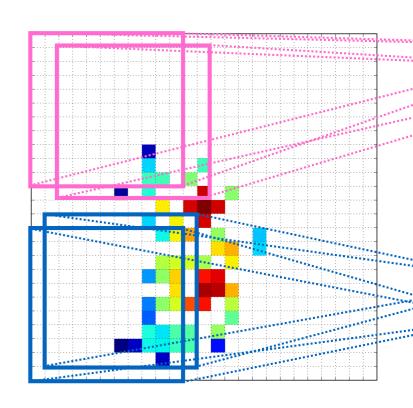
Neural Positive Reweighting

Benjamin Nachman

Lawrence Berkeley National Laboratory

bpnachman.com bpnachman@lbl.gov



HSF/WLCG Virtual Workshop Nov. 20, 2020

Outline

Part I: "Positive" Reweighting

Part I: "Positive" Reweighting

Suppose that a given phase space point x, there is a non-trivial distribution of weights p(w|x).

Outline

Part I: "Positive" Reweighting

Suppose that a given phase space point x, there is a non-trivial distribution of weights p(w|x).

Part II: Neural Reweighting

Outline

Part I: "Positive" Reweighting

Suppose that a given phase space point x, there is a non-trivial distribution of weights p(w|x).

Suppose that x is continuous and/or high dimensional

Part II: Neural Reweighting

Weighted events

Consider the usual expectation value of an observable:

$$\langle \mathcal{O}(x) \rangle \approx \hat{\mathcal{O}}(x) \equiv \sum_{i=1}^{N} w_i \, \mathcal{O}(x_i)$$

(for example, could be the content of a histogram bin)

For simplicity, the weights are normalized to 1

Weighted events

Consider the usual expectation value of an observable:

$$\langle \mathcal{O}(x) \rangle \approx \hat{\mathcal{O}}(x) \equiv \sum_{i=1}^{N} w_i \, \mathcal{O}(x_i)$$

(for example, could be the content of a histogram bin)

$$= \sum_{j=1}^{M} \left(\sum_{k=1}^{n_{\mathcal{O}(x_j)}} w_k\right) \mathcal{O}(x_j)$$

sum over distinct observable values

Weighted events

Consider the usual expectation value of an observable:

$$\langle \mathcal{O}(x) \rangle \approx \hat{\mathcal{O}}(x) \equiv \sum_{i=1}^{N} w_i \, \mathcal{O}(x_i)$$

(for example, could be the content of a histogram bin)

$$= \sum_{j=1}^{M} \left(\sum_{k=1}^{n_{\mathcal{O}(x_j)}} w_k\right) \mathcal{O}(x_j)$$

sum over distinct observable values

Only sensitive to the average weight

Resampling

If there is no information in $p(w \mid O(x))$ except the average, we can replace all w's with $\langle w \mid O(x) \rangle$

$$\{(\mathcal{O}, w_1), (\mathcal{O}, w_2), (\mathcal{O}, w_3)\} \to \{(\mathcal{O}, \hat{w}), (\mathcal{O}, \hat{w}), (\mathcal{O}, \hat{w})\}$$

Resampling

If there is no information in $p(w \mid O(x))$ except the average, we can replace all w's with $\langle w \mid O(x) \rangle$

$$\{(\mathcal{O}, w_1), (\mathcal{O}, w_2), (\mathcal{O}, w_3)\} \to \{(\mathcal{O}, \hat{w}), (\mathcal{O}, \hat{w}), (\mathcal{O}, \hat{w})\}$$

In fact, you can replace all events with O(x)=o with k events that all have O(x)=o and weight $k < w \mid O(x) > 0$

$$\{(\mathcal{O},\hat{w}),(\mathcal{O},\hat{w}),(\mathcal{O},\hat{w})\} \rightarrow \{(\mathcal{O},3\hat{w})\}$$

Resampling

If there is no information in $p(w \mid O(x))$ except the average, we can replace all w's with $\langle w \mid O(x) \rangle$

$$\{(\mathcal{O}, w_1), (\mathcal{O}, w_2), (\mathcal{O}, w_3)\} \to \{(\mathcal{O}, \hat{w}), (\mathcal{O}, \hat{w}), (\mathcal{O}, \hat{w})\}$$

In fact, you can replace all events with O(x)=o with k events that all have O(x)=o and weight $k < w \mid O(x) > 0$

$$\{(\mathcal{O},\hat{w}),(\mathcal{O},\hat{w}),(\mathcal{O},\hat{w})\} \rightarrow \{(\mathcal{O},3\hat{w})\}$$

Why is this useful? If $k \ll n_o$, then we can pass far fewer events through our detector simulation !!

