Mixed QCDxEW corrections for Drell-Yan processes

Federico Buccioni

Rudolf Peierls Centre for Theoretical Physics
University of Oxford

LHC EW Working Group General Meeting

Outline

Mixed QCDxEW corrections for Drell-Yan processes

complexities and approximations

first results for the off-shell case

Mixed QCDxEW corrections in the resonance region

motivations and simplifications

recent progress: inclusive cross section and differential distributions.

Conclusions and outlook

Mixed QCDxEW to Drell-Yan processes: why it is hard

The complete calculation of the mixed QCDxEW corrections for a fully off-shell dilepton system involve several technical complexities:

Amplitudes/Integrals

Two-loop integrals involving several energy scales

Scattering amplitudes not available yet

Recent developments:

[Bonciani, Di Vita, Mastrolia, Schubert 1604.08581] [Heller, von Manteuffel, Schabinger 1907.00491] [Mehedi Hasan, Schubert 2004.14908]

Subtraction of IR singularities

Complex infrared structure of the amplitude

Recent developments:

[Delto, Jaquier, Melnikov, Röntsch 1909.08428] [Cieri, De Florian, Der, Mazzitelli 2005.01315] [Buonocore, Grazzini, Tramontano 1911.10166]

Fully off-shell case with charged leptons not available yet

Available approximations to full NNLO QCDxEW: PS

NLOEW and QED multiple photon corrections within native NLO and QCD Parton Shower in POWHEG BOX [Balossini et al. 0907.0276, Barze' et al. 1302.4606]

NLO QCD and EW + PS included into a single generator. Made available both for NCDY (Z) and CCDY (W)

QCDxQED corrections to off-shell NCDY: $Z \rightarrow \nu \bar{\nu}$

Computation of the QCDxQED corrections to fully off-shell NCDY using the qT subtraction formalism [Cieri, De Florian, Der, Mazzitelli 2005.01315]

QCDxQED effects present only in IS

This takes care of IR divergencies of IS state type (regardless the Z decay)

First step towards extension of qT subtraction to massive charged FS leptons

General comment: corrections are small (below 1%) however strongly dependent on the kinematics (phase-space and cuts)

Comparison of full QCDxQED vs factorised approximation

$$d\Delta^{(i,j)} = d\sigma^{(i,j)}/d\sigma^{(0,0)}$$

$$d\sigma_{\text{approx}}^{(1,1)} = d\sigma^{(0,0)} d\Delta^{(1,0)} d\Delta^{(0,1)}$$

Factorised approximation generally not a good approximation (at least in this case) Discrepancies between full QCDxQED and factorisaion enhanced at differental level

QCDxEW corrections to off-shell DY: $O(N_f a_s a)$ contribution

Mixed QCDxEW corrections to off-shell W and Z production coming from closed fermion loops [Dittmajer, Schmidt, Schwarz 2009.02229]

Gauge-invariant subset of mixed QCDxEW corrections. It can be investigated on its own

 $O(N_t \alpha_s \alpha)$ contribution is sufficient for the generalisation of the complex mass scheme for the complete $O(\alpha_s \alpha)$ corrections

General comment: in regions dominated by the resonance corrections are small $O(1\%_0)$. They increase to O(1-2%) in off-shell regions

Federico Buccioni

Drell-Yan at the resonace region: can we simplify it?

Resonance region relevant for EW precision studies at the LHC.

Moreover: remarkable technical simplification wrt fully off-shell case. One can work in the narrow width approximation [Fadin, Khoze, Martin hep-ph/9309234]

$$\sigma = \operatorname{prod} \times \operatorname{dec} + \mathcal{O}\left(\frac{\Gamma}{M}\right) \blacktriangleleft$$

The pole approximation [Stuart '91] well suited for describing (mixed gcd-) electroweak effects near the resonance region

[Dittmaier, Huss, Schwinn. 1403.3216]

IS-FS non-factorizable contributions subdominant in the resonance region. Phenomenologically negligible

[Dittmaier, Huss, Schwinn. 1511.08016]

Dominant effects from IS-FS factorizable contributions. Authors consider initial-final and final-final.

