

HSF WLCG Virtual Workshop November 23, 2020

Andrew Hanushevsky, SLAC

The XRootD Project

- # A structured Open Source community supported project to provide a framework for clustering distributed storage services available via github, EPEL, & OSG
 - The project also supplies the fundamentals
 - A packaged storage service that meets many needs
 - But one that is also highly customizable

What the project does

Accepts contributions from all disciplines

- Core team supplies architectural consistency, code vetting, integration, packaging, documentation inclusioin, testing (via CI), maintenance and support management
- Successfully doing so for 20 years
- We rely on the community to assist in testing, CI enhancements, support, and bug fixes
 - The project co-ordinates these activities
 - Keep in mind, we are not a software company!

The XRootD Project Software

- Framework runs on common platforms
 Most popular Linux distributions & macOS
 Includes full featured python bindings
 Focus on diverse community needs
 Widely used in HEP and Astro communities
 Significant use in many other disciplines
 Via our community partner designed systems
 - Where framework is embedded in a larger system
 - Our unofficial logo is "XRootD inside!"
 - E.G. CTA, DPM, EOS, PRP, Qserv, StashCache

Current storage support

- Any kind of mounted Posix-like file systemUnmounted file systems
 - Ceph (2nd party, originally developed by Sebastien Ponce CERN EP-LBC)
 HDFS (3rd party, originally developed by Brian Bockelman Morgridge)
- **#** Tape
 - CTA (3rd party, plug-ins developed by Michael Davis CERN IT-ST-TAB)
 - HPSS (1st party, integration developed by SLAC)
 - Client access via XRootD prepare protocol
 SRM support is not envisioned

QoS support

#WLCG QoS support in wait and see mode

- We have not received *any* community requests for extensive QoS functionality
- Framework already provides QoS templates
 - Similar to SRM space tokens but more flexible
 - Tied to a logical path or selected via CGI element
 - Currently used in very limited domains
 - E.G. ATLAS space tokens, **Xcache** for data separation
 - This seems good enough for communities we serve

XRootD roadmap drivers

Experimental needs

- We also try to anticipate future needs
 - Different perspective outside the trenches
 - Especially when considering a diverse community
- Balance between competing desires
 Stability, performance and features
 Roadmap tilts toward the former for start of run
 Commitment to backward compatibility
 Can still mix circa 2000 clients and servers

The current release 5.0.x

Numerous requested featuresXRootD

 TLS with performance enhancements, JSON monitoring streams, credential forwarding, user file attributes, hardware CRC32C, plug-in stacking, K8s deployment options, enhanced tape support, universal multi-VO VOMS plug-in, and many more

http[s]

 Full TPC, proxy cert handling, SciTokens, multi-VO support, and several more

Where do we go from here

The planned feature release schedule ■ 5.1.x 4Q20 (almost if not there) ■ 5.2.x 1-2Q21 ■ 5.3.x 3-4Q21 **#** Feature addition schedule is fluid While we have plans experimental needs take precedence and may shuffle the schedule **#** So, on to the highlights!

New Integrity Features in 5.1.0

R 5.1.0

Data in motion integrity

- CRC32C checksum for each 4K transmission unit
 - Dynamic substitution of checksum equivalent (i.e. TLS)
- Real-time error correction using CRC32C
 - Only blocks in error are retransmitted (not for TLS)
 - Potential to substantially reduce network usage
 - Consider a 10GB file transfer with a 1 bit error
- First deployment will be in Xcache
 Subsequent rollout for xrdcp in 5.2.0

New Integrity Features II

R 5.2.0

Data at rest integrity

- CRC32C checksum added to each 4K disk block
- Real-time error detection
- First usage will be in **Xcache**
 - Where only blocks in error will be re-fetched
- However, this is a universal plug-in
 - Any storage system may use it (e.g. ext4, xfs, etc)
 - Kudos to David Smith (CERN IT-SC-RD) who developed it

New Integrity Features III

R 5.2.0 or 5.3.0

Data in motion integrity for writes

- CRC32C checksum for each 4K transmission unit
- Real-time error correction using CRC32C
 - Only blocks in error are retransmitted
 - Potential to substantially reduce network usage
- Write integrity is far more difficult than reads
 - Different set of edge cases most of which are problematic
- First deployment will be xrdcp

New ACID* Features (5.3.0)

File checkpoints

- Allows safe recoverable in-place updates
 - Server-side updates for Zip, Zarr, HDF5, etc files
 - Especially needed by other communities
- Completes XRootD native Zip file support
 - Extraction, listing, and now appends
- Driven by increasing use of Zip archives
 E.G. Log files in ATLAS

