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https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2019-018.html


Motivation
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• Beginning of Run 2: full detector simulation (Geant4) took ~40% (plurality) of 
grid CPU resources for CMS & ATLAS [arXiv:1803.04165]
o Detector upgrades for HL-LHC: increased complexity [arXiv:2004.02327]
o Further technical improvements expected to be limited [arXiv:2005.00949]

• Reconstruction CPU usage scales superlinearly with pileup
 Simulation needs to deliver more events w/ more complexity

…while using smaller fraction of CPU 
o LHCb detailed simulation exceeds available CPU even for Run 3

https://arxiv.org/abs/1803.04165
https://arxiv.org/abs/2004.02327
https://arxiv.org/abs/2005.00949


Classical Simulation Engines
• “FullSim”: Geant4
o Common software framework
 Experiments can provide additional code via user actions

o Explicit modeling of detector geometry, materials, interactions w/ particles
o Physics lists include many models of particle interactions

(for different energy ranges, etc.)
• “FastSim”:
o Usually experiment-specific framework
o Implement approximations: analytical shower shapes (e.g. GFLASH), 

truth-assisted track reconstruction, etc.
• Delphes:
o Ultra-fast parametric simulation
o Used for phenomenological studies, future projections, etc.
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Generative Machine Learning
• Machine learning algorithms (e.g. deep neural networks):
o Typically trained for classification or regression tasks
o Can also do generation tasks: creating novel output from some input

• Industry has demonstrated impressive, but not foolproof, results, e.g.:
o Images (StyleGAN2)
o Text (GPT-3)
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from thispersondoesnotexist.com

Good example Bad example
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https://github.com/NVlabs/stylegan2
https://github.com/openai/gpt-3
https://thispersondoesnotexist.com/


Machine Learning for Simulation
• Pros:
o Achieve higher accuracy than “simple” fast simulations
o Produce faster results than Geant4
 ML inference can be accelerated on coprocessors (GPUs, FPGAs, etc.)

– avenue to utilize HPCs
o Generate various quantities
 Particle showers, 4-vectors, particle ID, high-level features, etc.

• Cons:
o May need large training datasets and training time
 StyleGAN2: 25M images, 5-10 days to train on 8 V100 GPUs
 Cost-benefit analysis should include CPU and GPU usage for training

o Statistical validity needs careful consideration
 Extrapolation outside of training dataset may be unreliable

 Any claimed speedup is only meaningful if results are physically accurate
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Speed vs. Accuracy

Several different approaches:
• Replace (part of) FullSim: increase speed, preserve accuracy
• Replace (part of) FastSim: decrease speed (slightly), increase accuracy
• End-to-end: map generated → reconstructed events directly

(no dedicated simulation step)

7

Speed

Ac
cu

ra
cy

• FastSim

• FullSim

• Delphes

• ML?• ML?

• ML?

HSF/WLCG 2020 Kevin Pedro



Techniques
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Generative Adversarial Network (GAN) Variational Autoencoder (VAE)

Fully Connected Network (FCN, regression)

Normalizing Flow (NF)

(source)

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


Considerations for GANs
• GANs seem like a natural solution, but difficult to train:
o Iterative process: alternate between training discriminator & generator

→ not mathematically guaranteed to converge
o Mode collapse: starts to ignore part of input data/features
o Vanishing gradient: unable to improve weights in training

• Some improvements are possible:
o e.g. Wasserstein loss function helps avoid mode & gradient issues
 Shown to improve results in HEP simulation
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arXiv:1807.01954 Fig. 9

https://arxiv.org/abs/1807.01954


More GAN Results
• 3D GAN w/ several physics terms included 

in loss function

• Generation: 4 ms/event on GPU (GTX 1080)

• Geant4: 17 sec/event on CPU (Xeon 8180)

 4250× speedup, with reasonable agreement 
in many physics quantities
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arXiv:1912.06794

https://arxiv.org/abs/1912.06794


Further GAN Developments
• Demonstration that GANs can

reduce statistical uncertainty 
beyond training sample by learning 
to interpolate:

• Possible to 
improve GAN 
results with an 
additional 
classifier:
“DCTRGAN”
o Trained to 

reweight 
events after 
GAN training 
finishes

HSF/WLCG 2020 Kevin Pedro 11

arXiv:2008.06545

arXiv:2009.03796

https://arxiv.org/abs/2008.06545
https://arxiv.org/abs/2009.03796


arXiv:2005.05334

Autoencoders
• Basic: learn compressed representation (“latent space”) of inputs, then 

“reconstruct” output
• Variational: learn probability distribution of latent space
o Better for generative output
o Still need to make sure important information isn’t discarded

