

Direct CP Violation in the decay $B^+ \rightarrow K^+ \pi^0$ at LHCb

William C. Parker University of Maryland On behalf of the LCHb Collaboration December 1, 2020

LHCb-Paper-2020-040, in preparation

Overview

- Introduction to *B* physics and the $K\pi$ puzzle
- LHCb and neutral particles
- New measurement of $A_{CP}(B^+ \to K^+ \pi^0)$

The CKM Matrix

- CKM matrix describes the interaction of quarks with the weak force
- Inter-generation transitions suppressed
 - Interesting *b* quark properties: long lifetime $\gamma c \tau_B \sim 7 \text{mm}$, particular sensitivity to NP
- <u>Flavor Changing Neutral Currents</u> <u>forbidden to first order</u>

- Single complex phase source of CP asymmetry
 - CP violation requires at least three generations

CP Violation

- Physical laws not invariant under charge conjugation + parity inversion (mirror flip)
- Consequence of interference when a physical process can proceed in different ways
- CP violation in mixing: $B^0 \to \overline{B^0} \neq \overline{B^0} \to B^0$
- Indirect CP violation: asymmetry due to interference between mixing and decay amplitudes
- **Direct CP violation:** $B \rightarrow f \neq \overline{B} \rightarrow \overline{f}$ due to interference in decay amplitudes
 - Requires non-zero relative weak and strong phase between amplitudes

The $B \rightarrow K\pi$ System

- $B^0 \rightarrow K^+\pi^-, B^0 \rightarrow K^0\pi^0,$ $B^+ \rightarrow K^+\pi^0, B^+ \rightarrow K^0\pi^+$
- Dominated by QCD penguin diagrams
 - Suppressed by loop
 - Tree suppressed by V_{ub}
- Different Kπ decays have contributions from different diagrams
- Potentially sensitive to new physics through massive virtual particles in loops

(a) $B \to K\pi$ penguin diagrams

(c) $B \to K \pi^0$ color-suppressed tree diagrams

LHC **Observation of Direct CPV in** *B* **mesons**

A_{CP} and b	oranching	fraction	world	averages	for	the	$B \rightarrow$	$K\pi$	decay	modes.
----------------	-----------	----------	-------	----------	-----	-----	-----------------	--------	-------	--------

	$BF \times 10^{-6}$	Direct A_{CP}	$\sin(2\beta^{eff})$
$B^0 \to K^0 \pi^0$	9.9 ± 0.5	0.01 ± 0.10	0.57 ± 0.17
$B^+ \rightarrow K^0 \pi^+$	23.8 ± 0.8	-0.017 ± 0.016	
$B^0\!\to K^+\pi^-$	19.6 ± 0.5	-0.084 ± 0.004	
$B^+ \! \rightarrow K^+ \pi^0$	12.9 ± 0.5	0.040 ± 0.021	

100

- BaBar and Belle: experiments at e^+e^- colliders devoted to studying *B* mesons
- First observed direct CP violation in *B* mesons in $B^0 \rightarrow K^+ \pi^-$ decays
- Measured branching fractions and CP asymmetries for all $K\pi$ modes

The $K\pi$ Puzzle

- CP asymmetry in $B^0 \rightarrow K^+\pi^-$ and $B^+ \rightarrow K^+\pi^0$ from interference between tree and penguin diagrams
- Expected to be equal from isospin arguments
- Differs by more than 5σ according to current measurements

$$\begin{array}{l} A_{CP}(B^+ \to K^+ \pi^0) - A_{CP}(B^0 \to K^+ \pi^- \\ = 0.124 \pm 0.021 \end{array}$$

The $K\pi$ Puzzle

 $A_{CP}(B^+ \to K^+ \pi^0) - A_{CP}(B^0 \to K^+ \pi^-) = 0.124 \pm 0.021$

• Color-suppressed tree and electroweak penguin diagrams contribute to $K^+\pi^0$ but not $K^+\pi^-$

The $K\pi$ Puzzle Continued

$$A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+})\frac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = A_{CP}(K^{+}\pi^{0})\frac{2B(K^{+}\pi^{0})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0})\frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})}\frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})}\frac{\pi_{0}}{\tau_{+}}$$

