
LHC & Tevatron m_w combination

Chris Hays, Oxford University for the Tevatron + LHC m_W combination group

LHC EW WG meeting 8 October 2020

Motivation & Organization

First LHC mw measurement motivates new evaluation of correlations between experiments

Opportunity to update theoretical treatment

Provide more information to facilitate future global combinations

A working group has been initiated with a contact from each experiment D0: Boris Tuchming, CDF: Chris Hays ATLAS: Maarten Boonekamp, CMS: Josh Bendavid

Determine correlations between each experiment's theoretical treatment Harmonize central PDF and uncertainty Combination will include ATLAS Run 1 and Tevatron Run 2 measurements

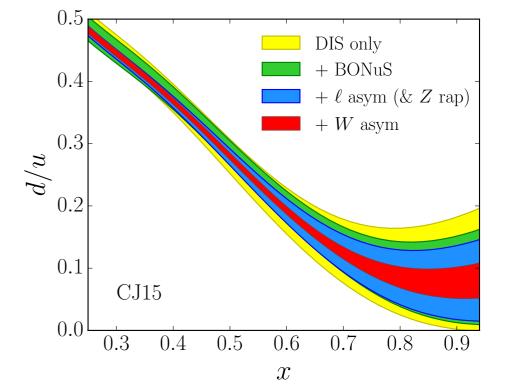
Aim to update modelling to harmonize theory treatment in future combinations

Strategy

Subdominant theory uncertainties: estimate correlations

Boson transverse momentum and decay angles uncorrelated Some correlations in electroweak radiation, small overall uncertainty

Dominant (PDF) uncertainty: evaluate correlations using detector emulations

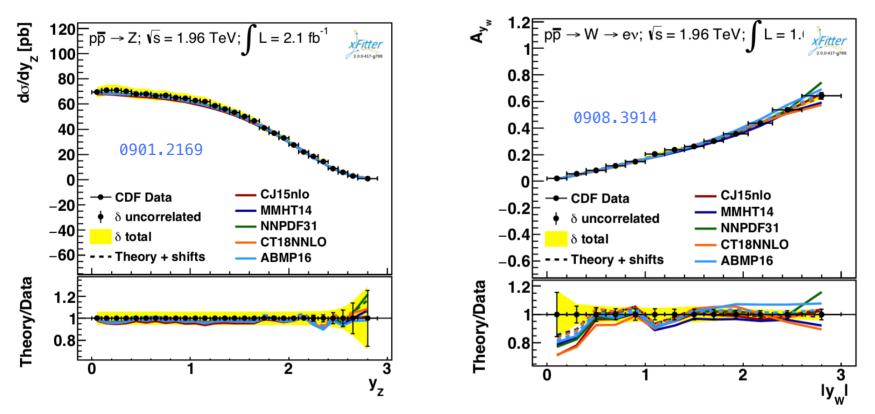

A combination setup has been validated by comparing to each of the experiment's full simulations

Use best available NNLO PDF set for this measurement to obtain central value and uncertainty

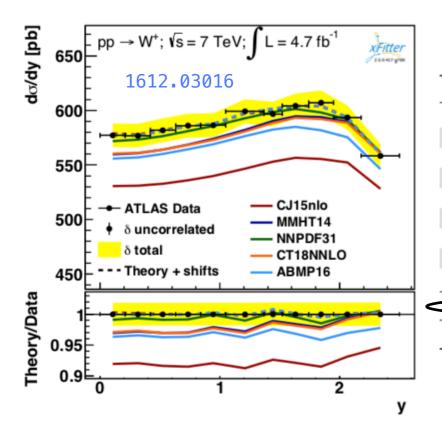

Also provide information from other state-of-the-art PDFs and from PDFs used in measurements

Tevatron

Measurement	MMHT2014	CJ15	NNPDF3.1	CT18
CDF II <i>e</i> asym. (0.2 fb^{-1}) [5]	×	\checkmark	×	\checkmark
CDF II W asym. (1 fb ⁻¹) [6]	\checkmark	\checkmark	×	×
D0 II μ asym. (0.3 fb ⁻¹) [7]	×	×	×	\checkmark
D0 II μ asym. (7.3 fb ⁻¹) [8]	\checkmark	\checkmark	\checkmark	×
D0 II e asym. (0.75 fb^{-1}) [9]	\checkmark	×	×	×
D0 II e asym. (9.7 fb^{-1}) [10]	×	\checkmark	\checkmark	\checkmark
D0 II W asym. (9.7 fb^{-1}) [11]	×	\checkmark	×	×


