
VegasFlow and PDFFlow: accelerating Monte Carlo
simulation across platforms

Juan M Cruz-Martinez
in collaboration with: S. Carrazza, M. Rossi

PDFFlow: hep-ph/2009.06635 VegasFlow: 10.1016/j.cpc.2020.107376

PDFN 3
Machine Learning • PDFs • QCD

HSF WLCG Virtual Workshop
November 2020

This project has received funding from the EU’s Horizon 2020 research and innovation programme under grant agreement No 740006.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 1 / 18

https://arxiv.org/abs/2009.06635
https://www.sciencedirect.com/science/article/pii/S0010465520301624

Outline

1 Motivation
Introduction, hep-ph
How can we do better

2 VegasFlow and PDFFlow
What are they?
Where to find the code

3 Results and extensions
PDF interpolation
LO and NLO calculations
Integration with other software

4 Conclusions

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 2 / 18

Motivation Introduction, hep-ph

Parton-level Monte Carlo generators

Behind most predictions for LHC phenomenology lies the numerical
computation of the following integral:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

→ f (x , q): Parton Distribution Function

→ |M|: Matrix element of the process

→ {pn}: Phase space for n particles.

→ J : Jet function for n particles to m.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 3 / 18

Motivation Introduction, hep-ph

Parton-level Monte Carlo generators ingredients:

∫
dx1 dx2 f1(x1, q

2)f2(x2, q
2)|M({pn})|2J n

m({pn})

The integrals are usually computed
numerically using CPU-expensive Monte
Carlo generators.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 4 / 18

Motivation How can we do better

GPU computing

Monte Carlo simulations are highly parallelizable, which make them a
great target for GPU computation.

0 10 20 30 40 50
Time (s)

2 cores

4 cores

8 cores

16 cores

Titan V

RTX 2080 Ti

Float-64 performance comparison for a MC integral
Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Monte Carlo integration of a
n-dimensional gaussian function

I =

∫
dx1 . . . dxn e

x2
1 +···+x2

n

GPU computation can increase the performance of the integrator by more
than an order of magnitude.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 5 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Why is then GPU computing not more widespread?

Most of the more advance theoretical calculations still rely exclusively on
CPU. With only a few libraries providing GPU interfaces such as pySecDec.

7 Diminishing returns

Huge CPU-optimized Fortran 77/90 or C++ codebases.
Publication-ready results are easily obtained expanding existing code.
It’s catch-22: porting the code becomes more and more complicated.

7 Lack of expertise

CPU expertise is not necessarily applicable to GPU programming.
New programming languages: Cuda? OpenCL?
Low-reward situation when trying to achieve previous performance.

7 Lack of tools

Many ready-made tools for CPU.
GPUs are still decades behind in the hep-ph world.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 6 / 18

Motivation How can we do better

Lack of Tools

Running on a CPU:

For CPU computation you can focus
in the result you are interested in (for
instance, the physical process), as
there is a complete toolset for
producing results.

integrator

phase space

cuts

matrix element

parton distribution function

histogramming/analysis

result!

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 7 / 18

Motivation How can we do better

Lack of Tools

Running on a CPU:

For CPU computation you can focus
in the result you are interested in (for
instance, the physical process), as
there is a complete toolset for
producing results.

Cuba

RAMBO

fastjet

matrix element

LHAPDF

Root

result!

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 7 / 18

Motivation How can we do better

Lack of Tools

Running on a GPU:

For CPU computation you can focus
in the result you are interested in (for
instance, the physical process), as
there is a complete toolset for
producing results.

There is still no such complete
toolset for GPU computation which
means one has to write code from
scratch

?????

?????

?????

matrix element

?????

?????

result!

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 7 / 18

VegasFlow and PDFFlow What are they?

A new toolset: VegasFlow and PDFflow

The pdf and vegas-flow libraries
focus on speed and efficiency for
both the computer and the developer

- Python and TF based engine

- Compatible with other
languages: Cuda, C++

- Seamless CPU and GPU
computation out of the box

- Easily interfaceable with
NN-based integrators

Source code available at:
github.com/N3PDF/VegasFlow

github.com/N3PDF/PDFFlow

VegasFlow

?????

?????

matrix element

PDFFlow

?????

result!

