
Benjamin Nachman

Neural Positive Reweighting

Deep Convolutional Architectures for
Jet-Images at the Large Hadron Collider

Introduction
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new
and uncharted physics at unprecedented collision energies.

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million
channel detector captures snapshots of particle collisions occurring 40 million times per second.
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space.
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ)
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue.
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118],
enabling the connection between LHC physics event reconstruction and computer vision.. We
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often
done in Computer Vision, to account for non-discriminative difference in pixel intensities.

In our experiments, we build discriminants on top of Jet Images to distinguish between a
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully
Connected
ReLU Unit

ReLU Dropout ReLU Dropout
Local

Response
Normalization

W’→ WZ event

Convolutions
Convolved

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements
Our analysis shows that Deep Convolutional Networks significantly improve the classification of
new physics processes compared to state-of-the-art methods based on physics features,
enhancing the discovery potential of the LHC. More importantly, the improved performance
suggests that the deep convolutional network is capturing features and representations beyond
physics-motivated variables.

Concluding Remarks
We show that modern Deep Convolutional Architectures can significantly enhance the discovery
potential of the LHC for new particles and phenomena. We hope to both inspire future research
into Computer Vision-inspired techniques for particle discovery, and continue down this path
towards increased discovery potential for new physics.

Difference in average
image between signal

and background

Deep Convolutional Networks
Deep Learning — convolutional networks in particular — currently represent the state of the art in
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and
perform model selection. Below, we visualize a simple architecture used to great success.

We found that architectures with large filters captured the physics response with a higher level of
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based
structure that sheds light on phenomenological structures within jets.

Visualizing Learning
Below, we have the learned convolutional filters (left) and the difference in between the average
signal and background image after applying the learned convolutional filters (right). This novel
difference-visualization technique helps understand what the network learns.

2D
Convolutions
to Jet Images

Understanding Improvements
Since the selection of physics-driven variables is driven by physical understanding, we want to be
sure that the representations we learn are more than simple recombinations of basic physical
variables. We introduce a new method to test this — we derive sample weights to apply such that

meaning that physical variables have no discrimination power. Then, we apply our learned
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated
discriminants — mass (top)
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of
the physics-related variables leads to a likelihood
performance equivalent to a random guess, but
the Deep Convolutional Network retains some
discriminative power. This indicates that the deep
network learns beyond theory-driven variables —
we hypothesize these may have to do with
density, shape, spread, and other spatially driven
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory, cStanford University, Department of Statistics

Lawrence Berkeley National Laboratory

bpnachman.com @bpnachman bnachman
bpnachman@lbl.gov

HSF/WLCG
Virtual Workshop

Nov. 20, 2020

http://bpnachman.com

2Outline

Part I: “Positive” Reweighting

3Outline

Part I: “Positive” Reweighting

Suppose that a given
phase space point x, there
is a non-trivial distribution

of weights p(w|x).

4Outline

Part I: “Positive” Reweighting

Part II: Neural Reweighting

Suppose that a given
phase space point x, there
is a non-trivial distribution

of weights p(w|x).

5Outline

Part I: “Positive” Reweighting

Part II: Neural Reweighting

Suppose that a given
phase space point x, there
is a non-trivial distribution

of weights p(w|x).

Suppose that x is
continuous and/or
high dimensional

6Weighted events

Consider the usual expectation value of an observable:

(for example, could be the content of a histogram bin)

hO(x)i ⇡ Ô(x) ⌘
NX

i=1

wi O(xi)
<latexit sha1_base64="cdiy0wxDAONqeVjlGUad5/qvdqQ=">AAACTXicbVFNTxsxEPWG8tHwldJjL1YTJJBQtBsO7aUSggsnmkokIMVhNetMEguvd7G9QLTKH+SC1Bv/gguHVlWFs8mBAE+y9PTmzXj8HKVSGOv7D15p4cPi0vLKx/Lq2vrGZuXTVtskmebY4olM9HkEBqVQ2LLCSjxPNUIcSTyLLo8m9bNr1EYk6tSOUuzGMFCiLzhYJ4WVXq3GJKiBRMpisEMOMv853rndZbpQGaSpTm7ZEGz+wlA48CoT18xkcZiLH8H44oTehILtzc0JxW6tFlaqft0vQN+SYEaqZIZmWPnNegnPYlSWSzCmE/ip7eagreASx2WWGUyBX8IAO44qiNF08yKNMd12So/2E+2OsrRQX3bkEBsziiPnnGxqXtcm4nu1Tmb737u5UGlmUfHpRf1MUpvQSbS0JzRyK0eOANfC7Ur5EDRw6z6g7EIIXj/5LWk36sF+vfGrUT04nMWxQr6Qr2SHBOQbOSDHpElahJM78kj+kL/evffk/fP+T60lb9bzmcyhtPwMK3a1Aw==</latexit>

For simplicity, the weights are normalized to 1

7Weighted events

Consider the usual expectation value of an observable:

(for example, could be the content of a histogram bin)

hO(x)i ⇡ Ô(x) ⌘
NX

i=1

wi O(xi)
<latexit sha1_base64="cdiy0wxDAONqeVjlGUad5/qvdqQ=">AAACTXicbVFNTxsxEPWG8tHwldJjL1YTJJBQtBsO7aUSggsnmkokIMVhNetMEguvd7G9QLTKH+SC1Bv/gguHVlWFs8mBAE+y9PTmzXj8HKVSGOv7D15p4cPi0vLKx/Lq2vrGZuXTVtskmebY4olM9HkEBqVQ2LLCSjxPNUIcSTyLLo8m9bNr1EYk6tSOUuzGMFCiLzhYJ4WVXq3GJKiBRMpisEMOMv853rndZbpQGaSpTm7ZEGz+wlA48CoT18xkcZiLH8H44oTehILtzc0JxW6tFlaqft0vQN+SYEaqZIZmWPnNegnPYlSWSzCmE/ip7eagreASx2WWGUyBX8IAO44qiNF08yKNMd12So/2E+2OsrRQX3bkEBsziiPnnGxqXtcm4nu1Tmb737u5UGlmUfHpRf1MUpvQSbS0JzRyK0eOANfC7Ur5EDRw6z6g7EIIXj/5LWk36sF+vfGrUT04nMWxQr6Qr2SHBOQbOSDHpElahJM78kj+kL/evffk/fP+T60lb9bzmcyhtPwMK3a1Aw==</latexit>

=
MX

j=1

0

@
nO(xj)X

k=1

wk

1

AO(xj)

<latexit sha1_base64="3Lpz0rhgCklWTFQpXzjaWStXmMM=">AAACP3icbZA9T8MwEIYdvilfBUYWixapLFVSBliQECwsCJBoQWpK5LhOa+o4kX0Bqij/jIW/wMbKwgBCrGw4bQconGTp1fPeyXevHwuuwbafrYnJqemZ2bn5wsLi0vJKcXWtoaNEUVankYjUlU80E1yyOnAQ7CpWjIS+YJd+7yj3L2+Z0jySF9CPWSskHckDTgkY5BUb5fK+q5PQS2/2nez6BGNXsAAqQ9bLWSq91A0JdCkR6WlWufdutrMM33k9V/FOF7bxuFsue8WSXbUHhf8KZyRKaFRnXvHJbUc0CZkEKojWTceOoZUSBZwKlhXcRLOY0B7psKaRkoRMt9LB/RneMqSNg0iZJwEP6M+JlIRa90PfdOab6nEvh/95zQSCvVbKZZwAk3T4UZAIDBHOw8RtrhgF0TeCUMXNrph2iSIUTOQFE4IzfvJf0ahVnZ1q7bxWOjgcxTGHNtAmqiAH7aIDdIzOUB1R9IBe0Bt6tx6tV+vD+hy2TlijmXX0q6yvbzV+rw4=</latexit>

sum over distinct observable values

8Weighted events

Consider the usual expectation value of an observable:

