Calorimeter GAN reproduces some distributions well
 - o Struggles w/ others (marginal)

CMS Simulation

- CMS FullSim is 4–6× faster than baseline Geant4
 - o Numerous technical optimizations & physics-preserving approximations
 - o Sustained effort to commission and adopt new Geant4 versions
- CMS FastSim application: 60–100× faster than FullSim
 - o Includes sim- and reco-level optimizations (tracking)
 - o Currently used for generation of large supersymmetric model scans, some studies of systematic uncertainties
- ➤ Well-positioned for Run 3, but further acceleration crucial for Phase 2
- Exploring latest architectures and use cases described here: BIB-AE, DCTRGAN, end-to-end analysis-specific regression, and more
 - o Goal: develop common tools for comparison of different approaches
 - Datasets, physics validation quantities, etc.

Conclusion

- ML provides numerous possibilities for fast, accurate detector simulation
 - o Can augment existing full or fast simulation
 - o End-to-end approaches an interesting alternative
 - o Generative (GAN, VAE) or regression algorithms can be employed
- Significant research interest in improving physical validity of results
 - o Many new architectures and approaches under development
- Experiments starting to deploy GANs for fast simulation applications:
 - o FastCaloGAN in ATLAS, PID GAN for LHCb
- Going forward, important transition from simplified examples to productionready implementations
 - o Experiments need to be prepared for HL-LHC computing challenges
- Bonuses: utilization of coprocessors and development of common resources
 - o Also of interest to other fields that use MC simulation: neutrinos, astrophysics, etc.

Backup

Upgrades

HL-LHC project schedule

• Run 4+ expected to deliver ~10× data from previous runs

o Higher luminosity: higher occupancies, higher radiation

→ need new detectors!

• CMS detector upgrades include:

o Pixel (inner tracker): $66M \rightarrow 1947M$ channels

o Outer tracker: $9.6M \rightarrow 215M$ channels

O High Granularity Calorimeter (HGCal):
 85K → 6M channels

BIB-AE Architecture

$$L_{\text{BIB-AE}} = -\beta_{C_L} \cdot \mathbb{E}[C_L(E(x))]$$

$$-\beta_C \cdot \mathbb{E}[C(D(E(x)))]$$

$$-\beta_{C_D} \cdot \mathbb{E}[C_D(D(E(x)) - x)]$$

$$+\beta_{\text{KLD}} \cdot \text{KLD}(E(x))$$

$$+\beta_{\text{MMD}} \cdot \text{MMD}(E(x), \mathcal{N}(0, 1)).$$

LHCb FullSim CPU Usage

- From M. Rama, ICHEP2020
- Also *Eur. Phys. J. Web Conf.* 214 (2019) 02043

LHCb Calorimeter GAN

Training scheme

LHCb VAE+GAN