- All $K\pi$ CP asymmetries and branching fractions can be ۲ incorporated in more precise equivalence
- Current measurements (<u>HFLAV 2018</u>) predict $A_{CP}(K^0\pi^0) = -0.150 \pm 0.032$, value measured by B factories: 0.01 ± 0.10
- Fits to $K\pi$ observables show some tension
- Can be resolved by enhancement of color-suppressed trees or NP in penguins
- $B^0 \rightarrow K_S^0 \pi^0$ is a key component of Belle II physics program

Buras et al., Eur. Phys. J. C 32 (2003) 45, Phys. Rev. Lett. 92 (2004) 101804, Nucl. Phys. B 697 (2004) 133; S. Baek et al., Phys. Rev. D 71 (2005) 057502, Phys. Lett. B 653 (2007) 249, Phys. Lett. B 675 (2009) 59; M. Gronau, Phys. Lett. B 627 (2005) 82; N. B. Beaudry et al., JHEP01(2018) 074; R. Fleischer et al., Phys. Lett. B 785 (2018) 525

01/12/2020

9

$K\pi$ at LHCb

- $A_{CP}(B^+ \rightarrow K_S^0 \pi^+)$, $A_{CP}(B^+ \rightarrow K_S^0 K^+)$, ratio of branching fractions measured with Run I data
- Most precise measurement of $A_{CP}(B^0 \rightarrow K^+\pi^-)$ with 1.9fb⁻¹ Run II data
 - Also measured A_{CP} in $B_s^0 \to K^+ \pi^-, K^+ K^-$
- Provide additional information about diagrams related to Kπ system by Uspin symmetry
 - First observation of timedependent CP violation in B⁰_s decays

Experimental Status

 \mathcal{A}^{CP} measurements for the $B \to K\pi$ decay modes

	BaBar	Belle	LHCb
$B^0 \rightarrow K^0 \pi^0$	$+0.13 \pm 0.13 \pm 0.03 \ [1]$	$-0.14 \pm 0.13 \pm 0.06$ [2]	
$B^+ \rightarrow K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$ [3]	$-0.011 \pm 0.021 \pm 0.006$ [4]	$-0.022 \pm 0.025 \pm 0.010$ [5]
$B^0 \! ightarrow K^+ \pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$ [6]	$-0.069 \pm 0.014 \pm 0.007$ [4]	$-0.0824 \pm 0.0033 \pm 0.0033$ [7]
$B^+ \rightarrow K^+ \pi^0$	$+0.030 \pm 0.039 \pm 0.010$ [8]	$+0.043 \pm 0.024 \pm 0.002$ [4]	

- LHCb has measured charged pion modes, modes with π^0 only measured at B factories
- $B^+ \rightarrow K^+ \pi^0$ is first analysis of a one-track *B* decay at a hadron collider
- Experimentally challenging
 - No secondary vertex to identify *B* decay
 - Relatively low π^0 efficiency
 - High combinatorial background
- Proof of concept for other modes of similar topology such as $B^0 \to K^0 \pi^0$

The LHCb Detector

The LHCb Detector

- High cross sections for b and c production at the LHC
 - $\sigma_{b\bar{b}} \sim 500 \ \mu b$ at 14 TeV
 - Produced predominantly at high η
- Central detector instrumenting $|\eta| < 2.5$ would instrument 98% solid angle and capture 45% of $b\overline{b}$ pairs
- Instrumenting $2 < \eta < 5$ (~4% solid angle) captures 25% of $b\overline{b}$ pairs produced

Vertex Locator

- Silicon strip detector located • inside the beam pipe, 8mm from beam
- Provides precision information • on charged track position

•
$$\sigma_{IP} = \left(15 + \frac{29}{p_T [\text{GeV}]}\right) \mu m$$

Tracking System

- 4 Tm dipole magnet
- Silicon strip sensors before magnet and in high-occupancy region around beampipe
- Straw tubes for coverage of lower occupancy region
- Provides momentum information for charged tracks
- $\frac{\sigma_p}{p} = 1\%$ at 200 [GeV/c]