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 8 / 18

https://github.com/N3PDF/vegasflow
https://github.com/N3PDF/pdfflow

VegasFlow and PDFFlow What are they?

Parallelize everything parallelizable: batch what can be
batched

As a result, with minimal changes to the algorithms involved, one can
achieve a tremendous speed-up.

Create PDF

query PID, (x ,Q2) point

xfxQ2()

fa (x ,Q2) �

Figure: LHAPDF6

Create PDF

query PID, array x , array Q2

xfxQ2()

~fa (~x , ~Q2)

Figure: PDFFlow

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 9 / 18

VegasFlow and PDFFlow What are they?

Usability status

The goal

The developer writes the code once (for instance, the matrix element for
the process they are interested in) and it can automatically be used for
both GPU and CPU.

While perfectly possible, it will take some times for the tools to be widely
used. In other words, a pheno PhD student starting their N3?LO
calculation today might start producing results in a few years.

The workarounds

We have thus focused on compatibilities with existing code and tools.
PDFFlow python and C interfaces follow a structure very similar to
LHAPDF while VegasFlow is compatible with integrands written in Cuda,
C++ or regular python.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 10 / 18

VegasFlow and PDFFlow Where to find the code

Open source for HEP

Where to obtain the code

Both VegasFlow and PDFFlow are open source and can be found at the
N3PDF organization repository github.com:N3PDF

How to install

Can be installed from the repository or directly with pip:

~$ pip install vegasflow pdfflow

Documentation

The documentation for these tools is accessible at:
VegasFlow: vegasflow.rtfd.io

PDFFlow: pdfflow.rtfd.io

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 11 / 18

https://github.com/N3PDF
https://VegasFlow.readthedocs.io
https://pdfflow.readthedocs.io

Results and extensions PDF interpolation

LHAPDF vs PDFFlow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10

Number of (x,Q) points drawn [×105]

101

102

R
at

io
to

L
H

A
P

D
F

10−12 10−10 10−6 10−2

x

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|f p
−
f l
|

|f l
|+

ε

NNPDF31 nlo as 0118/0, flav = 1

Q = 1.65× 100

Q = 1.70× 100

Q = 4.92× 100

Q = 1.00× 102

Q = 1.00× 103

Q = 1.00× 104

Q = 1.00× 105

Q = 1.00× 106

Q = 2.00× 106

Interpolation in x for fixed q.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 12 / 18

Results and extensions PDF interpolation

LHAPDF vs PDFFlow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10

Number of (x,Q) points drawn [×105]

101

102

R
at

io
to

L
H

A
P

D
F

101 103 105 107

Q

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|f p
−
f l
|

|f l
|+

ε

NNPDF31 nlo as 0118/0, flav = 1

x = 1.0× 10−10

x = 1.0× 10−9

x = 1.1× 10−9

x = 5.0× 10−7

x = 1.0× 10−6

x = 1.0× 10−4

x = 1.0× 10−2

x = 5.0× 10−1

x = 9.9× 10−1

Interpolation in q for fixed x .

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 12 / 18

Results and extensions LO and NLO calculations

VegasFlow Vs Madgraph LO

For Leading Order calculations the advantages are immediately visible

0 10 20 30 40 50
Time (minutes)

MG5_aMC@NLO
36 active CPU cores

VegasFlow
Titan V

VegasFlow
RTX 2080 Ti

VegasFlow
Titan V and RTX 2080 Ti

LO single top @ 8 TeV, target uncertainty 0.014 pb
 Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Figure: Plain Madgraph Vs C++-like
implementation

- We have ported an old fortran
code, no GPU-specific
optimization.

- Phase Space, spinors, cuts... all
done ‘the old way”

i.e., there’s room for improvement by developing GPU-specific code!
What about NLO?

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 13 / 18

Results and extensions LO and NLO calculations

VegasFlow for NLO calculations

Still can’t achieve an order of magnitude for NLO. But it is already better!

- Same caveats as before → no
GPU-specific optimization on
the phase space, cuts or
subtraction terms

- Proof-of-concept, not a full
parton-level MC simulator.

X Great potential for accelerating
fixed order calculations. Figure: NNLOJET+LHAPDF vs

VegasFlow+PDFFlow

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 14 / 18

Results and extensions Integration with other software

PineAPPL

The grid filling tool PineAPPL (Carrazza, Nocera, Schwan, Zaro,
hep-ph/2008.12789) addresses the problem of generating grids to produce
predictions for generic set of PDFs.