(for example, could be the content of a histogram bin)

hO(x)i ⇡ Ô(x) ⌘
NX

i=1

wi O(xi)
<latexit sha1_base64="cdiy0wxDAONqeVjlGUad5/qvdqQ=">AAACTXicbVFNTxsxEPWG8tHwldJjL1YTJJBQtBsO7aUSggsnmkokIMVhNetMEguvd7G9QLTKH+SC1Bv/gguHVlWFs8mBAE+y9PTmzXj8HKVSGOv7D15p4cPi0vLKx/Lq2vrGZuXTVtskmebY4olM9HkEBqVQ2LLCSjxPNUIcSTyLLo8m9bNr1EYk6tSOUuzGMFCiLzhYJ4WVXq3GJKiBRMpisEMOMv853rndZbpQGaSpTm7ZEGz+wlA48CoT18xkcZiLH8H44oTehILtzc0JxW6tFlaqft0vQN+SYEaqZIZmWPnNegnPYlSWSzCmE/ip7eagreASx2WWGUyBX8IAO44qiNF08yKNMd12So/2E+2OsrRQX3bkEBsziiPnnGxqXtcm4nu1Tmb737u5UGlmUfHpRf1MUpvQSbS0JzRyK0eOANfC7Ur5EDRw6z6g7EIIXj/5LWk36sF+vfGrUT04nMWxQr6Qr2SHBOQbOSDHpElahJM78kj+kL/evffk/fP+T60lb9bzmcyhtPwMK3a1Aw==</latexit>

=
MX

j=1

0

@
nO(xj)X

k=1

wk

1

AO(xj)

<latexit sha1_base64="3Lpz0rhgCklWTFQpXzjaWStXmMM=">AAACP3icbZA9T8MwEIYdvilfBUYWixapLFVSBliQECwsCJBoQWpK5LhOa+o4kX0Bqij/jIW/wMbKwgBCrGw4bQconGTp1fPeyXevHwuuwbafrYnJqemZ2bn5wsLi0vJKcXWtoaNEUVankYjUlU80E1yyOnAQ7CpWjIS+YJd+7yj3L2+Z0jySF9CPWSskHckDTgkY5BUb5fK+q5PQS2/2nez6BGNXsAAqQ9bLWSq91A0JdCkR6WlWufdutrMM33k9V/FOF7bxuFsue8WSXbUHhf8KZyRKaFRnXvHJbUc0CZkEKojWTceOoZUSBZwKlhXcRLOY0B7psKaRkoRMt9LB/RneMqSNg0iZJwEP6M+JlIRa90PfdOab6nEvh/95zQSCvVbKZZwAk3T4UZAIDBHOw8RtrhgF0TeCUMXNrph2iSIUTOQFE4IzfvJf0ahVnZ1q7bxWOjgcxTGHNtAmqiAH7aIDdIzOUB1R9IBe0Bt6tx6tV+vD+hy2TlijmXX0q6yvbzV+rw4=</latexit>

sum over distinct observable values
Only sensitive to

the average weight

9Resampling

If there is no information in p(w | O(x)) except the
average, we can replace all w’s with <w | O(x) >

J. Andersen, C. Gutshow, A. Maier, and Stefan Prestel, 2005.09375

{(O, w1), (O, w2), (O, w3)} ! {(O, ŵ), (O, ŵ), (O, ŵ)}
<latexit sha1_base64="nfaCqfQ9wfv9w+lCGDJtjs0GHXE=">AAACdnicfZFNS8NAEIY38avWr6onESTYigpSknrQY9GLNytYFZpSJtttu3Tzwe7EUkJ+gn/Om7/Di0c3bQ6aigMLL8/M7M6+40WCK7TtD8NcWl5ZXSutlzc2t7Z3Krt7TyqMJWVtGopQvnigmOABayNHwV4iycD3BHv2xrdZ/vmVScXD4BGnEev6MAz4gFNAjXqVt1rNTc5cH3BEQST36cWk55xfFEhjgVyeu6kr+XCEIGU4KdzhjgCTSVro+p+6aa3Wq1Ttuj0La1E4uaiSPFq9yrvbD2nsswCpAKU6jh1hNwGJnAqWlt1YsQjoGIaso2UAPlPdZGZbap1o0rcGodQnQGtGf3Yk4Cs19T1dmc2rirkM/pXrxDi47iY8iGJkAZ0/NIiFhaGV7cDqc8koiqkWQCXXs1p0BBIo6k2VtQlO8cuL4qlRdy7rjYdGtXmT21Eih+SYnBGHXJEmuSMt0iaUfBoHxrFRNb7MI/PEPJ2Xmkbes09+hWl/A+PAvoc=</latexit>

10Resampling

In fact, you can replace all events with O(x)=o with k
events that all have O(x) = o and weight k <	w | O(x) >

J. Andersen, C. Gutshow, A. Maier, and Stefan Prestel, 2005.09375

{(O, w1), (O, w2), (O, w3)} ! {(O, ŵ), (O, ŵ), (O, ŵ)}
<latexit sha1_base64="nfaCqfQ9wfv9w+lCGDJtjs0GHXE=">AAACdnicfZFNS8NAEIY38avWr6onESTYigpSknrQY9GLNytYFZpSJtttu3Tzwe7EUkJ+gn/Om7/Di0c3bQ6aigMLL8/M7M6+40WCK7TtD8NcWl5ZXSutlzc2t7Z3Krt7TyqMJWVtGopQvnigmOABayNHwV4iycD3BHv2xrdZ/vmVScXD4BGnEev6MAz4gFNAjXqVt1rNTc5cH3BEQST36cWk55xfFEhjgVyeu6kr+XCEIGU4KdzhjgCTSVro+p+6aa3Wq1Ttuj0La1E4uaiSPFq9yrvbD2nsswCpAKU6jh1hNwGJnAqWlt1YsQjoGIaso2UAPlPdZGZbap1o0rcGodQnQGtGf3Yk4Cs19T1dmc2rirkM/pXrxDi47iY8iGJkAZ0/NIiFhaGV7cDqc8koiqkWQCXXs1p0BBIo6k2VtQlO8cuL4qlRdy7rjYdGtXmT21Eih+SYnBGHXJEmuSMt0iaUfBoHxrFRNb7MI/PEPJ2Xmkbes09+hWl/A+PAvoc=</latexit>

{(O, ŵ), (O, ŵ), (O, ŵ)} ! {(O, 3ŵ)}
<latexit sha1_base64="6q3rCZsWqZYte05Wd7s//cF1IWQ=">AAACV3iclVFNS8NAEN3Er1q/Uj16CbaCQilJe9Cj6MWbFWwVmlIm2227dLMJuxOlhPxJ8eJf8aLbD1BbLz5YeLx5Mzv7NkwE1+h575a9tr6xuVXYLu7s7u0fOKXDto5TRVmLxiJWTyFoJrhkLeQo2FOiGEShYI/h+GZaf3xmSvNYPuAkYd0IhpIPOAU0Us+RlUqQnQUR4IiCyO7yajACzF7y8+o/1CAPFB+OEJSKX5bmNb5NlUrPKXs1bwZ3lfgLUiYLNHvOa9CPaRoxiVSA1h3fS7CbgUJOBcuLQapZAnQMQ9YxVELEdDeb5ZK7p0bpu4NYmSPRnak/OzKItJ5EoXFOF9bLtan4V62T4uCym3GZpMgknV80SIWLsTsN2e1zxSiKiSFAFTe7unQECiiaryiaEPzlJ6+Sdr3mN2r1+3r56noRR4EckxNyRnxyQa7ILWmSFqHkjXxYa9a69W592pt2YW61rUXPEfkFu/QFEqS1Jg==</latexit>

If there is no information in p(w | O(x)) except the
average, we can replace all w’s with <w | O(x) >

11Resampling

In fact, you can replace all events with O(x)=o with k
events that all have O(x) = o and weight k <	w | O(x) >

Why is this useful? If k << no, then we can pass
far fewer events through our detector simulation !!