01/12/2020

Calorimeter

- Sampling calorimeter with SPD/PS for $e/h/\gamma$ identification
- Measures and triggers on energy deposited by charged and neutral particles
- Only information about neutral particles
- $\frac{\sigma_E}{E} = 1\% + 10\% / \sqrt{E[\text{GeV}]}$

10%/√E[GeV]

Particle Identification

- Ring Imaging Cherenkov Detector measures particle velocity for identification
- Muon MWPC identifies and triggers on muons
- $e \sim 90\%$ at $\sim 5\% e \rightarrow h$ mis-id
- K ~ 95% at ~ 5% $\pi \rightarrow K$ mis-id
- $\mu \sim 97\%$ at $\sim 1-3\% \pi \rightarrow \mu$ mis-id

JINST 3 (2008) S08005, Int.J.Mod.Phys. A30 (2015) 1530022

π^0 Reconstruction

- Neutral pions identified by decay to two photons
- Below $p_T = 3$ GeV photons can be resolved in two separate clusters, at higher energies clusters merge
- Cluster separated into two subclusters centered on highest energy deposits according to expected transverse profile
- Photon separation and invariant mass required to be consistent with π^0
- Merged π^0 :
 - Wider mass resolution
 - + Higher p_T
 - + Reduced combinatorial
- For $B^+ \to K^+ \pi^0$, keep only **merged** π^0 to preserve trigger bandwidth

π^0 at LHCb

- LHCb analyses of 3- and 4-body decays include modes with π^0
- Wider mass resolution, lower efficiency compared to charged-only modes

Trigger Strategy

- Flavor physics results are largely limited by data recorded, rather than beam energy
- Trigger has to cope with high forward occupancy while preserving relatively low-energy b and c physics
- Low-level hardware trigger relies on high E_T/p_T signature from calorimeter or muon detector
- Two step high-level trigger buffers events to disk to perform full reconstruction

$B^+ \to K^+ \pi^0$ in Run I

- Long lifetime $c\tau_B \sim 400 \mu m$ characteristic b signature
- All run I software triggers rely on secondary vertex
- Cannot be reconstructed for $B^+ \rightarrow K^+ \pi^0$ with only one charged track
- Trigger on the presence of an unrelated secondary vertex in the event **(8-11% efficiency)**
- Extremely high combinatorial background: $S/B \sim 10^{-7}$
- 72 ± 26 signal events observed in Run I
- Motivated the development of a dedicated trigger for Run II

01/12/2020

21

Run II Measurement

- Dedicated trigger and event selection
- Fit to determine CP asymmetry
- Corrections and systematics
- Results

Dedicated Trigger: *K*⁺ **IP**

- No secondary vertex, but still take advantage of LHCb's precision tracking
- *K*⁺ should be inconsistent with originating from any primary vertex
- Cut on IP χ^2 (PV), $\Delta \chi^2$ when K^+ is included in the primary vertex fit
- Suppresses background from promptly produced K^+ (unlikely to be B^+ decay product)

K⁺ DOCA: The Key Variable

- K⁺ should be consistent with originating from the trajectory of the B^+
- Add K^+ and π^0 momenta to form B^+ trajectory
 - Define π^0 momentum as pointing from interaction point to calorimeter energy deposit
- Cut on significance of distance of closest approach (DOCA) of K^+ and B^+
- Suppresses background from combinatorial K^+ and π^0

24

Trigger Output

B

- Dedicated software trigger takes advantage of $IP\chi^2(PV)$ and DOCA- χ^2 variables, B^+ invariant mass window and kinematic cuts of final selection
- S/B after trigger still $\sim 3.3 \times 10^{-4}$
- Dominant background comes from random combinations of K^+ and π^0
- Below the *B* mass $B \to K^+ \pi^0 X$ is also a significant background
 - Similar event topology to signal