VegasFlow Integration

Events

CPU Pool

Events Events Events…...

PineAPPL

103 104 105 106 107 108 109

100

101

102

To
ta

l t
im

e
(s

)

VegasFlow and PineAPPL
Intel i9-9980XE - NVIDIA Titan V

GPU with PineAPPL sync
GPU with PineAPPL async
GPU no PineAPPL

103 104 105 106 107 108 109

Number of Vegas events

1.0

1.5

Ra
tio

 to
 G

PU
 n

o
Pi

ne
AP

PL

The generation of such grids is a common use of Monte Carlo generators.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 15 / 18

https://arxiv.org/abs/2008.12789

Results and extensions Integration with other software

Dask

Another very common situation for users of Monte Carlo tools is the
possibility of running in a distributed system.
In VegasFlow this task is facilitated by the implementation of a dask

interface.

>>> from dask_jobqueue import SLURMCluster

>>>

>>> cluster = SLURMCluster(queue="<q>",

>>> project="<p>", cores=4, memory="2g")

>>>

>>> integrator.set_distribute(cluster)

>>> res = integrator.run_integration(n_iter)

Cluster systems not included in the dask library should be easy to
implement following the same internal logic.

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 16 / 18

Conclusions The end

Summary

GPU computation is increasingly gaining traction in many areas of
science but it is still not heavily used in particle physics
phenomenology.

→ Being competitive with CPU for MC simulations.

→ Efforts in that direction

X VegasFlow and PDFFlow provide a framework to run in any device.

X Good synergy with other libraries.

X Easy implementation of new-generation or NN-based integration
algorithms.

Where to obtain the code

VegasFlow and PDFFlow are opensource and available at
github.com:N3PDF/pdfflow and github.com:N3PDF/VegasFlow

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 17 / 18

https://github.com/N3PDF/PDFFlow
https://github.com/N3PDF/VegasFlow

Conclusions The end

Thanks!

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 18 / 18

Backup

Benchmark on different GPUs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Ratio to time of RTX 2080

Titan V
RTX 2080 Ti

Titan V and RTX 2080 Ti
V100 PCIe 32GB-1
V100 PCIe 32GB-2

two of V100 PCIe 32GB
P100

RTX 2080
Tesla V100 16GB

2x Tesla V100 16GB
3x Tesla V100 16GB
4x Tesla V100 16GB
5x Tesla V100 16GB
6x Tesla V100 16GB
7x Tesla V100 16GB
8x Tesla V100 16GB

Radeon VII

GPU performance

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 19 / 18

Backup

Benchmark on different CPUs

0 5 10 15 20 25 30 35
Active CPU cores

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz
18 cores, 125GB RAM

2 4 6 8 10 12
Active CPU cores

0

1

2

3

4

Ti
m

e
(s

ec
on

ds
)

Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz
6 cores, 19GB RAM

1 2 3 4 5 6 7 8
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
4 cores, 15GB RAM

1 2 3 4 5 6 7 8
Active CPU cores

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
4 cores, 15GB RAM

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Active CPU cores

0

2

4

6
Ti

m
e

(s
ec

on
ds

)

Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz
2 cores, 7.5GB RAM

0 10 20 30 40 50 60
Active CPU cores

0

2

4

6

Ti
m

e
(s

ec
on

ds
)

Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
64 cores, 480GB RAM

0 10 20 30 40 50 60
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

AMD Ryzen Threadripper 2990WX 32-Core
32 cores, 125GB RAM

1 2 3 4 5 6 7 8
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
4 cores, 15.4GB RAM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Active CPU cores

0

1

2

3

Ti
m

e
(s

ec
on

ds
)

Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz
18 cores, 125GB RAM

Juan Cruz-Martinez (University of Milan) VegasFlow & PDFFlow HSF-WLCG 20 / 18

	Motivation
	Introduction, hep-ph
	How can we do better

	VegasFlow and PDFFlow
	What are they?
	Where to find the code

	Results and extensions
	PDF interpolation
	LO and NLO calculations
	Integration with other software

	Conclusions
	The end

	Backup