• Bounded Information
Bottleneck:
o Generalization/combina-

tion of VAE and GAN
o Aimed at ILC imaging

calorimeters
 Similar to CMS HGCal

o Improves on standard
GANs, but still needs
postprocessor network
for best results
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https://arxiv.org/abs/2005.05334


Regression
• Directly map inputs to outputs

• Can be used for either simulation or end-to-end

o Promising results for end-to-end approach:
analysis-specific targets (known backgrounds, variables)

 Mitigates concerns about rapidly changing conditions & algorithms

• Other architectures also being explored: auto-regressive, etc.
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arXiv:2010.01835

https://arxiv.org/abs/2010.01835


Experiment Perspective
• ML for simulation provides natural avenue to utilize heterogeneous 

computing resources (GPUs, FPGAs, HPCs, etc.)

o Inference as a service can facilitate this

• Need to balance tradeoffs:

o Continuing to find significant developments in architectures and 
mathematical foundations for generative ML

 Primarily via demonstrations in limited-author papers

 Crucial work toward ultimately better results

o Experiments need solutions implemented and tested for Run 4 (at least)

 Much larger scale than limited-author papers can achieve

 Technical details to be worked out:
Integration w/ Geant4? Standalone implementations? etc.
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ATLAS: FastCaloGAN
• Calorimeters use majority of CPU in (full) 

detector simulation
• Training: detector segmented into 100 η slices;

separate electron, photon, pion samples
• Total of 300 GANs created
(more info)
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https://indico.cern.ch/event/852553/contributions/4070431/


FastCaloGAN Results
• Significant improvement over 

previous fast simulation (AFII)

• Good modeling of both 
electromagnetic and hadronic
objects, including boosted regime
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LHCb: Particle ID in Lamarr
• Full simulation uses 95–99% of CPU time
o Dominated by optical photon propagation

& calorimeter showering
• Developing custom ultra-fast simulation: Lamarr
o Faster than similar Delphes setup!

• Stacked GANs for PID
• Also investigating GANs for

calorimeter response (and VAE+GAN)
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CHEP2019 (1)
CHEP2019 (2)
ICHEP2020

https://indico.cern.ch/event/773049/contributions/3474742/
https://indico.cern.ch/event/773049/contributions/3474741
https://indico.cern.ch/event/868940/contributions/3814341


LHCb GAN Results
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• Promising initial results for PID
o Further optimizations ongoing

• Calorimeter GAN reproduces some distributions well
o Struggles w/ others (marginal)



CMS Simulation
• CMS FullSim is 4–6× faster than baseline Geant4

o Numerous technical optimizations & physics-preserving approximations

o Sustained effort to commission and adopt new Geant4 versions

• CMS FastSim application: 60–100× faster than FullSim

o Includes sim- and reco-level optimizations (tracking)

o Currently used for generation of large supersymmetric model scans,
some studies of systematic uncertainties

 Well-positioned for Run 3, but further acceleration crucial for Phase 2

• Exploring latest architectures and use cases described here:
BIB-AE, DCTRGAN, end-to-end analysis-specific regression, and more

o Goal: develop common tools for comparison of different approaches

 Datasets, physics validation quantities, etc.
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Conclusion
• ML provides numerous possibilities for fast, accurate detector simulation
o Can augment existing full or fast simulation
o End-to-end approaches an interesting alternative
o Generative (GAN, VAE) or regression algorithms can be employed

• Significant research interest in improving physical validity of results
o Many new architectures and approaches under development

• Experiments starting to deploy GANs for fast simulation applications:
o FastCaloGAN in ATLAS, PID GAN for LHCb

• Going forward, important transition from simplified examples to production-
ready implementations
o Experiments need to be prepared for HL-LHC computing challenges

• Bonuses: utilization of coprocessors and development of common resources
o Also of interest to other fields that use MC simulation:

neutrinos, astrophysics, etc.
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Backup



HL-LHC project schedule
Upgrades

• Run 4+ expected to deliver ~10× data from previous runs
o Higher luminosity: higher occupancies, higher radiation

→ need new detectors!
• CMS detector upgrades include:
o Pixel (inner tracker): 66M → 1947M channels
o Outer tracker: 9.6M → 215M channels
o High Granularity Calorimeter (HGCal):

85K → 6M channels
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CE-HCE-E

https://project-hl-lhc-industry.web.cern.ch/content/project-schedule


BIB-AE Architecture
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arXiv:2005.05334

https://arxiv.org/abs/2005.05334


LHCb FullSim CPU Usage
• From M. Rama, ICHEP2020
• Also Eur. Phys. J. Web Conf. 214 (2019) 02043
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https://indico.cern.ch/event/868940/contributions/3814342/
https://doi.org/10.1051/epjconf/201921402043


LHCb Calorimeter GAN
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LHCb VAE+GAN
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