
Accelerated demonstrator of electromagnetic Particle Transport

andrei.gheata@cern.chHSF WLCG Virtual Workshop 18-24
November 2020

Motivation
● HEP detector simulation on accelerators: a hot topic

○ Can we efficiently use GPUs for more complex simulation applications?

● At least handing over part of Geant4 simulation to the GPU
○ EM calorimeter simulation seems a natural candidate
○ Can profit from massive parallelism at track level (e.g. EM showers) ?
○ Using simplified/specialized code + GPU-specific workflow

● Work needed/ongoing to enable the use of simulation components on GPU
○ Geometry demonstrator on GPU (VecGeom based ray-tracing)
○ Simplifying/adapting the physics framework

● Started a consolidated R&D effort on a prototype
○ Demonstrating a realistic simulation workflow on GPU
○ Try to assess the expectations for performance/investment for a large-scale project

2

AdePT goals
● Demonstrate realistic EM shower simulation workflow on GPU
● Start with a basic “Fisher-Price” like workflow demonstrator

○ Single particle type carrying minimal state, two processes (energy loss and
secondary generation), energy deposits per cell as output, dynamic track
population

○ Allowing to develop a framework controlling a dynamic track workflow

3

● Evolve as e+/e-/𝛾 simulator in simple calorimeter setup
○ Magnetic field
○ VecGeom-based transport manager as first implementation
○ Gradually evolved physics processes allowing to simulate EM showers
○ Simple pre-configured “hits” as simulation result, transferred to host

● Maintain CPU compatibility for the entire simulation
○ Correctness validation, performance analysis, reference baseline

Bootstrapping AdePT
● GitHub repository + basic files

○ Readme, License, Contributing, … - September 2020
● Work so far mostly focused on creating basic infrastructure

○ Core types/macros/abstractions/kernel launchers reusable outside AdePT separated into an
externalizable library for GPU (CopCore)

○ Concurrent containers/helpers for handling a dynamic population of tracks
○ Simple examples evolving with the rest of the infrastructure
○ Utilities and examples aiming to understand different portability strategies

● Rapid evolution in several directions
○ Contributors, collaborators, contacts with groups doing similar efforts
○ Work sites: adding standalone work items
○ Moving from workflow ideas to implementation

Sep 8

4

https://github.com/apt-sim/AdePT

Rationale
● Refactor the stepping loop operations as sequence of

kernels
● Move from: “list of actions to do for a track” to “list of

tracks doing the same action”
● Partially mitigate kernel synchronization overheads and

thread divergence by overlapping stepping loop
execution in multiple streams

● Partially mitigate memory latency issues by coalescing
accesses for reused state data

○ Using SOA in the track model, prefetching to shared memory,
colocating particles prone to execute same models

K1

K2

K3

K4

K5

Kn

stepping
loop

warp use per
stream

5

Example: sampling the step length

GetDiscreteProcList
(electron, track.region)

Proc1

Proc2

Proc3

ProcN

All electron processes

for (auto process : proc)

Single track CPU approach

track.physStep = min(track.physStep,
process->ComputeIntLen(track));

track[i].physStep = min(track[i].physStep,
Proc1->ComputeIntLen(track[i]));

list for
Proc1

SelectTrack
ForProc

track[i].physStep = min(track[i].physStep,
Proc2->ComputeIntLen(track[i]));

track[i].physStep = min(track[i].physStep,
Proc3->ComputeIntLen(track[i]));

track[i].physStep = min(track[i].physStep,
ProcN->ComputeIntLen(track[i]));

list for
Proc2

list for
Proc3

list for
ProcN

All electron
tracks

GPU approach

ComputeIntLen kernels

6

proc

Workflow under investigation
● Pre-allocate data on device

○ constant data, state data (tracks), output
data (hits)

● Fill tracks from host, start stepping
loop

○ Manage dynamically selections for the
“next” kernel

○ Manage dynamically holes produced by
killed tracks

● Control flow using watermarks
○ New data blocks, track priorities to avoid

memory bloat

● Fill pre-formatted output “hits”

K1
K2
K3
K4
K5
K6

Track state blocks Track indices selections
per kernel

Un-handled tracks

Scoring data buffer

Geometry constant
data

Physics data
(Xsec)

Field
map

7
Device memory

Portability
● Several directions being tried out

○ Portability libraries: Alpaka, OneAPI, …
○ Redefining CUDA keywords + Allen-like framework kernel launch
○ Macro-based decoration (à la VecGeom) + template specialization of the launch API

● Target: maintaining a single code base running on CPU/GPU
○ Common algorithmic part, possibly decorated with macros
○ Backend-specific launch infrastructure
○ Getting same/compatible results on CPU/GPU

● NOT trying to solve the general problem in AdePT!
○ Adopt/develop a thin layer requiring minimum dev effort & maintenance
○ Providing just the functionality that we need
○ Using a programming model friendly to CUDA-C++ features

8

Kernel launchers
● The idea is to “hide” the CUDA-C++ API behind a backend

○ Function/variable decoration can be hidden by using macros(VecGeom)/symbol
redefinitions(Allen)

○ Kernel launches and CUDA types/allocations are a bit more tricky to hide

● Can we write a minimal C++ abstraction of this API ?
○ Specializing for other backends for the subset of features we use
○ Lightweight “re-invention of the wheel” for functionality provided by portability frameworks
○ Allows implementing the stepping loop as chained kernel launches, templated on the backend

9

Kernel launchers
● Template specialized launchers

○ Abstracting part of the functionality provided by the CUDA-C++ launch API
○ Basically mapping GPU kernel parallelism to a OMP parallel for on CPU

10

CUDA-C++ API

kernel<<<B,T>>>(param...)