J. Andersen, C. Gutshow, A. Maier, and Stefan Prestel, 2005.09375

{(O, w1), (O, w2), (O, w3)} ! {(O, ŵ), (O, ŵ), (O, ŵ)}
<latexit sha1_base64="nfaCqfQ9wfv9w+lCGDJtjs0GHXE=">AAACdnicfZFNS8NAEIY38avWr6onESTYigpSknrQY9GLNytYFZpSJtttu3Tzwe7EUkJ+gn/Om7/Di0c3bQ6aigMLL8/M7M6+40WCK7TtD8NcWl5ZXSutlzc2t7Z3Krt7TyqMJWVtGopQvnigmOABayNHwV4iycD3BHv2xrdZ/vmVScXD4BGnEev6MAz4gFNAjXqVt1rNTc5cH3BEQST36cWk55xfFEhjgVyeu6kr+XCEIGU4KdzhjgCTSVro+p+6aa3Wq1Ttuj0La1E4uaiSPFq9yrvbD2nsswCpAKU6jh1hNwGJnAqWlt1YsQjoGIaso2UAPlPdZGZbap1o0rcGodQnQGtGf3Yk4Cs19T1dmc2rirkM/pXrxDi47iY8iGJkAZ0/NIiFhaGV7cDqc8koiqkWQCXXs1p0BBIo6k2VtQlO8cuL4qlRdy7rjYdGtXmT21Eih+SYnBGHXJEmuSMt0iaUfBoHxrFRNb7MI/PEPJ2Xmkbes09+hWl/A+PAvoc=</latexit>

{(O, ŵ), (O, ŵ), (O, ŵ)} ! {(O, 3ŵ)}
<latexit sha1_base64="6q3rCZsWqZYte05Wd7s//cF1IWQ=">AAACV3iclVFNS8NAEN3Er1q/Uj16CbaCQilJe9Cj6MWbFWwVmlIm2227dLMJuxOlhPxJ8eJf8aLbD1BbLz5YeLx5Mzv7NkwE1+h575a9tr6xuVXYLu7s7u0fOKXDto5TRVmLxiJWTyFoJrhkLeQo2FOiGEShYI/h+GZaf3xmSvNYPuAkYd0IhpIPOAU0Us+RlUqQnQUR4IiCyO7yajACzF7y8+o/1CAPFB+OEJSKX5bmNb5NlUrPKXs1bwZ3lfgLUiYLNHvOa9CPaRoxiVSA1h3fS7CbgUJOBcuLQapZAnQMQ9YxVELEdDeb5ZK7p0bpu4NYmSPRnak/OzKItJ5EoXFOF9bLtan4V62T4uCym3GZpMgknV80SIWLsTsN2e1zxSiKiSFAFTe7unQECiiaryiaEPzlJ6+Sdr3mN2r1+3r56noRR4EckxNyRnxyQa7ILWmSFqHkjXxYa9a69W592pt2YW61rUXPEfkFu/QFEqS1Jg==</latexit>

If there is no information in p(w | O(x)) except the
average, we can replace all w’s with <w | O(x) >

12Local Resampling

What if the phase space is not discrete?

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

Ôpatch ⇡ O(xpatch)

npatchX

i=1

wi

<latexit sha1_base64="QWBR9UdIhfyIn2VkGlna1cUrWBI=">AAACS3icbVA9TxtBFNwzEBzny0CZ5hQ7EmmsO6eAJpJFmnSAFH9IPuf0br3GK/b2VrvviK3V/b80NHT5EzQUIETB2rjwByOtNJqZp7dvEiW4wSD475W2tnfe7JbfVt69//DxU3Vvv2OyXFPWppnIdC8BwwSXrI0cBespzSBNBOsmlz9nfveKacMz+Runig1SuJB8xCmgk+JqUq9HY0AbpYBjCsKeFkUcIZugVYB0XESglM4mS/7hZCXwLTJ5Glv+Iyz+WLliFX9jXq/H1VrQCObwN0m4IDWywFlcvYmGGc1TJpEKMKYfBgoHFjRyKlhRiXLDFNBLuGB9RyWkzAzsvIvC/+qUoT/KtHsS/bm6PGEhNWaaJi45O8msezPxNa+f4+h4YLlUOTJJXxaNcuFj5s+K9YdcM4pi6ghQzd1ffToGDRRd/RVXQrh+8ibpNBvh90bzvFlrnSzqKJPP5As5JCE5Ii3yi5yRNqHkH7kl9+TBu/buvEfv6SVa8hYzB2QFpZ1n5L621g==</latexit>

Consider a small patch around each point in phase space
where the observable is approximately constant.

wnew,patch
<latexit sha1_base64="7a+YRbYn/pdPDmDev/jz3KOuEyw=">AAAB/3icbVA9SwNBEN3zM8avqGBjc5gIFhLuYqFl0MYygvmA5Dj2NpNkyd7esTtnDGcK/4qNhSK2/g07/42bj0ITHww83pthZl4QC67Rcb6tpeWV1bX1zEZ2c2t7Zze3t1/TUaIYVFkkItUIqAbBJVSRo4BGrICGgYB60L8e+/V7UJpH8g6HMXgh7Ure4YyikfzcYaEw8FsID5hKGJzFFFlvVCj4ubxTdCawF4k7I3kyQ8XPfbXaEUtCkMgE1brpOjF6KVXImYBRtpVoiCnr0y40DZU0BO2lk/tH9olR2nYnUqYk2hP190RKQ62HYWA6Q4o9Pe+Nxf+8ZoKdSy/lMk4QJJsu6iTCxsgeh2G3uQKGYmgIZYqbW23Wo4oyNJFlTQju/MuLpFYquufF0m0pX76axZEhR+SYnBKXXJAyuSEVUiWMPJJn8krerCfrxXq3PqatS9Zs5oD8gfX5Ay7ulY4=</latexit>

⇡ O(xpatch)

npatch/kX

j=1

k

npatch

npatchX

i=1

wi

!
⇡ O(xpatch)

npatch/kX

j=1

khW ipatch

<latexit sha1_base64="lmR4/8HPJ5GfIwpERjYZAqFLxro=">AAAC0nicpVLLbhMxFPUMrxJeAZbdWCRI6SbMhAVskCrYsGuRmqZSHEYex5OY8Xgs+w4kWAYhtnxdd3wCf4HzWJC0O65k6eice3RfzrUUFpLkdxTfuHnr9p2Du6179x88fNR+/OTc1o1hfMhqWZuLnFouheJDECD5hTacVrnko7x8t9JHn7mxolZnsNR8UtGZEoVgFAKVtf90u4RqbeoFJhWFOaPSnfjeIiPAF+A0BTb3R5jYpsrcpzep/+jUjvai9ETyAnqkMJS50u/pfmMV11j9l0wQI2ZzOPrvHnCJiaRqJjkeEbMGOyndbtbuJP1kHfgqSLegg7ZxmrUvybRmTcUVMEmtHaeJhomjBgST3LdIY7mmrKQzPg5Q0YrbiVufxOPngZniojbhKcBr9l+Ho5W1yyoPmauR7b62Iq/Txg0UrydOKN0AV2xTqGgkhhqv7ounwnAGchkAZUaEXjGb03AaCL+gFZaQ7o98FZwP+unL/uDDoHP8druOA3SInqEeStErdIzeo1M0RCw6iZroW/Q9Pou/xj/in5vUONp6nqKdiH/9Bfmw6Mc=</latexit>

13Local (Resampling + Uncertainties)

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

Not all values of k are equally good.

A good choice of k would be one
that preserves the uncertainty

(all values of k preserve the central value)

In the patch, match the sum of the squares of the weights:

npatch/kX

i=1

w2
new,patch =

npatchX

i=1

w2
i

<latexit sha1_base64="SLzdJUwdsQwW5PPBhwBMQlcARzo=">AAACQXicdZA/TxsxGMZ9UApNoQ0wdrGaVGJA4e46wBIpogsjSAQi5c/J57whVny+k/0eITrdV2PhG7B1Z2EAoa5dcJIb2gReydKj3/M+sv2EiRQGXfe3s7L6Ye3j+san0ufNrS9fy9s7FyZONYcmj2WsWyEzIIWCJgqU0Eo0sCiUcBmOfk39y2vQRsTqHCcJdCN2pcRAcIYWBeVWtdoxaRRkou7lvUwFHYQbzBKGfJgfjHI6LoiC8f6c9vz6+5FpQPT8ajUoV9yaOxu6LLxCVEgxp0H5vtOPeRqBQi6ZMW3PTbCbMY2CS8hLndRAwviIXUHbSsUiMN1s1kBOf1jSp4NY26OQzui/iYxFxkyi0G5GDIdm0ZvCt7x2ioOjbiZUkiIoPr9okEqKMZ3WSftCA0c5sYJxLexbKR8yzTja0ku2BG/xy8viwq95P2v+mV9pHBd1bJBv5DvZIx45JA1yQk5Jk3BySx7IE3l27pxH58X5M19dcYrMLvlvnL+vZhSx7g==</latexit>

14Local (Resampling + Uncertainties)

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

Not all values of k are equally good.