25

Multivariate Analysis

- Train Boosted Decision Trees to reject background efficiently
- Two BDTs trained against different backgrounds:
 - Upper mass sideband $M(K^+\pi^0) > 5700 \text{ MeV}/c^2$ (combinatorial)
 - Lower mass sideband $M(K^+\pi^0) < 4860 \text{ MeV}/c^2 \frac{7}{3}$ (partially reconstructed)
 - Both trained on simulated signal
- Split and cross-validated for best statistics without overtraining
- Same set of inputs for both BDTs:
 - IP χ^2 (PV) and DOCA- χ^2
 - Kinematics (restricted to prevent reconstructing B⁺ mass)
 - Isolation variables (next slides)

Isolation Variables: Vertex

- Events with other tracks pointing back to B candidate are unlikely to be $B^+ \rightarrow K^+ \pi^0$ decays
- Combine each track in the event individually with *K*⁺ to form vertices

Isolation Variables: Cone

- Consider tracks in cone of $\Delta R = 1.7$ around B^+ ۲
- Define cone p_T asymmetry $A(p_T) \equiv \frac{p_T(B) p_T(\text{cone})}{p_T(B) + p_T(\text{cone})}$ ullet

- BDTs trained on simulated signal and sideband data background
- Isolation variables depend on track multiplicity
- Corrected by comparing $B^0 \rightarrow K^+\pi^-$ data and simulation •
 - Good signal efficiency and purity

Final Event Selection

- Find 2D cut on BDT outputs that maximizes $\epsilon_{MC}/\sqrt{S+B}$
- S/B improved by factor of ~300
- Two more background categories:
- $B^+ \rightarrow \pi^+ \pi^0$ where π^+ is misidentified as K⁺
- Peaking partial reco. e.g. $B^{+/0} \rightarrow (K^{*+/0} \rightarrow K^{+}\pi^{0/-})\pi^{0},$ $B \rightarrow K^{+}(\rho^{-} \rightarrow \pi^{-}\pi^{0})$
 - K^{*}/ρ polarization in B rest frame results in doublepeaked mass structure

29

Invariant Mass Fit

- Fit to mass distribution separated by B[±]
- Further separate by magnet polarity (not shown) to correct for detector effects
- Shape parameters fixed between sub-samples, signal and background yields float independently

$$A_{raw} = \frac{N(B^{-} \to K^{-} \pi^{0}) - N(B^{+} \to K^{+} \pi^{0})}{N(B^{-} \to K^{-} \pi^{0}) + N(B^{+} \to K^{+} \pi^{0})}$$

- $A_{raw} = 0.005 \pm 0.022$ (Magnet Up), 0.019 \pm 0.021 (Magnet Down)
- ~16,500 signal events (200x Run I)

LHCP Production and Detection Asymmetry

$$A_{CP}(B^+ \to K^+ \pi^0) = A_{raw}(B^+ \to K^+ \pi^0) - A_{prod.}^B - A_{det.}^K$$

- LHC is a proton-proton collider $\rightarrow B^{\pm}$ production asymmetry
- LHCb is made of matter $\rightarrow K^{\pm}$ detection asymmetry
- Same order of magnitude as physical CP asymmetry
- Can measure the same combination of effects in decay $B^+ \to (J/\psi \to \mu^+\mu^-)K^+$
 - π^0 and J/ψ own antiparticles no asymmetry
 - Match K^+ selection to signal trigger, kinematics, particle identification
 - Weight $p/p_T(B^+/K^+)$ distributions to signal kinematics

Prod./Det. Asymmetry Correction

- Charged tracks and reconstructible J/ψ mass make selection clean (99%)
- Follow same procedure as signal to extract raw asymmetry
- CP asymmetry in $B^+ \rightarrow J/\psi K^+$ known precisely $(0.002 \pm 0.003, PDG)$
- Remainder attributed to same combination of B production and K detection as in $B^+ \rightarrow K^+ \pi^0$ measurement

Systematic Uncertainties

Table 1: Systematic uncertainties on $A_{CP}(B^+ \to K^+ \pi^0)$.