Local Resampling

What if the phase space is not discrete?

$$\hat{\mathcal{O}}_{\mathrm{patch}} pprox \mathcal{O}(x_{\mathrm{patch}}) \sum_{i=1}^{n_{\mathrm{patch}}} w_i$$

Consider a small *patch* around each point in phase space where the observable is approximately constant.

$$\approx \mathcal{O}(x_{\text{patch}}) \sum_{j=1}^{n_{\text{patch}}/k} \left(\frac{k}{n_{\text{patch}}} \sum_{i=1}^{n_{\text{patch}}} w_i \right) \approx \mathcal{O}(x_{\text{patch}}) \sum_{j=1}^{n_{\text{patch}}/k} k \langle W \rangle_{\text{patch}}$$

 $\omega_{\mathrm{new,patch}}$

Not all values of *k* are equally good.

A good choice of *k* would be one that preserves the **uncertainty** (all values of *k* preserve the central value)

In the patch, match the sum of the squares of the weights:

$$\sum_{i=1}^{n_{\text{patch}}/k} w_{\text{new,patch}}^2 = \sum_{i=1}^{n_{\text{patch}}} w_i^2$$

Not all values of *k* are equally good.

A good choice of *k* would be one that preserves the **uncertainty** (all values of *k* preserve the central value)

In the patch, match the sum of the squares of the weights:

$$\sum_{i=1}^{n_{\text{patch}}/k} w_{\text{new,patch}}^2 = \frac{k}{n_{\text{patch}}} \sum_{i=1}^{n_{\text{patch}}} w_i^2 \approx k \langle W^2 \rangle_{\text{patch}}$$

$$w_{\text{new,patch}} \approx k \langle W \rangle_{\text{patch}}$$

$$w_{\rm new,patch}^2 \approx k \langle W^2 \rangle_{\rm patch}$$

$$\Rightarrow k_{\text{patch}} \approx \frac{\langle W^2 \rangle_{\text{patch}}}{\langle W \rangle_{\text{patch}}^2}$$

$$w_{
m new,patch} pprox k\langle W \rangle_{
m patch} \implies k_{
m patch} pprox \frac{\langle W^2 \rangle_{
m patch}}{\langle W \rangle_{
m patch}^2}$$

Now, take the continuum limit:

$$K(X) pprox rac{\langle W^2 | X \rangle}{\langle W | X \rangle^2}$$

N.B. upper case is a random variable

- 1. Estimate $\widehat{W}(X) \approx \langle W|X\rangle$.
- 2. Estimate $\widehat{W^2}(X) \approx \langle W^2 | X \rangle$.
- 3. Define $\widehat{K}(X) = \widehat{W}^2(X)/\widehat{W}(X)^2$.
- 4. For each event i, keep it with probability $1/\widehat{K}(x_i)$; otherwise discard the event. Because $\widehat{K}(x_i) \geq 1$ by construction, no event will be repeated.
- 5. For each kept event, set the new event weight to be $w_i \mapsto \widetilde{W}(x_i) \equiv \widehat{W}(x_i) \widehat{K}(x_i)$.

1. Estimate $\widehat{W}(X) \approx \langle W|X\rangle$.

How?

- 2. Estimate $\widehat{W^2}(X) \approx \langle W^2 | X \rangle$.
- 3. Define $\widehat{K}(X) = \widehat{W^2}(X)/\widehat{W}(X)^2$.
- 4. For each event i, keep it with probability $1/\widehat{K}(x_i)$; otherwise discard the event. Because $\widehat{K}(x_i) \geq 1$ by construction, no event will be repeated.
- 5. For each kept event, set the new event weight to be $w_i \mapsto \widetilde{W}(x_i) \equiv \widehat{W}(x_i) \widehat{K}(x_i)$.

Neural Resampling

Fact 1: Neural networks are great function approximators, especially in high dimensions.

Neural Resampling

Fact 1: Neural networks are great function approximators, especially in high dimensions.

Fact 2: neural networks trained to distinguish two samples learn to approximate (a function monotonic to) the likelihood ratio.

Fact 1: Neural networks are great function approximators, especially in high dimensions.

Fact 2: neural networks trained to distinguish two samples learn to approximate (a function monotonic to) the likelihood ratio.

We need to learn an unbinned likelihood ratio between a weighted sample and an unweighted one.

I do not have time to go into the machine learning, but please ask if you are interested!

Neural Resampling

We need to learn an unbinned likelihood ratio between a weighted sample and an unweighted one.