A good choice of k would be one
that preserves the uncertainty

(all values of k preserve the central value)

In the patch, match the sum of the squares of the weights:

w2
new,patch =

k

npatch

npatchX

i=1

w2
i ⇡ khW 2ipatch

<latexit sha1_base64="dao8475DtqBpkBHYPoab7F43x4Q=">AAACY3icbVFBb9MwGHUCG6MDFjZuE5JFO4kDqpJwgMukiV04DmldJzVt5LhfWquOY9lf6EqUP8mNGxf+B26bw9btSZae3nufPvs501JYDMM/nv/s+d7+i4OXncNXr98cBW+Pb2xZGQ4DXsrS3GbMghQKBihQwq02wIpMwjBbXK794U8wVpTqGlcaxgWbKZELztBJafCr11umCcId1gqWnzRDPm8m8XmSG8brRVOr1t06TWKrIq3FedRMdi26TMUkTpjWpryji0QyNZNAh04zG/og3uulQTfshxvQxyRqSZe0uEqD38m05FUBCrlk1o6iUOO4ZgYFl9B0ksqCZnzBZjByVLEC7LjedNTQM6dMaV4adxTSjXp/omaFtasic8mC4dzuemvxKW9UYf51XAulKwTFt4vySlIs6bpwOhUGOMqVI4wb4e5K+Zy5dtF9S8eVEO0++TG5ifvR5378I+5efGvrOCCn5AP5SCLyhVyQ7+SKDAgnf71978gLvH/+oX/sv9tGfa+dOSEP4L//D35+umE=</latexit>

npatch/kX

i=1
<latexit sha1_base64="g78mIVoeGkiREzfElutMiQt0+WA=">AAACCnicdVBNS8NAEN34bf2KevSy2gieatJKrQdB9OJRwarQ1rDZbu3SzSbsTsQScvbiX/HiQRGv/gJv/hu3aQUVfTDweG+GmXlBLLgG1/2wxsYnJqemZ2YLc/MLi0v28sq5jhJFWZ1GIlKXAdFMcMnqwEGwy1gxEgaCXQS9o4F/ccOU5pE8g37MWiG5lrzDKQEj+fa64zR1Evop3/eyq1T6TWC3kMYEaDfb7mWO49tFt1TdqXi1PZyTiucOiVd1sVdycxTRCCe+/d5sRzQJmQQqiNYNz42hlRIFnAqWFZqJZjGhPXLNGoZKEjLdSvNXMrxplDbuRMqUBJyr3ydSEmrdDwPTGRLo6t/eQPzLayTQqbVSLuMEmKTDRZ1EYIjwIBfc5opREH1DCFXc3IpplyhCwaRXMCF8fYr/J+flklcplU/LxYPDURwzaA1toC3koV10gI7RCaojiu7QA3pCz9a99Wi9WK/D1jFrNLOKfsB6+wQkYJqQ</latexit>

15Local (Resampling + Uncertainties)

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

wnew,patch ⇡ khW ipatch
<latexit sha1_base64="6gKh5WsIh3QaO3x2hj1f0OB+GmM=">AAACJ3icbVBNTxsxFPTyUSBACfTYi0VSqQcU7YYDnBCCC0cqNQQpG63eOi+JFa/Xst8C0Sr/hgt/hQsSrar22H+C83FogZEsjWbm6flNapR0FIZ/gqXlldUPa+sblc2t7Y871d29K5cXVmBL5Cq31yk4VFJjiyQpvDYWIUsVttPR+dRv36B1MtffaWywm8FAy74UQF5Kqif1+m1SxoR3VGq8PTBAYjiZxGCMze/4KFagBwp5O7Yzksyj81i9nlRrYSOcgb8l0YLU2AKXSfU57uWiyFCTUOBcJwoNdUuwJIXCSSUuHBoQIxhgx1MNGbpuObtzwr94pcf7ufVPE5+p/06UkDk3zlKfzICG7rU3Fd/zOgX1j7ul1KYg1GK+qF8oTjmflsZ70qIgNfYEhJX+r1wMwYIgX23FlxC9PvktuWo2osNG81uzdnq2qGOdfWb77CuL2BE7ZRfskrWYYPfskf1gP4OH4Cn4FfyeR5eCxcwn9h+Cvy/92ac6</latexit>

w2
new,patch ⇡ khW 2ipatch

<latexit sha1_base64="u16uaaRX/XpU1aVnEA6VIiLLlWI=">AAACK3icbVDLThtBEJyFPMDkYeCYyyh2pBwia3dzIEdELhxBwhjJa1a947Y98uzsaKYXsFb+Hy75FQ5w4CGu+Q/Gj0MClDRSqapaPV2ZUdJRGN4HK6tv3r57v7Ze2/jw8dPn+ubWsStKK7AtClXYkwwcKqmxTZIUnhiLkGcKO9n498zvnKF1stBHNDHYy2Go5UAKIC+l9b1m8/w0TquE8IIqjec/DJAYTacJGGOLCz5OFOihQt45jRM7p+kivAg2m2m9EbbCOfhLEi1Jgy1xkNavk34hyhw1CQXOdaPQUK8CS1IonNaS0qEBMYYhdj3VkKPrVfNbp/ybV/p8UFj/NPG5+u9EBblzkzzzyRxo5J57M/E1r1vS4FevktqUhFosFg1Kxangs+J4X1oUpCaegLDS/5WLEVgQ5Out+RKi5ye/JMdxK/rZig/jxu7eso419oV9Zd9ZxHbYLttnB6zNBLtkV+yW3QV/gpvgIXhcRFeC5cw2+w/B3yeYaKiC</latexit>

=) kpatch ⇡ hW 2ipatch
hW i2patch

<latexit sha1_base64="+E4byDQn4t6oyn6C11IesVgK9nc=">AAACVnicbVFBT9swGHUCDFZgZOy4i7V20k5Vkh3GEbHLjiCtFKkpkeN+aa3ajmV/QVRR/uR22X7KLgi3RBore5Klp/fep89+LowUDuP4dxDu7O692j943Ts8On5zEr09vXZVbTmMeCUre1MwB1JoGKFACTfGAlOFhHGx/Lr2x3dgnaj0d1wZmCo216IUnKGX8kgNBplQfhM4uswzhHtsDEO+aDNmjK3us9Iy3mSS6bkEOr5NM7uhefM83LZ/I13gNt2ODAZ51I+H8Qb0JUk60icdLvPoRzareK1AI5fMuUkSG5w2zKLgEtpeVjswjC/ZHCaeaqbATZtNLS396JUZLSvrj0a6UZ9PNEw5t1KFTyqGC7ftrcX/eZMay7NpI7SpETR/WlTWkmJF1x3TmbDAUa48YdwKf1fKF8z3iP4ner6EZPvJL8l1Okw+D9OrtH9+0dVxQN6TD+QTScgXck6+kUsyIpz8JH+CMNgJfgUP4V64/xQNg27mHfkHYfQITyO3Gg==</latexit>

16Local (Resampling + Uncertainties)