D0 measurements

Dataset		CJ15nlo	MMHT14	NNPDF31	CT18NNLC	O ABMP16
D0 W el nu lepton asymm	etry ptl 25 GeV	32 / 13	24/13	19 / 13	17 / 13	23 / 13
Correlated χ^2		8.7	11	7.4	4.6	4.1
Log penalty χ^2		+0.00	+0.00	+0.00	+0.00	+0.00
Total χ^2 / dof	<	41/13	35 / 13	27 / 13	22 / 13	27 / 13
χ^2 p-value		0.00	0.00	0.01	0.05	0.01
Dataset	CJ15nlo	MMHT14	NNPD	F31 C	CT18NNLO	ABMP16
D0 Z rapidity 2007	22 / 28	23 / 28	22 / 28	2	2 / 28	23 / 28
Correlated χ^2	0.0097	0.14	0.10	0	.041	0.061
Log penalty χ^2	+0.01	-0.07	+0.10	+	-0.09	-0.17
Total χ^2 / dof	22 / 28	23 / 28	22 / 28	2	2 / 28	23 / 28
χ^2 p-value	0.76	0.74	0.76	0	.79	0.75


comparisons from Simone Amoroso

CDF measurements

Dataset	CJ15nlo	MMHT14	NNPDF31	CT18NNLO	ABMP16
CDF W asymmetry 200	9 18/13	12/13	11 / 13	13 / 13	17 / 13
Correlated χ^2	1.6	1.7	2.6	2.9	6.5
Log penalty χ^2	-0.00	-0.00	-0.00	-0.00	-0.00
Total χ^2 / dof <	19/13	14/13	13 / 13	16/13	23 / 13
χ^2 p-value	0.11	0.37	0.43	0.25	0.04
Dataset	CJ15nlo	MMHT14	NNPDF31	CT18NNLO	ABMP16
CDF Z rapidity 2010	29 / 28	30 / 28	25 / 28	27 / 28	30 / 28
Correlated χ^2	1.5	0.99	1.7	0.49	0.69
Log penalty χ^2	-1.16	-0.63	-0.44	-0.60	-0.90
Total χ^2 / dof	30 / 28	30 / 28	26 / 28	27 / 28	30 / 28
χ^2 p-value	0.37	0.36	0.55	0.53	0.36

ATLAS measurements

Dataset	CJ15nlo	MMHT14	NNPDF31	CT18NNLO	ABMP16
ATLAS low mass Z rapidity 2011	26/6	18/6	14/6	12/6	21/6
ATLAS peak CC Z rapidity 2011	52/12	21/12	12 / 12	16/12	24/12
ATLAS peak CF Z rapidity 2011	16/9	11/9	11/9	10/9	9.2/9
ATLAS high mass CC Z rapidity 2011	7.7/6	6.1/6	5.8/6	5.9/6	6.1/6
ATLAS high mass CF Z rapidity 2011	4.6/6	5.5/6	4.7/6	4.8 / 6	4.5/6
ATLAS W- lepton rapidity 2011	17/11	8.4/11	8.7/11	9.1/11	10/11
ATLAS W+ lepton rapidity 2011	16/11	11/11	11 / 11	10/11	13/11
Correlated χ^2	118	50	31	40	50
Log penalty χ^2	-9.09	-3.32	-2.45	-3.66	-4.22
lotal χ^2 / dof	247 / 61	127 / 61	95 / 61	104 / 61	134/61
χ^2 p-value	0.00	0.00	0.00	0.00	0.00

Best overall Tevatron + LHC W & Z description with NNPDF3.1 and CT18 (NNLO)

Event generation and simulation

Uncertainties and correlations estimated using Powheg W_EW_BMNNP + Photos

No EW corrections or QCD showering

p_T^W distribution for central PDF smeared and weighted to match that of each experiment