If you use this loss function:

$$\mathcal{L}[g] = -\sum_{i=1}^{N} w_i \log g(x_i) - \sum_{i=1}^{N} \log (1 - g(x_i))$$

(classifier to distinguish a sample from itself, but weighted)

Neural Resampling

We need to learn an unbinned likelihood ratio between a weighted sample and an unweighted one.

If you use this loss function:

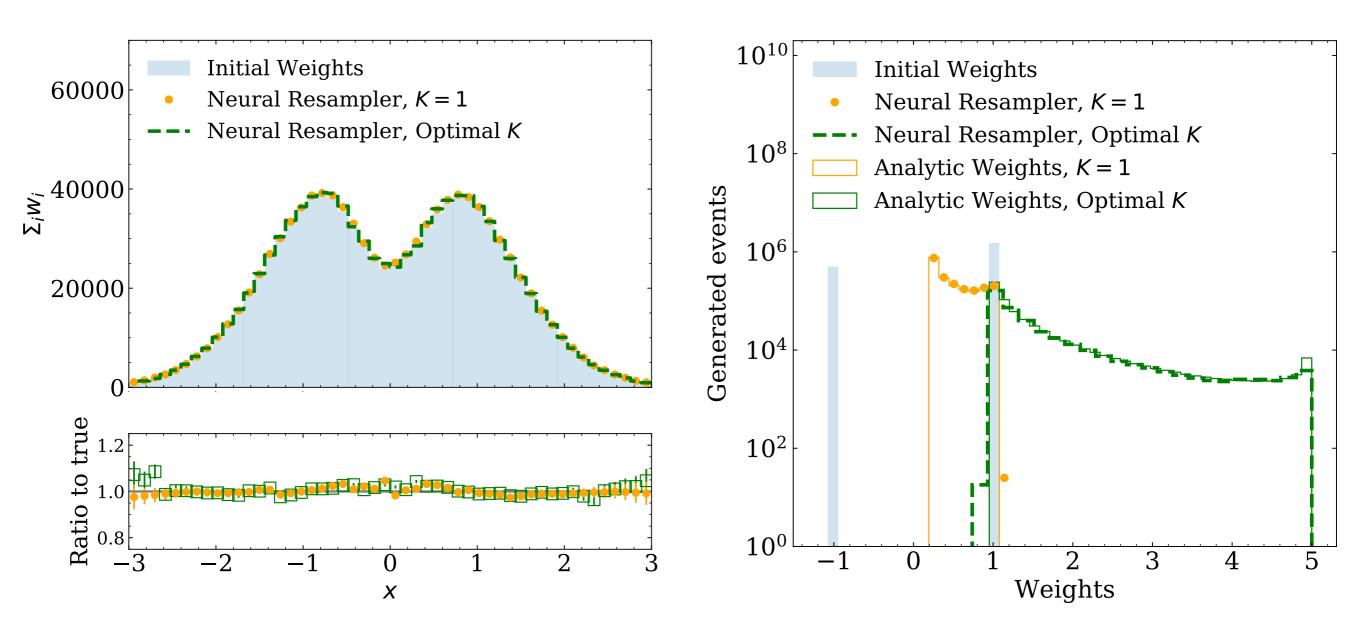
$$\mathcal{L}[g] = -\sum_{i=1}^{N} w_i \log g(x_i) - \sum_{i=1}^{N} \log (1 - g(x_i))$$

(classifier to distinguish a sample from itself, but weighted)

Then, you can estimate the function we need:

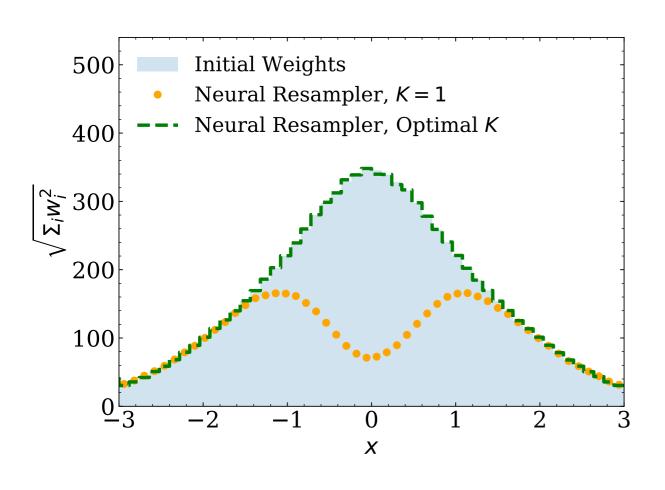
$$\implies \frac{g(x)}{1-g(x)} = \widehat{W}(x) \approx \langle W|X\rangle \quad \text{(similar story for the weight squared)}$$