- Assess systematics on fit variations
 - Signal and background shapes
 - Parameters fixed to simulation/physical values
- Dominant uncertainty: modeling of signal tails in the fit
- Small statistical uncertainty in determining production/detection asymmetry
- Effect of weighting used to estimate any residual kinematic differences in $B^+ \rightarrow K^+\pi^0$ and $B^+ \rightarrow J/\psi K^+$ asymmetries

Fit Component	Systematic	Value
Combinatorial bkg.	Shape	0.0013
Partial Reco. bkg.	Shape	0.0013
Peaking Partial Reco. bkg.	Shape Offset Resolution	$0.0012 \\ 0.0013 \\ 0.0014$
$B^+ \to \pi^+ \pi^0$	Yield CP Asymmetry	$0.0013 \\ 0.0015$
Signal modeling	Shape	0.0043
Production/detection asymmetry	stat. weights	$0.0021 \\ 0.0005$
	Multiple candidates	0.0013
Sum in qu	0.0061	
Statistical	0.015	

A_{CP} Determination

• Correcting and averaging Magnet Up and Magnet Down results and adding systematic uncertainties in quadrature we find

 $A_{CP}(B^+ \to K^+ \pi^0) = 0.025 \pm 0.015(\text{stat.}) \pm 0.006(\text{syst.}) \pm 0.003(\text{ext.})$

- Result is consistent between years, magnet polarity, and bins of kaon momentum
- Most precise measurement of $A_{CP}(B^+ \rightarrow K^+ \pi^0)$
- Combining with world average $A_{CP}(B^+ \rightarrow K^+\pi^0) = 0.031 \pm 0.013$

Status of the $\mathbf{B} \to K\pi$ System

Table 15: \mathcal{A}^{CP} measurements for the $B \to K\pi$ decay modes

	BaBar	Belle	LHCb
$B^0 \to K^0 \pi^0$	$+0.13 \pm 0.13 \pm 0.03 [1]$	$-0.14 \pm 0.13 \pm 0.06$ [2]	
$B^+ \rightarrow K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$ [3]	$-0.011 \pm 0.021 \pm 0.006$ [4]	$-0.022 \pm 0.025 \pm 0.010$ [5]
$B^0 \! ightarrow K^+ \pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$ [6]	$-0.069 \pm 0.014 \pm 0.007$ [4]	$-0.0824 \pm 0.0033 \pm 0.0033$ [7]
$B^+ \! \rightarrow K^+ \pi^0$	$+0.030 \pm 0.039 \pm 0.010$ [8]	$+0.043 \pm 0.024 \pm 0.002$ [4]	$+0.024 \pm 0.015 \pm 0.006 \pm 0.003$

LHCb-Paper-2020-040

- $A_{CP}(B^+ \to K^+\pi^0) A_{CP}(B^0 \to K^+\pi^-) = 0.115 \pm 0.014$, non-zero at 8.2 σ (previously 0.124 \pm 0.021, 5.9 σ)
 - LHCb results: $A_{CP}(B^+ \to K^+ \pi^0) A_{CP}(B^0 \to K^+ \pi^-) = 0.106 \pm 0.017$
- Updated sum rule prediction for $A_{CP}(K^0\pi^0)$: -0.138 ± 0.025 , non-zero at 5.5σ (previously -0.150 ± 0.032 , 4.7σ)

$$A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+})\frac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = A_{CP}(K^{+}\pi^{0})\frac{2B(K^{+}\pi^{0})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0})\frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})}$$

LHCb Upgrades

- $\mathcal{L} = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$
- 9 fb⁻¹ integrated luminosity
- $\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
- 50 fb⁻¹ integrated luminosity
- Introducing software-only trigger
- Replacing tracking detectors and detector electronics

- $\mathcal{L} = 2 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- 300 fb⁻¹ integrated luminosity
- Adding fast timing
- Replacing VELO, calorimeter
- Still in development, many possible upgrades

$B^+ \rightarrow K^+ \pi^0$ Upgrade Prospects

 $A_{CP}(B^+ \to K^+\pi^0) = 0.025 \pm 0.015(\text{stat.}) \pm 0.006(\text{syst.}) \pm 0.003(\text{ext.})$

