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continuous and/or
high dimensional

Part |I: Neural Reweighting




Weighted events

Consider the usual expectation value of an observable:

(O(a)) = O(x) = Zw O(zi)

(for example, could be the content of a histogram bin)



Weighted events

Consider the usual expectation value of an observable:

(O(a)) = O(x) = Zw O(zi)

(for example, could be the content of a histogram bin)

M nNo(z;)
=2 | 2 wn | O)
7=1 k=1

!

sum over distinct observable values



Weighted events

Consider the usual expectation value of an observable:

(O(a)) = O(x) = Zw O(zi)

(for example, could be the content of a histogram bin)
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f there is no information in p(w | O(x) ) except the
average, we can replace all w’s with {w| O(x)

UO,w1), (O, w2), (O, ws)} — (O, w), (O, w), (O, w)}

In fact, you can replace all events with O(x)=0 with k
events that all have O(x) = o and weight k< w| O(x) )

UO,w), (O, w), (O, w)} = (O, 3w)}

Why is this useful? If k << no, then we can pass
far fewer events through our detector simulation !!



Local Resampling

What if the phase space is not discrete”

N patch

@patch ~ O(xpatch) Z Wy

Consider a small patch around each point in phase space
where the observable Is approximately constant.

npatch/k k Npatch npatch/k
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Local (Resampling + Uncertainties)

Not all values of k are equally good.

A good choice of k would be one
that preserves the uncertainty
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Not all values of k are equally good.

A good choice of k would be one
that preserves the uncertainty

In the patch, match the sum of the squares of the weights:
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wnewjpatch ~ k<W>patch <W2>patch

’LUQ Ny <W2>patch <W>patch

new,patch ™~




wnewjpatch ~ k<W>patch <W2>patch

— kpatch ~
w; ~ <W2>patch <W>patch

new,patch

Now, take the continuum limit:
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Neural Resampling

We need to learn an unbinned likelihood ratio
between a weighted sample and an unweighted one.

f you use this loss function:

szlogg (x;) Zlog 1— :1:1

Then, you can estimate the function we need:

. IB) o)~ )

1 —g(x)




Neural Resampling in Action
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(binning is only for illustration - the resampling is unbinned)




Neural Resampling in Action

First: Wide Gaussian + (-1) Narrower Gaussian
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(Uses a set-based neural network called particle
flow networks acting on jet and lepton 4-vectors)
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Neural Resampling in Action
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Conclusions and outlook

Resampling is a model

inde pPen dent method for reducin g T _____ i *
the number of events needed to b e
run through detector simulation. BERE S SEE e

You can preserve the local cross
section and the local uncertainty.

Neural networks are an effective way of
parameterizing the reweighting functions to make
the approach high-dimensional and local.