First: Wide Gaussian + (-1) Narrower Gaussian

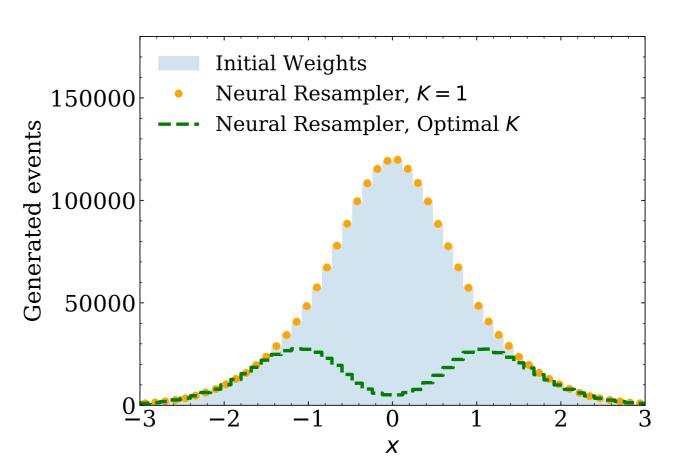


(binning is only for illustration - the resampling is unbinned)

First: Wide Gaussian + (-1) Narrower Gaussian

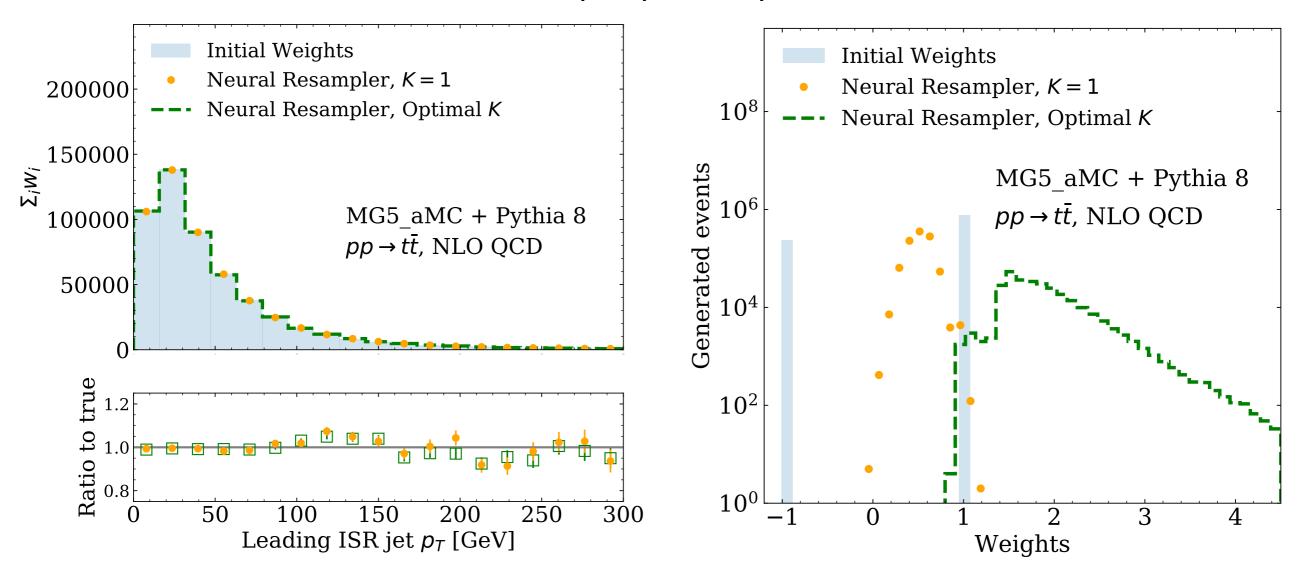


Preserves local uncertainty



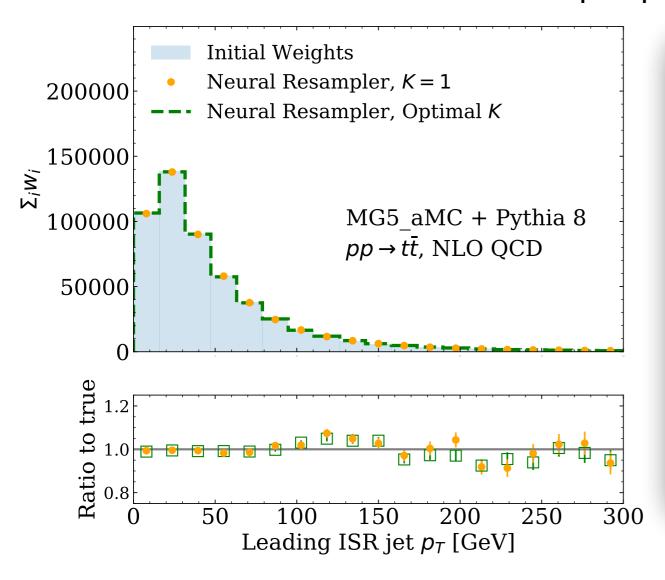
Reduces the number of events

Second: Top quark pairs at NLO



(Uses a set-based neural network called **particle flow networks** acting on jet and lepton 4-vectors)

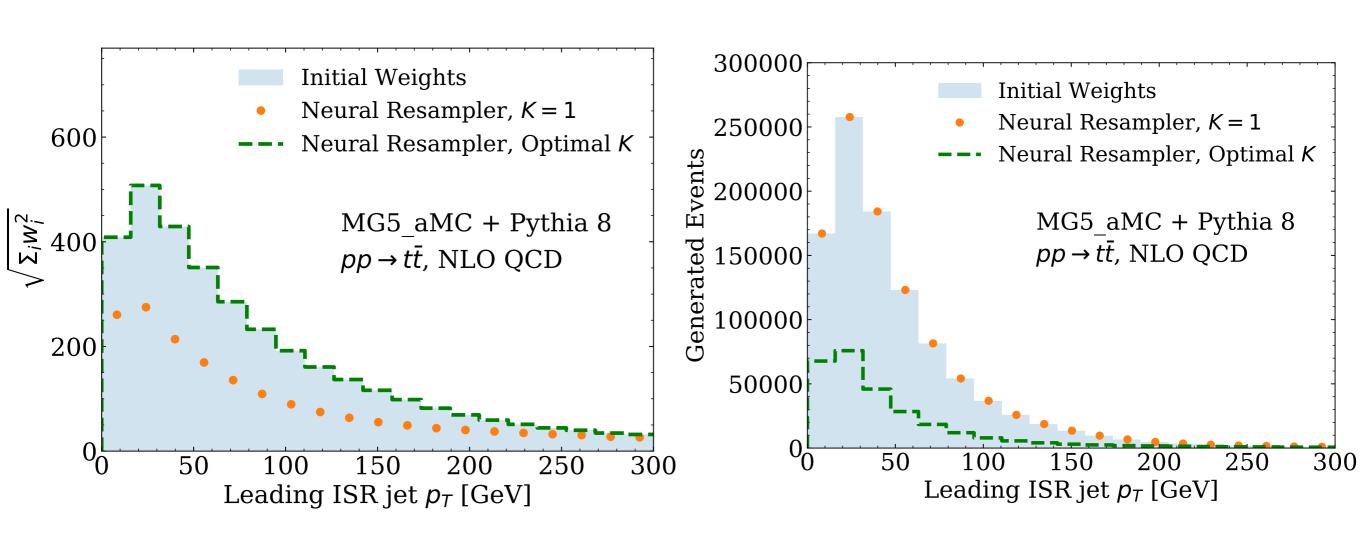
Second: Top quark pairs at NLO



This means you can consider any observable that can be computed from these 4-vectors!

(i.e. reweight full phase space, decide observable later...)

(Uses a set-based neural network called **particle flow networks** acting on jet and lepton 4-vectors)



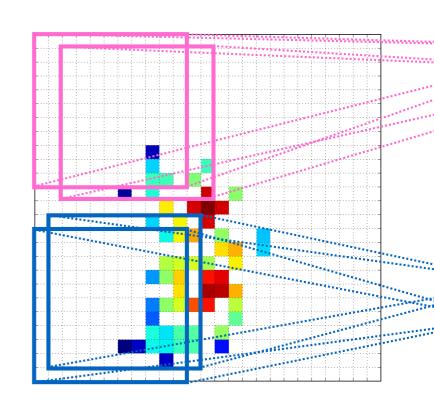
Preserves local uncertainty

Reduces the number of events

Conclusions and outlook

Resampling is a model independent method for reducing the number of events needed to run through detector simulation.

You can preserve the local cross section and the local **uncertainty**.



Neural networks are an effective way of parameterizing the reweighting functions to make the approach **high-dimensional and local**.

Backup