Device function library
(C++)

Launcher<backend>

.Run(func, {B,T}, param…)

Launcher<CUDA>

Launcher<CPU>

Launcher<HIP>

#pragma OPM parallel for

Native
CUDA
approach

Backend
aware
approach

Dynamic parallelism
● Due to the stochastic nature of simulation, kernel launches need to be

dynamic
○ Adapting to the dynamic population of tracks per kernel
○ Moving data from device to host to compute kernel launch parameters is expensive

● Make launches from the device using dynamic parallelism:

FastSelectCompton<<<B1,T1>>>
(tracks_ptr, selection_list);

...
ComputeIntLen<<<B2,T2>>>

(tracks_ptr, selection_list->size()); Compton kernel

FastSelectCompton
kernel

Host Device

ComptonProcess
<<<1,1>>>(tracks_ptr)

selection_list lives on device, B1,T1, B2, T2 are
computed based on dynamic track population 11

Moving forward
● Splitting the work in more standalone tasks important for keeping up the

momentum
○ Many such items already identified in several areas: geometry improvements, enabling

magnetic field, data model, memory management, physics models

● Gradually adding features to our examples and implementing more complex
workflows

○ Stepping management in geometry setup, constant field, actual physics processes using cross
section data, ...

● Evolving the core part to provide device-friendly infrastructure for physics
○ Physics/math constants, materials & cuts, RNG support, efficient reductions for competing

processes, …
○ Track model, data management (e.g. cross section tables & magnetic field)

● Adding tools for performance evaluation and benchmarking
12

Outlook
● The AdePT initiative followed an exploration period and discussions started

already in 2019
○ Trying to put together a number of out-of-the-box ideas for particle transport “seen” from GPU

perspective

● Exploration still important and good, we’re still in the “learning” phase
○ Several projects having similar goals, but no de-facto standard yet
○ Trying different approaches and techniques and learning from other projects

● Merging the scarce community resources in this R&D area will become
essential for engaging a large-scale project

○ We cannot afford developing/maintaining several different GPU simulation applications
○ Excalibur developers are also co-developing in AdePT
○ We initiated discussions with Celeritas to touch base on commonalities and concurring

approaches
13

Backup

14

Kernel launchers, the user side

15

// thread id passed to user function
VECCORE_ATT_HOST_DEVICE
void myFunc(int id, param...) {...}

COPCORE_CALLABLE_FUNC(myFunc)

Device function lib

template <copcore::BackendType backend>
void RunSim() {
 // We need a local variable to hold a copy of the device function address
 COPCORE_CALLABLE_DECLARE(myFuncPtr, myFunc);
 // Allocate the data
 copcore::Allocator<MyType, backend> myAlloc; // optional device id in ctor
 MyType *data = myAlloc.allocate(1024, p…); // allocates 1024 elements passing p… to the ctor

 // Create a stream (do nothing on CPU)
 copcore::StreamType<backend> stream;
 StreamType<backend>::CreateStream(stream);
 … continued ...

void RunOnGPU(); // forward declare CUDA entry function
 // (compiler-dependent macros in headers)
int main() {
 RunOnCPU(); // dispatch RunSim<CPU>
 RunOnGPU(); // dispatch RunSim<CUDA>
}

main.cpp

RunSim.hpp

Kernel launchers, the user side

16

template <copcore::BackendType backend>
void RunSim() {
 … continued …
 // Create a launcher in the selected stream for this backend
 copcore::Launcher<backend> myLauncher(stream);

// Launch on a user-defined grid or internally optimized one, calling the user function in a grid size loop
 myLauncher.Run(myFuncPtr, // function to be launched
 1024, // number of elements (#calls to the user function)
 {32, 32}, // grid launch parameters to be used. {0,0} triggers internally-optimized grid
 params…); // parameters to be passed to the user function
 …
 // De-allocate the data
 myAlloc.deallocate(data, 1024); // will call also the destructor for the allocated elements if 1024 not omitted
}

RunSim.hpp

Launching functors

17

template <copcore::BackendType backend>
void RunSim() {
 … continued …
 // Create a launcher in the selected stream for this backend
 copcore::Launcher<backend> myLauncher(stream);

// Launch on a user-defined grid or internally optimized one
 myLauncher.Run([] VECCORE_ATT_DEVICE (int thread_id, params…) { … }, // --extended-lambda needed
 1024, // number of elements (calls to the user function)
 {32, 32}, // grid launch parameters to be used. {0,0} triggers internally-optimized grid
 params…); // parameters to be passed to the user function
 …
 // De-allocate the data
 myAlloc.deallocate(data, 1024); // will call also the destructor for the allocated elements if 1024 not omitted
}

RunSim.hpp

… could be useful for simple tasks (e.g. reductions, selections, …)