Comparison of IS-FS correction with NLO QCD (IS) x QED PS (FS). Generally good agreement

(one of the) Outcome of the study:
Mixed QCDxEW corrections can have an
impact as 14 MeV in the extraction of the W mass.

Drell-Yan at the resonace region: can we simplify it?

Resonance region relevant for EW precision studies at the LHC.

Moreover: remarkable technical simplification wrt fully off-shell case. One can work in the narrow width approximation [Fadin, Khoze, Martin hep-ph/9309234]

$$\sigma = \operatorname{prod} \times \operatorname{dec} + \mathcal{O}\left(\frac{\Gamma}{M}\right) \blacktriangleleft$$

The pole approximation [Stuart '91] well suited for describing (mixed gcd-) electroweak effects near the resonance region

[Dittmaier, Huss, Schwinn. 1403.3216]

IS-FS non-factorizable contributions subdominant in the resonance region. Phenomenologically negligible

[Dittmaier, Huss, Schwinn. 1511.08016]

Dominant effects from IS-FS factorizable contributions. Authors consider initial-final and final-final.

Comparison of IS-FS correction with NLO QCD (IS) x QED PS (FS). Generally good agreement

(one of the) Outcome of the study:
Mixed QCDxEW corrections can have an
impact as 14 MeV in the extraction of the W mass.

OXFORD

Complete QCDxEW corrections to on-shell Z: fully inclusive XS

$$\sigma_{\text{tot}} = \int d\sigma$$

$$d\sigma = d\sigma^{\text{LO}} + \sum_{i,j} \frac{\alpha_s^i}{2\pi} \frac{\alpha^j}{2\pi} \delta \sigma^{i,j} = d\sigma^{\text{LO}} + \sum_{i,j} d\sigma^{(i,j)}$$

NNLO QCDxQED corrections to inclusive Z obtained through "abelianisation" [De Florian, Der, Fabre 1805,12214] of NNLO QCD [Hamberg, Matsuura, van Neerven '90]

NNLO QCDxEW corrections to inclusive Z production: $q \overline{q} \to Z$ channel [Bonciani, F.B, Rana, Triscari, Vicini 1911.06200]

Fully inclusive cross section for the production of an on-shell Z boson [Bonciani, F.B. Rana, Vicini 2007,06518]

Fully analytic computation of the amplitudes and of the required loop and phase-space integrals. Important benchmark for Monte Carlo calculations

In the qq → qq QCDxEW interference effects which do not show up in QCDxQED

UNIVERSITY OF OXFORD

Complete QCDxEW corrections to on-shell Z: fully inclusive XS

Results presented here have been computed in the 4FS (massive b-quarks, no b pdf)

$$A_1 = \sigma^{\mathrm{LO}} + \sigma^{(1,0)} + \sigma^{(2,0)} \qquad \longleftarrow \qquad \text{Computed using NNPDF31_nnlo_as_0118_nf_4} \quad \longrightarrow \quad \text{Pure NNLO QCD result}$$

$$B_1 = \sigma^{LO} + \sigma^{(1,0)} + \sigma^{(2,0)}$$

$$B_2 = \sigma^{\text{LO}} + \sigma^{(1,0)} + \sigma^{(2,0)} + \sigma^{(0,1)}$$

$$B_3 = \sigma^{\text{LO}} + \sigma^{(1,0)} + \sigma^{(2,0)} + \sigma^{(0,1)} + \sigma^{(1,1)}$$

$$B_{3,\gamma} = \sigma^{\text{LO}} + \sigma^{(1,0)} + \sigma^{(2,0)} + \sigma^{(0,1)} + \sigma_{\gamma}^{(1,1)}$$