- Assume simple scaling with luminosity
- Statistical uncertainty with 50fb^{-1} : ± 0.005
 - Upgrade I: Expect improved efficiency from trigger but more difficult selection due to higher occupancy
- With 300fb^{-1} : ± 0.002
 - Upgrade II: Timing and improved granularity in ECAL entirely new measurement
- Dominant sources of systematic uncertainty
 - Modeling of signal tails, can improve with tighter event selection
 - Uncertainty on raw and CP asymmetry in $B \rightarrow J/\psi K^+$ currently statistically limited
- Current prediction for $A_{CP}(K^0\pi^0)$: -0.138 ± 0.025
 - Belle II prospective uncertainty: ± 0.018 with $50ab^{-1}$ (Phys. Rev. D 78, 111501(R))

Conclusion

- A measurement of direct CP violation in $B^+ \rightarrow K^+ \pi^0$ decays has been performed
 - Most precise to date
 - Confirms and strengthens the $K\pi$ puzzle
 - Paper in preparation: LHCb-Paper-2020-040
- The $B \rightarrow K\pi$ system has the potential to indirectly reveal new physics
- First measurement of a single track *B* decay at the LHC
 - An example of LHCb's potential in modes with neutral particles
- Similar trigger in place for $B^0 \to K^0 \pi^0$
- More to come in Run III and beyond

Backup

Consistency by Year

- Consistent between years and magnet polarities
- Additional checks: Binning by kaon p_T and magnet polarity, allowing shape parameters to vary between charges and magnet polarities
- Raw asymmetry consistent in all cases

$B^+ \rightarrow K^+ \pi^0$ Trigger

Variables	Requirements
$K^+ p_{\rm T}$	$> 1200 \mathrm{MeV}/c$
$K^+ p$	$> 12000 \mathrm{MeV}/c$
K^+ IP χ^2 PV	> 50
K^+ PIDk	> -0.5
$\pi^0 \; p$	$> 5000 \mathrm{MeV}/c$
$\pi^0 \; p_{ m T}$	$> 3500 \mathrm{MeV}/c$
π^0 mass	$76.0 < m < 195.0 {\rm MeV}/c^2$
$K^+ + \pi^0 p_{\mathrm{T}}$	$> 6500 \mathrm{MeV}/c$
$B^+ \ p_{ m T}$	$> 5000 \mathrm{MeV}/c$
B^+ mass	$4000 < m < 6200 {\rm MeV}/c^2$
B^+ MTDOCA χ^2	< 8

Invariant Mass Fit

- Signal
 - Crystal Ball function (low mass tail), and Gaussian with exponential tail (high mass tail)
 - Tail shape parameters fixed to values from simulation
- Combinatorial background
 - Exponential
- Partially reconstructed background
 - Gaussian tail
- Partially reconstructed peaking backgrounds
 - Parabolic × Gaussian function (JHEP 06 (2020) 058)
 - Endpoints fixed to $B^+ \rightarrow (K^{*+} \rightarrow K^+ \pi^0) \pi^0$ kinematically allowed values
 - Mass shift fixed to (signal mean $M(B^+)$)
 - Resolution fixed to signal resolution
 - Rel. height fixed to simulation values (insensitive)
- $B^+ \to \pi^+ \pi^0$
 - Gaussian with exp. tail convoluted with π^0 res. Gaussian
 - Shape parameters and offset fixed to simulation values
 - Yield fixed to 2.4% of signal yield 07/10/2020

Systematics – Fit Variations

- Signal
 - Crystal Ball + Gaussian w/tail \rightarrow single Gaussian
- Combinatorial background
 - Exponential \rightarrow linear
- Partially reconstructed background
 - Gaussian tail \rightarrow Argus cut off at $M(B 2\pi)$
- Partially reconstructed peaking backgrounds
 - Parabolic × Gaussian function \rightarrow Argus cut off at $M(B - \pi)$
 - Mass shift fixed to (signal mean $M(B^+)) \rightarrow$ floating
 - Resolution fixed to signal resolution \rightarrow floating
- $B^+ \rightarrow \pi^+ \pi^0$
 - Yield fixed to 2.4% of signal yield \rightarrow removed from fit
 - CP asymmetry fixed to $0 \rightarrow$ fixed to $\pm 1\sigma$ of measured value
- Events with multiple candidates removed from fit

