

ATLAS data access performances among ALPAMED sites

C. Adam-Bourdarios, S. Jézéquel (LAPP) on behalf of E. Knoops (CPPM), F. Chollet, P. Seraphin (LAPP),

J-C Chevaleyre (LPC), S. Crepe, C. Gondrand (LPSC)

Storage Workshop: 19 November 2020

ALPAMED infrastructure

Motivation: Reduce Total Cost of Ownership to operate storage infrastructure (FTE, headnode hardware)

Target: Data access performance

- Primary goal: Measure data access rate vs short distance (N*100kms)
 - Direct access to SE: Default for user jobs but rare for production jobs (copy to local disk)
 - Penalty to loose locality of data over DPM storage federation (ALPAMED : South East France T2)
 - Comparison files already on local WN disk scratch or local SE
- By-product : Access efficiency of CPU_only sites to remote storage within
 - Regional distance (< 10 ms RTT)
 - European Data Lake (< 20 ms RTT)
- Calibrated jobs submitted through HC infrastructure
 - Single job reading 1000 events out of 7800 (total file size: 4.4 GB): 10 minute jobs
 - 1 input file prepositioned per location
 - Evaluate direct access performances vs local copy

Beyond ALPAMED

- Add IN2P3-CC CPU/SE in performance matrix (called CC)
- Measure data access from far storages :
 - CERN (2 ms latency from CC)
 - GRIF-LNPHE (6 ms)
 - Freiburg (23 ms Not in LHCONE)
 - o Prague (17 ms)

AOD --> DAOD derivation
Mimic analysis jobs with large IO

CPU efficiency = CPU_time/(CPU_time+IO_time)

- Mean ~80 %: Large IOs --> challenging for network
- Tails at low efficiency :
 - Memory swap
 - Disk heavily accessed

CPU efficiency: Local access (xcheck) Laboratoire d'Annecy de Physique des Particule

LAPP WN access LAPP storage (WN disk or local SE)

CPU eff. : direct access : Close sites

No significant loss of performances (compared to shape width)

CPU eff.: direct access: Far sites

Slight degradation of processing efficiency

TTreeCAche mechanism useful at European Data Lake level

Remaining latency impact

Small tail: Minimal network layers within NREN?

Degradation starts being visible

DPM Storage federation Ops

- Team of site admins operating prod storages: First priority
- Creation of test-bed storage federation
 - No major technical issue to deploy
 - Each site admin deploys its disk servers
 - Head-node managed by hosting site
- Feedback from operation
 - Opportunity for Grid site admins to reinforce collaboration
 - Site admins administered others
 - Shared access to disks but dynamic share of responsibilities to be improved --> Ideas for improvement
 - Share responsibilities as function of time between site admins
 - Tool to centrally deploy new versions

Conclusion

- ATLAS with heavy IO
 - Intelligent root branch filtering : Optimal to read fraction of files
 - Example of efficient recovery for long distance
- Next steps :
 - Add Xcache layer : Benefit from Caching
 - Ensure scalability (1000s jobs) and long term reliability (> 1 hour)
 - Resilience against saturated network
- Operation: Ideas to optimize share of responsibilities

Processing from different sites

Derivation Jobs ($\approx 3MB/s$) - process 500 Events

N. Hartmann : <u>Link</u>

Backup

Simply copy remote files

Indication for possible network limitations : CPPM already planed for network improvement

Connectivity stability: Medium distance

Connectivity stability: Long distance

Time to setup software (backup)

- Still second peak (small impact of global performance)
 - None for CPPM and LAPP
- Renewal of cached files?

LAPP Panda Queue, direct access to input files

CPU eff. : direct access : Close sites

Significant gain within TTreeCAche already for close sites