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

wnew,patch ⇡ khW ipatch
<latexit sha1_base64="6gKh5WsIh3QaO3x2hj1f0OB+GmM=">AAACJ3icbVBNTxsxFPTyUSBACfTYi0VSqQcU7YYDnBCCC0cqNQQpG63eOi+JFa/Xst8C0Sr/hgt/hQsSrar22H+C83FogZEsjWbm6flNapR0FIZ/gqXlldUPa+sblc2t7Y871d29K5cXVmBL5Cq31yk4VFJjiyQpvDYWIUsVttPR+dRv36B1MtffaWywm8FAy74UQF5Kqif1+m1SxoR3VGq8PTBAYjiZxGCMze/4KFagBwp5O7Yzksyj81i9nlRrYSOcgb8l0YLU2AKXSfU57uWiyFCTUOBcJwoNdUuwJIXCSSUuHBoQIxhgx1MNGbpuObtzwr94pcf7ufVPE5+p/06UkDk3zlKfzICG7rU3Fd/zOgX1j7ul1KYg1GK+qF8oTjmflsZ70qIgNfYEhJX+r1wMwYIgX23FlxC9PvktuWo2osNG81uzdnq2qGOdfWb77CuL2BE7ZRfskrWYYPfskf1gP4OH4Cn4FfyeR5eCxcwn9h+Cvy/92ac6</latexit>

w2
new,patch ⇡ khW 2ipatch

<latexit sha1_base64="u16uaaRX/XpU1aVnEA6VIiLLlWI=">AAACK3icbVDLThtBEJyFPMDkYeCYyyh2pBwia3dzIEdELhxBwhjJa1a947Y98uzsaKYXsFb+Hy75FQ5w4CGu+Q/Gj0MClDRSqapaPV2ZUdJRGN4HK6tv3r57v7Ze2/jw8dPn+ubWsStKK7AtClXYkwwcKqmxTZIUnhiLkGcKO9n498zvnKF1stBHNDHYy2Go5UAKIC+l9b1m8/w0TquE8IIqjec/DJAYTacJGGOLCz5OFOihQt45jRM7p+kivAg2m2m9EbbCOfhLEi1Jgy1xkNavk34hyhw1CQXOdaPQUK8CS1IonNaS0qEBMYYhdj3VkKPrVfNbp/ybV/p8UFj/NPG5+u9EBblzkzzzyRxo5J57M/E1r1vS4FevktqUhFosFg1Kxangs+J4X1oUpCaegLDS/5WLEVgQ5Out+RKi5ye/JMdxK/rZig/jxu7eso419oV9Zd9ZxHbYLttnB6zNBLtkV+yW3QV/gpvgIXhcRFeC5cw2+w/B3yeYaKiC</latexit>

=) kpatch ⇡ hW 2ipatch
hW i2patch

<latexit sha1_base64="+E4byDQn4t6oyn6C11IesVgK9nc=">AAACVnicbVFBT9swGHUCDFZgZOy4i7V20k5Vkh3GEbHLjiCtFKkpkeN+aa3ajmV/QVRR/uR22X7KLgi3RBore5Klp/fep89+LowUDuP4dxDu7O692j943Ts8On5zEr09vXZVbTmMeCUre1MwB1JoGKFACTfGAlOFhHGx/Lr2x3dgnaj0d1wZmCo216IUnKGX8kgNBplQfhM4uswzhHtsDEO+aDNmjK3us9Iy3mSS6bkEOr5NM7uhefM83LZ/I13gNt2ODAZ51I+H8Qb0JUk60icdLvPoRzareK1AI5fMuUkSG5w2zKLgEtpeVjswjC/ZHCaeaqbATZtNLS396JUZLSvrj0a6UZ9PNEw5t1KFTyqGC7ftrcX/eZMay7NpI7SpETR/WlTWkmJF1x3TmbDAUa48YdwKf1fKF8z3iP4ner6EZPvJL8l1Okw+D9OrtH9+0dVxQN6TD+QTScgXck6+kUsyIpz8JH+CMNgJfgUP4V64/xQNg27mHfkHYfQITyO3Gg==</latexit>

Now, take the continuum limit:

K(X) ⇡ hW 2|Xi
hW |Xi2

<latexit sha1_base64="xZyanyY1+KY0Qq8IdzINRIFknfQ=">AAACKXicbVDLSsNAFJ34rPUVdelmsBHqpiRxocuiG8FNBfuApi2T6aQdOpmEmYlYYn/Hjb/iRkFRt/6I07T4aD0wcO4593LnHj9mVCrbfjcWFpeWV1Zza/n1jc2tbXNntyajRGBSxRGLRMNHkjDKSVVRxUgjFgSFPiN1f3A+9us3REga8Ws1jEkrRD1OA4qR0lLHLFvWZbFx5KE4FtGtFwiEU48h3mME1tvuXcMTWTH6Ub+1tjuyrI5ZsEt2BjhPnCkpgCkqHfPZ60Y4CQlXmCEpm44dq1aKhKJY78l7iSQxwgPUI01NOQqJbKXZpSN4qJUuDCKhH1cwU39PpCiUchj6ujNEqi9nvbH4n9dMVHDaSimPE0U4niwKEgZVBMexwS4VBCs21ARhQfVfIe4jnZbS4eZ1CM7syfOk5pac45J75RbKZ9M4cmAfHIAicMAJKIMLUAFVgME9eAQv4NV4MJ6MN+Nj0rpgTGf2wB8Yn18Yp6aN</latexit>

N.B. upper case is a random variable

17Local (Resampling + Uncertainties)

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

4

Combining Eq. (10) and Eq. (7) provides a prescription
for choosing Kpatch:

Kpatch ⇡
hW 2

ipatch

hW i2patch

. (11)

Taking the continuum limit, Eq. (11) becomes

K(X) =
hW 2

|Xi

hW |Xi2
, (12)

with expectation values conditioned on the phase space
points in X.

The above discussion can be encoded in the follow-
ing practical algorithm to reweight and resample Monte
Carlo events while preserving uncertainties:

1. Estimate cW (X) ⇡ hW |Xi.

2. Estimate dW 2(X) ⇡ hW 2
|Xi.

3. Define bK(X) = dW 2(X)/cW (X)2.

4. For each event i, keep it with probability 1/ bK(xi);
otherwise discard the event. Because bK(xi) � 1 by
construction, no event will be repeated.

5. For each kept event, set the new event weight to be
wi 7!

fW (xi) ⌘ cW (xi) bK(xi), which is the contin-
uum limit of ew from Eq. (7).

The computational benefit of using fW (xi) over wi is
true even if there are no negative weights. As with any
Monte Carlo method, the accept-reject procedure in step
4 can only preserve Eqs. (8) and (9) in expectation value.
As long as a given phase space point has a non-trivial
spectrum of weights, the above reduction will decrease
the computational cost of subsequent detector simulation
with the same asymptotic statistical properties as cap-
tured by the first and second moments. The procedure
above works for any estimation of hW |Xi and hW 2

|Xi,
including with histograms. The next section shows how
to estimate these quantities without binning using neural
networks.

III. NEURAL RESAMPLING

As described above, a Monte Carlo generator draws
a sample {xi} from X. Each phase space point xi has
an associated weight wi, which can be positive or nega-
tive. Moreover, the weights need not be a function of X,
meaning that the same phase space point can have di↵er-
ent weights, as determined by the Monte Carlo sampling
scheme. The goal of the positive resampler method of
Ref. [1] is to rebalance the weights such that each value
of x has a unique weight. Our neural resampler accom-
plishes this same goal through binary classification with
neural networks.

A. Learning Event Weights

To learn new event weights, we train a neural network
to distinguish between two samples: the original sample
{xi} with weights {wi} and a uniformly weighted sample
with the same phase space points {xi} but weights set to
1. For concreteness, we use the binary cross-entropy loss
for this discussion, though other loss functions with the
same asymptotic behavior would also work, such as the
mean squared error.2

The loss function to be minimized is:

L[g] = �

NX

i=1

wi log g(xi)�
NX

i=1

log
�
1� g(xi)

�
, (13)

where g(x) is parameterized as a neural network with out-
put range [0, 1]. We emphasize that the two sums in this
loss function run over the same phase space points xi,
just with di↵erent weights. This setup is identical to the
second step of the OmniFold unfolding algorithm [20],
where a generated dataset is morphed into a weighted
version of itself.
Taking a functional derivative of Eq. (13) with respect

to g(x) and setting it equal to zero, one can show that the
loss function minimum provides an estimate of hW |Xi:

g(x)

1� g(x)
= cW (x) ⇡ hW |Xi. (14)

This is just a manifestation of the standard result that
asymptotically (i.e. with infinite training data, maxi-
mally expressive neural network architecture, and ideal
training procedure) the output of a binary classifier ap-
proaches a monotonic rescaling of the likelihood ratio;
see e.g. Refs. [13–23]. In our case, the original sample
has asymptotic probability distribution

poriginal(x) = hW |xi puniform(x), (15)

where puniform(x) is the phase space prior. The sample
with uniform weights is not a proper probability distri-
bution, since it is not normalized, but corresponds to
N times puniform(x). In this way, we learn local event
weights that preserve the estimate of any observable via
Eq. (2).