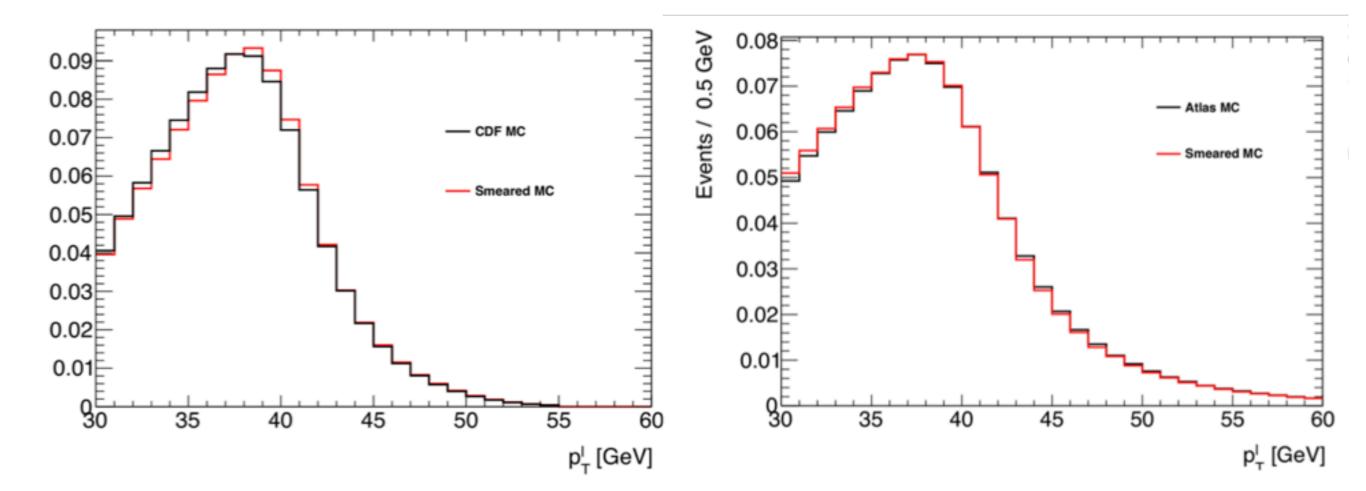
Use internal reweighting to switch eigenvectors

Validate uncertainties by comparing to Powheg + Pythia, Madgraph (N)LO + Pythia, and Pythia

Validate central shifts with RESBOS, Powheg + Pythia, Madgraph NLO + Pythia

Also use DYTurbo to validate W boson rapidity

Detector response modelled with parameterized simulations


e.g. for CDF recoil response:

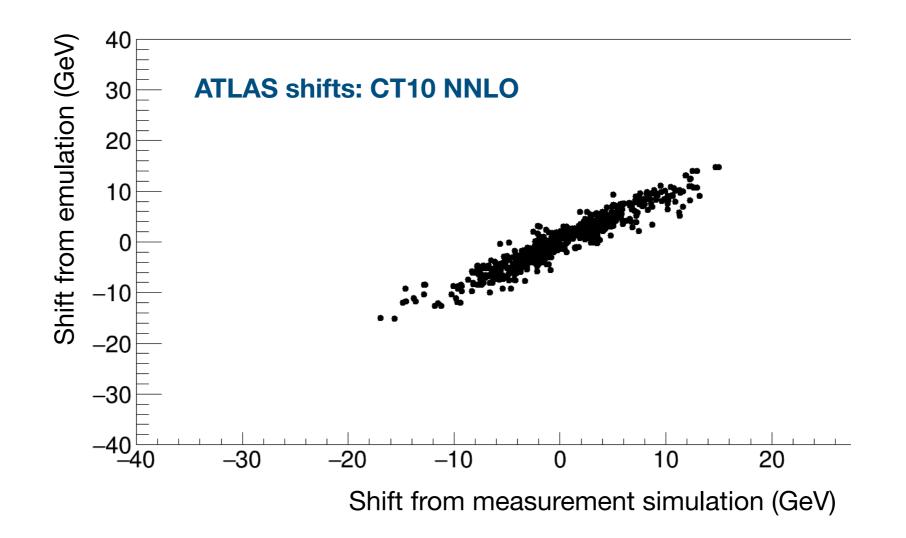
$$\begin{split} R(p_{\rm T}^W) &= 0.645 \times \log(5.1 \times p_{\rm T}^W + 8.2) / \log(5.1 \times p_{\rm T}^{\rm max} + 8.2), \\ \sigma_{u_{\rm T}}(p_{\rm T}^W) &= 0.82 \times \sqrt{p_{\rm T}^W} \text{ GeV}, \\ \sigma_{u_{\phi}}(p_{\rm T}^W) &= 0.306 + 0.021 \times (9.4 - p_{\rm T}^W) \text{ rad}; \end{split} \qquad \qquad \sigma_{u_{\phi}}(p_{\rm T}^W) &= 0.144 + 0.0048 \times (24.5 - p_{\rm T}^W) \text{ rad}. \quad \text{for } p_{\rm T}^W > 15 \text{ GeV} \end{split}$$