*Atomicity, Consistency, Isolation, and Durability

New HPC oriented features I

Fast data paths

- Ability to selectively use faster data interfaces
 - Extends current multi-stream support to multi-path
 - This is peculiar to but common in HPC systems
 - Control interface is slow but data interface is fast
- During logon client told of faster interfaces
 - Allows subsequent use for data transfer
 - Site can restrict fast interfaces to data only

New HPC oriented features II

RDMA for data transport

- Common in HPCs but is spreading
 - Driven by adoption of InfiniBand networks
 - LCLS-II at SLAC will use an internal InfiniBand network
 - Already have implicit RDMA via DCA feature
 - Direct Cache Access using Lustre based Xcache
 - Being used by GSI and NERSC

Enhanced Parallel XRootD

XRootD runs on each worker node There could be hundreds of these **#** Data flow needs to minimize network use Data source to running application **#**Needs real-time data flow scheduling Partly addressed but needs improvements Driven by large scale sites (e.g. U Wisconsin)

Enhanced Write Support (backend)

Distributed write recovery

- For systems that support it (e.g. EOS)
 - Eliminates full file retransmission upon error

Writes can proceed using another data server

Part of XRootD file copy framework
 Automatically extends to gfal and xrdcp

Redirect minimization

Ability to always use primary head node

- Targeted toward consensus driven services
 - EOS is one such service
- Several head nodes but only one is the primary
 - New one chosen after a failure
- Client told redirect target is the primary
 - Subsequent requests only go to primary head node

Performance Improvements

xrdcp

- Simplify buffer management
- Use kernel space buffers
- Approximately 3-4x reduction in CPU usage
- Up to a 40% increase in transfer speed
 - Depending on target device

Universal Third Party Copy (TPC)

Ability to copy from/to using any protocol To/from local file system from/to elsewhere To/from elsewhere from/to elsewhere **#** Simplifies current TPC implementation Leverages the kXR_gpfile protocol element Compatible with any authentication scheme **I** Currently we support **XRootD** (pull mode) and **http**[**s**] (push and pull modes)

Plug-In Roadmap

Previous slides were core enhancements Either server or client based features, but... **#** Large part of roadmap centers on plug-ins Most have been developed elsewhere **#** These support AAI and backends **#** Let's take a test drive.... Stops in no particular order

SciToken plug-in (AAI)

Based on existing OSG plug-in

- Add security enhancements for XRootD use
 - Already available via http[s] plug-in
 - Being used by several sites
- Will become part of the XRootD core

XcacheH plug-in (other communities)

Accessing **Xcache** origins using **http**[**s**] Broadens data access reach Oriented toward multi-discipline sites Can be used as a Squid replacement Better performance and scalability Based on the plug-in by Radu Popescu Formerly at CERN now at Proton Tech AG Further developed by Wei Yang - SLAC Prototype being tested by ESNET & ESCAPE

Erasure coding plug-in (backend)

Client side plug-in to support EC writes Based on Intel ISAL Hardware accelerated encoding Leverages XRootD pgWrite capability Data in motion integrity with recoverability **#** Driven by ALICE requirements Direct writes from the DAQ system to EOS

Developed by Michal Simon (CERN IT-ST-PDS)

Unix Multi-User plug-in (other communities)

Allow file ownership based on uid-gid Access is based on Unix permission bits XRootD no longer owns the file ■ A.K.A. uid-gid file tracking **#** Builds on the OSG multi-user plug-in **#** Popular at small sites as an NFS alternative Especially as a drop-in replacement

Enhanced SSI* plug-in (other communities)

Detachable tasks

Results collected from alternate locations

Task grouping

Dynamically consolidate sharded requests

Eases task management scaling

Driven by LSST qserv requirements

Typically run 200,000 parallel query tasksCoordinated by one or more master nodes

*Scalable Service Interface – an **XRootD** specialization plug-in

November 23, 2020

Other developments

Improved Ceph plug-in Addition of more features Vector reads/writes Covered in RAL's talk **#** Packet marking Labeling purpose of data in network packets IPv6 only **XRootD** will be used as a demonstrator

Conclusion

This is a diverse roadmap

- Features needed by one or more experiments
 - Not always in the HEP community
 - 73% of github tickets are enhancement requests
 - For features missing in other open source systems
- **#** As we approach HL-LHC
 - Feature additions will diminish
 - Performance and stability enhancements will increase

A Word Of Thanks

We are grateful for our core partners

We are also grateful for our community & funding partners and their support

Plus way too many other logos to fit (I should work on that)!

And of course, the front-line people that make it all actually work!