2
One key di↵erence between binary cross-entropy and mean

squared error is that the former cannot learn negative weights.

There are situations, particularly when using fixed-order Monte

Carlo generators, where one encounters phase space regions with

genuinely negative cross sections. We performed a preliminary

test of this in the context of fixed-order top quark pair produc-

tion with a parton shower subtraction scheme where, unlike the

matched results in Sec. IVB, there are negative phase space re-

gions. Using the mean squared error loss and linear activation

in the final layer, we found good performance in the presence of

both positive and negative cross section regions.

.

18Local (Resampling + Uncertainties)

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

4

Combining Eq. (10) and Eq. (7) provides a prescription
for choosing Kpatch:

Kpatch ⇡
hW 2

ipatch

hW i2patch

. (11)

Taking the continuum limit, Eq. (11) becomes

K(X) =
hW 2

|Xi

hW |Xi2
, (12)

with expectation values conditioned on the phase space
points in X.

The above discussion can be encoded in the follow-
ing practical algorithm to reweight and resample Monte
Carlo events while preserving uncertainties:

1. Estimate cW (X) ⇡ hW |Xi.

2. Estimate dW 2(X) ⇡ hW 2
|Xi.

3. Define bK(X) = dW 2(X)/cW (X)2.

4. For each event i, keep it with probability 1/ bK(xi);
otherwise discard the event. Because bK(xi) � 1 by
construction, no event will be repeated.

5. For each kept event, set the new event weight to be
wi 7!

fW (xi) ⌘ cW (xi) bK(xi), which is the contin-
uum limit of ew from Eq. (7).

The computational benefit of using fW (xi) over wi is
true even if there are no negative weights. As with any
Monte Carlo method, the accept-reject procedure in step
4 can only preserve Eqs. (8) and (9) in expectation value.
As long as a given phase space point has a non-trivial
spectrum of weights, the above reduction will decrease
the computational cost of subsequent detector simulation
with the same asymptotic statistical properties as cap-
tured by the first and second moments. The procedure
above works for any estimation of hW |Xi and hW 2

|Xi,
including with histograms. The next section shows how
to estimate these quantities without binning using neural
networks.

III. NEURAL RESAMPLING

As described above, a Monte Carlo generator draws
a sample {xi} from X. Each phase space point xi has
an associated weight wi, which can be positive or nega-
tive. Moreover, the weights need not be a function of X,
meaning that the same phase space point can have di↵er-
ent weights, as determined by the Monte Carlo sampling
scheme. The goal of the positive resampler method of
Ref. [1] is to rebalance the weights such that each value
of x has a unique weight. Our neural resampler accom-
plishes this same goal through binary classification with
neural networks.

A. Learning Event Weights

To learn new event weights, we train a neural network
to distinguish between two samples: the original sample
{xi} with weights {wi} and a uniformly weighted sample
with the same phase space points {xi} but weights set to
1. For concreteness, we use the binary cross-entropy loss
for this discussion, though other loss functions with the
same asymptotic behavior would also work, such as the
mean squared error.2

The loss function to be minimized is:

L[g] = �

NX

i=1

wi log g(xi)�
NX

i=1

log
�
1� g(xi)

�
, (13)

where g(x) is parameterized as a neural network with out-
put range [0, 1]. We emphasize that the two sums in this
loss function run over the same phase space points xi,
just with di↵erent weights. This setup is identical to the
second step of the OmniFold unfolding algorithm [20],
where a generated dataset is morphed into a weighted
version of itself.
Taking a functional derivative of Eq. (13) with respect

to g(x) and setting it equal to zero, one can show that the
loss function minimum provides an estimate of hW |Xi:

g(x)

1� g(x)
= cW (x) ⇡ hW |Xi. (14)

This is just a manifestation of the standard result that
asymptotically (i.e. with infinite training data, maxi-
mally expressive neural network architecture, and ideal
training procedure) the output of a binary classifier ap-
proaches a monotonic rescaling of the likelihood ratio;
see e.g. Refs. [13–23]. In our case, the original sample
has asymptotic probability distribution

poriginal(x) = hW |xi puniform(x), (15)

where puniform(x) is the phase space prior. The sample
with uniform weights is not a proper probability distri-
bution, since it is not normalized, but corresponds to
N times puniform(x). In this way, we learn local event
weights that preserve the estimate of any observable via
Eq. (2).

2
One key di↵erence between binary cross-entropy and mean

squared error is that the former cannot learn negative weights.

There are situations, particularly when using fixed-order Monte

Carlo generators, where one encounters phase space regions with

genuinely negative cross sections. We performed a preliminary

test of this in the context of fixed-order top quark pair produc-

tion with a parton shower subtraction scheme where, unlike the

matched results in Sec. IVB, there are negative phase space re-

gions. Using the mean squared error loss and linear activation

in the final layer, we found good performance in the presence of

both positive and negative cross section regions.

.

How?

19Neural Resampling

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

Fact 1: Neural networks are great function
approximators, especially in high dimensions.

20Neural Resampling

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

Fact 1: Neural networks are great function
approximators, especially in high dimensions.

Fact 2: neural networks trained to distinguish
two samples learn to approximate

(a function monotonic to) the likelihood ratio.

21Neural Resampling

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

Fact 1: Neural networks are great function
approximators, especially in high dimensions.

Fact 2: neural networks trained to distinguish
two samples learn to approximate

(a function monotonic to) the likelihood ratio.

We need to learn an unbinned likelihood ratio
between a weighted sample and an unweighted one.

I do not have time to go into the machine
learning, but please ask if you are interested!

22Neural Resampling

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

We need to learn an unbinned likelihood ratio
between a weighted sample and an unweighted one.

4

Combining Eq. (10) and Eq. (7) provides a prescription
for choosing Kpatch:

Kpatch ⇡
hW 2

ipatch

hW i2patch

. (11)

Taking the continuum limit, Eq. (11) becomes

K(X) =
hW 2

|Xi

hW |Xi2
, (12)

with expectation values conditioned on the phase space
points in X.

The above discussion can be encoded in the follow-
ing practical algorithm to reweight and resample Monte
Carlo events while preserving uncertainties:

1. Estimate cW (X) ⇡ hW |Xi.

2. Estimate dW 2(X) ⇡ hW 2
|Xi.

3. Define bK(X) = dW 2(X)/cW (X)2.

4. For each event i, keep it with probability 1/ bK(xi);
otherwise discard the event. Because bK(xi) � 1 by
construction, no event will be repeated.

5. For each kept event, set the new event weight to be
wi 7!

fW (xi) ⌘ cW (xi) bK(xi), which is the contin-
uum limit of ew from Eq. (7).

The computational benefit of using fW (xi) over wi is
true even if there are no negative weights. As with any
Monte Carlo method, the accept-reject procedure in step
4 can only preserve Eqs. (8) and (9) in expectation value.
As long as a given phase space point has a non-trivial
spectrum of weights, the above reduction will decrease
the computational cost of subsequent detector simulation
with the same asymptotic statistical properties as cap-
tured by the first and second moments. The procedure
above works for any estimation of hW |Xi and hW 2

|Xi,
including with histograms. The next section shows how
to estimate these quantities without binning using neural
networks.

III. NEURAL RESAMPLING

As described above, a Monte Carlo generator draws
a sample {xi} from X. Each phase space point xi has
an associated weight wi, which can be positive or nega-
tive. Moreover, the weights need not be a function of X,
meaning that the same phase space point can have di↵er-
ent weights, as determined by the Monte Carlo sampling
scheme. The goal of the positive resampler method of
Ref. [1] is to rebalance the weights such that each value
of x has a unique weight. Our neural resampler accom-
plishes this same goal through binary classification with
neural networks.