Validate by comparing to each experiment's simulation

Also compare to independent parameterized CDF simulation

Fit distributions

Detector modelling sufficient for determining PDF corrections and uncertainties

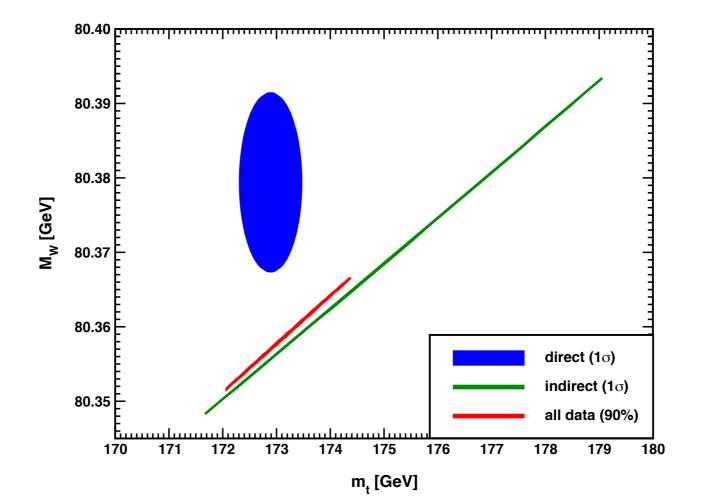

comparisons from Nansi Andari

Combination validation

Performed BLUE combinations using published information

	Tevatron	Tevatron+LEP
Published	80387 + 16	80385 + 15
Validation	80388 + 16	80385 + 15 (actually 14.47)

Validation


Shift due to changing PDFs in each ATLAS measurement region

Summary

Work ongoing to produce official Tevatron + LHC m_w combination

Procedures established and validated

Validating results (uncertainty correlations, shifts of central values)

Backup

Electroweak corrections

NLO EW calculation

Each experiment uses the PHOTOS generator to model final-state photon radiation **CDF** applies a 4 ± 2 MeV correction from HORACE (matches single-photon emission to the NLO calculation) *Additional uncertainty taken from HORACE vs PHOTOS validation*

ATLAS & D0 have no correction

ATLAS uses PHOTOS to calculate the effect, takes as an uncertainty D0 takes an uncertainty based on a comparison to the NLO calculation

Harmonization

Use PHOTOS with NLO correction for the measurement (residual uncertainty < 1 MeV)

Uncertainty	CDF	D0	ATLAS	CDF-ATLAS	CDF-D0	D0-ATLAS
NLO calculation	>4 (4)	5(5)	2.5(3.3)	0%	0%	100%
Photon y cutoff	2(2)	2(1)			100%	
FSR e^+e^-	1(1)		0.8(3.6)	0%		
Total	4(4)	7(7)	2.6(4.9)			

Electrons m_T (p_T) fit

Uncertainty	CDF	ATLAS
NLO calculation	4(4)	2.5(3.5)
Photon y cutoff	2(2)	
$FSR \ e^+e^-$	1(1)	0.8(3.6)
Total	4(4)	2.6(5.6)

Muons m_T (p_T) fit

Electroweak corrections

Photon energy threshold in PHOTOS

CDF changes threshold from 0.4 MeV to 4 MeV to estimate uncertainty D0 changes threshold from from 10 MeV to 800 MeV to estimate uncertainty ATLAS takes no uncertainty

Harmonization

Use a common threshold and variation

:	Uncertainty	CDF	D0	ATLAS	CDF-ATLAS	CDF-D0	D0-ATLAS
	NLO calculation	4(4)	5(5)	2.5(3.3)	0%	0%	100%
<	Photon y cutoff	2(2)	2(1)			100%	
	$FSR \ e^+e^-$	1(1)		0.8(3.6)	0%		
	Total	4(4)	7(7)	2.6(4.9)			

Electrons m_T (p_T) fit

Uncertainty	CDF	ATLAS
NLO calculation	4(4)	2.5(3.5)
Photon y cutoff	2(2)	
$FSR e^+e^-$	1(1)	0.8(3.6)
Total	4(4)	2.6(5.6)

Muons m_T (p_T) fit

Electroweak corrections

<u>e+e-</u> radiation

CDF applies a splitting function to PHOTOS radiation with residual uncertainty ATLAS takes an uncertainty based on PHOTOS and WINHAC D0 does not consider