A. Learning Event Weights

To learn new event weights, we train a neural network
to distinguish between two samples: the original sample
{xi} with weights {wi} and a uniformly weighted sample
with the same phase space points {xi} but weights set to
1. For concreteness, we use the binary cross-entropy loss
for this discussion, though other loss functions with the
same asymptotic behavior would also work, such as the
mean squared error.2

The loss function to be minimized is:

L[g] = �

NX

i=1

wi log g(xi)�
NX

i=1

log
�
1� g(xi)

�
, (13)

where g(x) is parameterized as a neural network with out-
put range [0, 1]. We emphasize that the two sums in this
loss function run over the same phase space points xi,
just with di↵erent weights. This setup is identical to the
second step of the OmniFold unfolding algorithm [20],
where a generated dataset is morphed into a weighted
version of itself.
Taking a functional derivative of Eq. (13) with respect

to g(x) and setting it equal to zero, one can show that the
loss function minimum provides an estimate of hW |Xi:

g(x)

1� g(x)
= cW (x) ⇡ hW |Xi. (14)

This is just a manifestation of the standard result that
asymptotically (i.e. with infinite training data, maxi-
mally expressive neural network architecture, and ideal
training procedure) the output of a binary classifier ap-
proaches a monotonic rescaling of the likelihood ratio;
see e.g. Refs. [13–23]. In our case, the original sample
has asymptotic probability distribution

poriginal(x) = hW |xi puniform(x), (15)

where puniform(x) is the phase space prior. The sample
with uniform weights is not a proper probability distri-
bution, since it is not normalized, but corresponds to
N times puniform(x). In this way, we learn local event
weights that preserve the estimate of any observable via
Eq. (2).

2
One key di↵erence between binary cross-entropy and mean

squared error is that the former cannot learn negative weights.

There are situations, particularly when using fixed-order Monte

Carlo generators, where one encounters phase space regions with

genuinely negative cross sections. We performed a preliminary

test of this in the context of fixed-order top quark pair produc-

tion with a parton shower subtraction scheme where, unlike the

matched results in Sec. IVB, there are negative phase space re-

gions. Using the mean squared error loss and linear activation

in the final layer, we found good performance in the presence of

both positive and negative cross section regions.

If you use this loss function:

(classifier to distinguish a sample from itself, but weighted)

23Neural Resampling

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

We need to learn an unbinned likelihood ratio
between a weighted sample and an unweighted one.

4

Combining Eq. (10) and Eq. (7) provides a prescription
for choosing Kpatch:

Kpatch ⇡
hW 2

ipatch

hW i2patch

. (11)

Taking the continuum limit, Eq. (11) becomes

K(X) =
hW 2

|Xi

hW |Xi2
, (12)

with expectation values conditioned on the phase space
points in X.

The above discussion can be encoded in the follow-
ing practical algorithm to reweight and resample Monte
Carlo events while preserving uncertainties:

1. Estimate cW (X) ⇡ hW |Xi.

2. Estimate dW 2(X) ⇡ hW 2
|Xi.

3. Define bK(X) = dW 2(X)/cW (X)2.

4. For each event i, keep it with probability 1/ bK(xi);
otherwise discard the event. Because bK(xi) � 1 by
construction, no event will be repeated.

5. For each kept event, set the new event weight to be
wi 7!

fW (xi) ⌘ cW (xi) bK(xi), which is the contin-
uum limit of ew from Eq. (7).

The computational benefit of using fW (xi) over wi is
true even if there are no negative weights. As with any
Monte Carlo method, the accept-reject procedure in step
4 can only preserve Eqs. (8) and (9) in expectation value.
As long as a given phase space point has a non-trivial
spectrum of weights, the above reduction will decrease
the computational cost of subsequent detector simulation
with the same asymptotic statistical properties as cap-
tured by the first and second moments. The procedure
above works for any estimation of hW |Xi and hW 2

|Xi,
including with histograms. The next section shows how
to estimate these quantities without binning using neural
networks.

III. NEURAL RESAMPLING

As described above, a Monte Carlo generator draws
a sample {xi} from X. Each phase space point xi has
an associated weight wi, which can be positive or nega-
tive. Moreover, the weights need not be a function of X,
meaning that the same phase space point can have di↵er-
ent weights, as determined by the Monte Carlo sampling
scheme. The goal of the positive resampler method of
Ref. [1] is to rebalance the weights such that each value
of x has a unique weight. Our neural resampler accom-
plishes this same goal through binary classification with
neural networks.

A. Learning Event Weights

To learn new event weights, we train a neural network
to distinguish between two samples: the original sample
{xi} with weights {wi} and a uniformly weighted sample
with the same phase space points {xi} but weights set to
1. For concreteness, we use the binary cross-entropy loss
for this discussion, though other loss functions with the
same asymptotic behavior would also work, such as the
mean squared error.2

The loss function to be minimized is:

L[g] = �

NX

i=1

wi log g(xi)�
NX

i=1

log
�
1� g(xi)

�
, (13)

where g(x) is parameterized as a neural network with out-
put range [0, 1]. We emphasize that the two sums in this
loss function run over the same phase space points xi,
just with di↵erent weights. This setup is identical to the
second step of the OmniFold unfolding algorithm [20],
where a generated dataset is morphed into a weighted
version of itself.
Taking a functional derivative of Eq. (13) with respect

to g(x) and setting it equal to zero, one can show that the
loss function minimum provides an estimate of hW |Xi:

g(x)

1� g(x)
= cW (x) ⇡ hW |Xi. (14)

This is just a manifestation of the standard result that
asymptotically (i.e. with infinite training data, maxi-
mally expressive neural network architecture, and ideal
training procedure) the output of a binary classifier ap-
proaches a monotonic rescaling of the likelihood ratio;
see e.g. Refs. [13–23]. In our case, the original sample
has asymptotic probability distribution

poriginal(x) = hW |xi puniform(x), (15)

where puniform(x) is the phase space prior. The sample
with uniform weights is not a proper probability distri-
bution, since it is not normalized, but corresponds to
N times puniform(x). In this way, we learn local event
weights that preserve the estimate of any observable via
Eq. (2).

2
One key di↵erence between binary cross-entropy and mean

squared error is that the former cannot learn negative weights.

There are situations, particularly when using fixed-order Monte

Carlo generators, where one encounters phase space regions with

genuinely negative cross sections. We performed a preliminary

test of this in the context of fixed-order top quark pair produc-

tion with a parton shower subtraction scheme where, unlike the

matched results in Sec. IVB, there are negative phase space re-

gions. Using the mean squared error loss and linear activation

in the final layer, we found good performance in the presence of

both positive and negative cross section regions.

4

Combining Eq. (10) and Eq. (7) provides a prescription
for choosing Kpatch:

Kpatch ⇡
hW 2

ipatch

hW i2patch

. (11)

Taking the continuum limit, Eq. (11) becomes

K(X) =
hW 2

|Xi

hW |Xi2
, (12)

with expectation values conditioned on the phase space
points in X.

The above discussion can be encoded in the follow-
ing practical algorithm to reweight and resample Monte
Carlo events while preserving uncertainties:

1. Estimate cW (X) ⇡ hW |Xi.

2. Estimate dW 2(X) ⇡ hW 2
|Xi.

3. Define bK(X) = dW 2(X)/cW (X)2.

4. For each event i, keep it with probability 1/ bK(xi);
otherwise discard the event. Because bK(xi) � 1 by
construction, no event will be repeated.

5. For each kept event, set the new event weight to be
wi 7!

fW (xi) ⌘ cW (xi) bK(xi), which is the contin-
uum limit of ew from Eq. (7).

The computational benefit of using fW (xi) over wi is
true even if there are no negative weights. As with any
Monte Carlo method, the accept-reject procedure in step
4 can only preserve Eqs. (8) and (9) in expectation value.
As long as a given phase space point has a non-trivial
spectrum of weights, the above reduction will decrease
the computational cost of subsequent detector simulation
with the same asymptotic statistical properties as cap-
tured by the first and second moments. The procedure
above works for any estimation of hW |Xi and hW 2

|Xi,
including with histograms. The next section shows how
to estimate these quantities without binning using neural
networks.

III. NEURAL RESAMPLING

As described above, a Monte Carlo generator draws
a sample {xi} from X. Each phase space point xi has
an associated weight wi, which can be positive or nega-
tive. Moreover, the weights need not be a function of X,
meaning that the same phase space point can have di↵er-
ent weights, as determined by the Monte Carlo sampling
scheme. The goal of the positive resampler method of
Ref. [1] is to rebalance the weights such that each value
of x has a unique weight. Our neural resampler accom-
plishes this same goal through binary classification with
neural networks.

A. Learning Event Weights

To learn new event weights, we train a neural network
to distinguish between two samples: the original sample
{xi} with weights {wi} and a uniformly weighted sample
with the same phase space points {xi} but weights set to
1. For concreteness, we use the binary cross-entropy loss
for this discussion, though other loss functions with the
same asymptotic behavior would also work, such as the
mean squared error.2

The loss function to be minimized is:

L[g] = �

NX

i=1

wi log g(xi)�
NX

i=1

log
�
1� g(xi)

�
, (13)

where g(x) is parameterized as a neural network with out-
put range [0, 1]. We emphasize that the two sums in this
loss function run over the same phase space points xi,
just with di↵erent weights. This setup is identical to the
second step of the OmniFold unfolding algorithm [20],
where a generated dataset is morphed into a weighted
version of itself.
Taking a functional derivative of Eq. (13) with respect

to g(x) and setting it equal to zero, one can show that the
loss function minimum provides an estimate of hW |Xi:

g(x)

1� g(x)
= cW (x) ⇡ hW |Xi. (14)

This is just a manifestation of the standard result that
asymptotically (i.e. with infinite training data, maxi-
mally expressive neural network architecture, and ideal
training procedure) the output of a binary classifier ap-
proaches a monotonic rescaling of the likelihood ratio;
see e.g. Refs. [13–23]. In our case, the original sample
has asymptotic probability distribution

poriginal(x) = hW |xi puniform(x), (15)

where puniform(x) is the phase space prior. The sample
with uniform weights is not a proper probability distri-
bution, since it is not normalized, but corresponds to
N times puniform(x). In this way, we learn local event
weights that preserve the estimate of any observable via
Eq. (2).

2
One key di↵erence between binary cross-entropy and mean

squared error is that the former cannot learn negative weights.

There are situations, particularly when using fixed-order Monte

Carlo generators, where one encounters phase space regions with

genuinely negative cross sections. We performed a preliminary

test of this in the context of fixed-order top quark pair produc-

tion with a parton shower subtraction scheme where, unlike the

matched results in Sec. IVB, there are negative phase space re-

gions. Using the mean squared error loss and linear activation

in the final layer, we found good performance in the presence of

both positive and negative cross section regions.

=)
<latexit sha1_base64="Fw9lmyn09wzHfQzgiIifu6oSrMs=">AAAB83icbVBNS8NAEN3Ur1q/qh69LDaCp5LUgx6LXjxWsB/QhLLZTtqlu5uwuxFK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzopQzbTzv2yltbG5t75R3K3v7B4dH1eOTjk4yRaFNE56oXkQ0cCahbZjh0EsVEBFx6EaTu7nffQKlWSIfzTSFUJCRZDGjxFgpcN2ACbsHtOsOqjWv7i2A14lfkBoq0BpUv4JhQjMB0lBOtO77XmrCnCjDKIdZJcg0pIROyAj6lkoiQIf54uYZvrDKEMeJsiUNXqi/J3IitJ6KyHYKYsZ61ZuL/3n9zMQ3Yc5kmhmQdLkozjg2CZ4HgIdMATV8agmhitlbMR0TRaixMVVsCP7qy+uk06j7V/XGQ6PWvC3iKKMzdI4ukY+uURPdoxZqI4pS9Ixe0ZuTOS/Ou/OxbC05xcwp+gPn8we6spDT</latexit>

If you use this loss function:

Then, you can estimate the function we need:

(classifier to distinguish a sample from itself, but weighted)

(similar story for the
weight squared)

24Neural Resampling in Action

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

First: Wide Gaussian + (-1) Narrower Gaussian

(binning is only for illustration - the resampling is unbinned)

25Neural Resampling in Action

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

First: Wide Gaussian + (-1) Narrower Gaussian

Preserves local uncertainty Reduces the
number of events

26Neural Resampling in Action

B.
 N

ac
hm

an
 a

nd
 J

. T
ha

le
r,

Ph
ys

. R
ev

. D
 1

02
 (2

02
0)

 0
76

00
4

· 2
00

7.
11

58
6Second: Top quark pairs at NLO

(Uses a set-based neural network called particle
flow networks acting on jet and lepton 4-vectors)

P. Komiske, E. Metodiev, J. Thaler, JHEP 01 (2019) 121 · 1810.05165

27Neural Resampling in Action

B.
 N

ac
hm

an
 a

nd
 J

. T
ha

le
r,

Ph
ys

. R
ev

. D
 1

02
 (2

02
0)

 0
76

00
4

· 2
00

7.
11

58
6Second: Top quark pairs at NLO

(Uses a set-based neural network called particle
flow networks acting on jet and lepton 4-vectors)

P. Komiske, E. Metodiev, J. Thaler, JHEP 01 (2019) 121 · 1810.05165

This means you can
consider any observable

that can be computed
from these 4-vectors !

(i.e. reweight full phase space,
decide observable later…)

28Neural Resampling in Action

B. Nachman and J. Thaler, Phys. Rev. D 102 (2020) 076004 · 2007.11586

Preserves local uncertainty Reduces the
number of events

29Conclusions and outlook

Deep Convolutional Architectures for
Jet-Images at the Large Hadron Collider

Introduction
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new
and uncharted physics at unprecedented collision energies.

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million
channel detector captures snapshots of particle collisions occurring 40 million times per second.
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space.
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ)
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue.
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118],
enabling the connection between LHC physics event reconstruction and computer vision.. We
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often
done in Computer Vision, to account for non-discriminative difference in pixel intensities.

In our experiments, we build discriminants on top of Jet Images to distinguish between a
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully
Connected
ReLU Unit

ReLU Dropout ReLU Dropout
Local

Response
Normalization

W’→ WZ event

Convolutions
Convolved

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements
Our analysis shows that Deep Convolutional Networks significantly improve the classification of
new physics processes compared to state-of-the-art methods based on physics features,
enhancing the discovery potential of the LHC. More importantly, the improved performance
suggests that the deep convolutional network is capturing features and representations beyond
physics-motivated variables.

Concluding Remarks
We show that modern Deep Convolutional Architectures can significantly enhance the discovery
potential of the LHC for new particles and phenomena. We hope to both inspire future research
into Computer Vision-inspired techniques for particle discovery, and continue down this path
towards increased discovery potential for new physics.

Difference in average
image between signal

and background

Deep Convolutional Networks
Deep Learning — convolutional networks in particular — currently represent the state of the art in
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and
perform model selection. Below, we visualize a simple architecture used to great success.

We found that architectures with large filters captured the physics response with a higher level of
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based
structure that sheds light on phenomenological structures within jets.

Visualizing Learning
Below, we have the learned convolutional filters (left) and the difference in between the average
signal and background image after applying the learned convolutional filters (right). This novel
difference-visualization technique helps understand what the network learns.

2D
Convolutions
to Jet Images

Understanding Improvements
Since the selection of physics-driven variables is driven by physical understanding, we want to be
sure that the representations we learn are more than simple recombinations of basic physical
variables. We introduce a new method to test this — we derive sample weights to apply such that

meaning that physical variables have no discrimination power. Then, we apply our learned
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated
discriminants — mass (top)
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of
the physics-related variables leads to a likelihood
performance equivalent to a random guess, but
the Deep Convolutional Network retains some
discriminative power. This indicates that the deep
network learns beyond theory-driven variables —
we hypothesize these may have to do with
density, shape, spread, and other spatially driven
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory, cStanford University, Department of Statistics

Resampling is a model
independent method for reducing
the number of events needed to
run through detector simulation.

You can preserve the local cross
section and the local uncertainty.

Neural networks are an effective way of
parameterizing the reweighting functions to make

the approach high-dimensional and local.

30Backup