Harmonization

Use PHOTOS to apply correction

:	Uncertainty	CDF	D0	ATLAS	CDF-ATLAS	CDF-D0	D0-ATLAS
	NLO calculation	4 (4)	5(5)	2.5(3.3)	0%	0%	100%
	Photon y cutoff	2(2)	2(1)			100%	
($FSR \ e^+e^-$	1(1)		0.8(3.6)	0%		
	Total	4 (4)	7(7)	2.6(4.9)			

Electrons m_T (p_T) fit

Uncertainty	CDF	ATLAS
NLO calculation	4(4)	2.5(3.5)
Photon y cutoff	2(2)	
$FSR e^+e$	1(1)	0.8(3.6)
Total	4(4)	2.6(5.6)

Muons m_T (p_T) fit

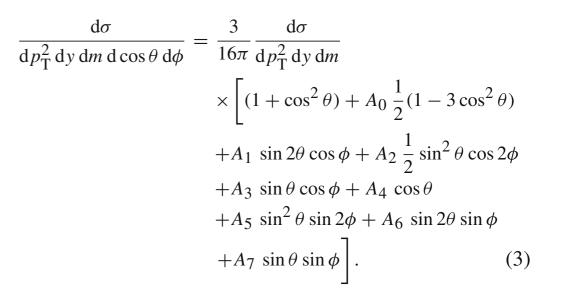
W boson p_T distribution

CDF & D0 use the RESBOS model (NNLO + NNLL inclusive accuracy) Currently no uncertainty on the model, only statistical uncertainty on the parameters from Z data

ATLAS uses the PYTHIA parton shower model Statistical uncertainty from PS tune Additional uncertainty due to W production from heavy-flavour quarks

Harmonization Check uncertainty for heavy-flavour production at the Tevatron

Fundamentally different approaches to describing data (PS vs fixed-order + resummed calculations) Default models cannot be harmonized


W boson decay angles

CDF compares angular coefficients between RESBOS and a fixed-order NLO W+jet calculation Coefficients agree at a level corresponding to 3 MeV on the W boson mass

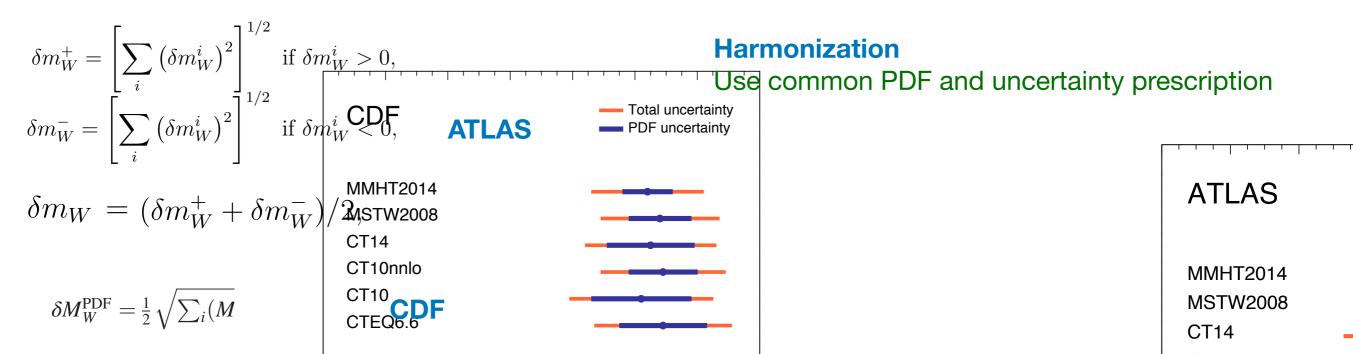
ATLAS takes an uncertainty based on measurement in Z data

Harmonization

Use common model and take theoretical uncertainty

PDF uncertainties

Experiments use different PDFs for central values and uncertainties


	Published CTEQ6.6 [†]	($\frac{\text{Published}}{\text{CTEQ6.6}^{\dagger}},$		$\begin{array}{c} \text{Published} \\ \text{T10nnlo}^{\dagger\$} \end{array}$
Μ	$STW2008^{\S}$		$CTEQ6.1^{\S}$	Central value	80 370
Central value	80 387	Central value	80 367	Stat.	7
Stat.	12	Stat.	13		1
Exp. syst.	10	Exp. syst.	18	Exp. syst.	11
QCD, QED	6	QCD, QED	7	QCD, QED	10
PDF	10	PDF	11	PDF	9
Total	19	Total	26	Total	19

CDF

D0

ATLAS

Also differences in uncertainty calculations