$\mu_R = \mu_F = M_Z$	(results expressed in pb)
-----------------------	---------------------------

order	G_{μ}	$\alpha(0)$	$\delta_{G_{\mu}-\alpha(0)}$ (%)
A_1	55787	53884	3.53
B_1	55651	53753	3.53
B_2	55501	55015	0.88
$\frac{B_2}{B_3^{\gamma}}$	55516	55029	0.88
B_3	55469	55340	0.23

$$\alpha_0$$
 $(\alpha(0),M_Z,M_W)$ and G_μ (G_μ,M_Z,M_W) input schemes

Conservative estimate EW input scheme uncertainty

Reduction of uncertainty related to EW input scheme

7-pt
$$\mu_{\text{R}}$$
- μ_{F} scale variation: $B_3 = 55469^{+0.65\%}_{-1.01\%} \, \mathrm{pb}$

 B_3 vs $A_1 \sim -0.57$ % For a thourough assessment of theory uncertainty at this precision level, N3LO QCD corrections need to be considered as well

Mixed QCDxEW to on-shell Z/W production: going differential

Complete calculation of mixed QCDxEW corrections at the differential level to on-shell V-boson production at the LHC.

Z [F.B., Caola, Delto, Jaquier, Melnikov, Röntsch 2005.10221] and W [Behring, F.B., Caola, Delto, Jaquier, Melnikov, Röntsch 2009.10386]

$$d\sigma_{pp\to\ell_1\ell_2} = Br(V \to \ell_1\ell_2) d\sigma_{pp\to V} \frac{d\Gamma_{V\to\ell_1\ell_2}}{\Gamma_{V\to\ell_1\ell_2}}$$

Main (technical) aspects of the calculations:

- Calculation of 2-loop form factors: agreement with results available from the literature for the Z [Kotikov, Kuhn, Veretin hep-ph/0703013] and new results for the W. Computation performed for arbitrary EW gauge bosons masses.
- One-loop real-virtual integrals from OpenLoops2 [F.B., Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller 1907.13071] It quarantees numerical stability in unresolved IR regions.
- QCDxEW renormalization: independent calculation, agreement with [Djoaudi, Gambino hep-ph/9309298] [Dittmaier, Huss, Schwinn 1511.08016]
- Subtraction of IR singularities performed within the nested soft collinear subtraction formalism [Caola, Melnikov, Röntsch 1702.01352]
 Z: abelianisation of NNLO QCD for QCDxQED corrections [Delto, Jaquier, Melnikov, Röntsch 1909.08428]
 W: QED radiation off the W, so an extension of the subtraction scheme is needed (main goal of the paper with 2-loop FF)

For NCDY electroweak corrections can be further split as $d\sigma^{(i,1)} = d\sigma^{(i,1)}_{OED} + d\sigma^{(i,1)}_{weak}$

bin-by-bin in differential distributions

Ratio to NLO QCD

$$d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}}$$

the $Z \rightarrow e^+e^-$ branching ratio drops in the ratio

We present results for:

- 13 TeV LHC
- G_{U} scheme: (G_{U}, M_{W}, M_{Z}) as input
- $\mu_F = \mu_R = M_Z/2$

Standard selection criteria (cuts):

- $p_{T,l_1} > 24 \text{ GeV (harder lepton)}$
- $p_{T,l_2} > 16 \text{ GeV (softer lepton)}$
- \bullet -2.4 < y_1 < 2.4
- m_{II} > 50 GeV
- e- γ recombination for $R_{ev} < 0.1$

$$R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2}$$

	Inclusive	Cuts	Cuts (production)
$\Delta_{ m QED}^{(0,1)}$	+2.3 x 10 ⁻³	-5.3 x 10 ⁻³	+2.2 x 10 ⁻³
$\Delta_{ m weak}^{(0,1)}$			-5.0 x 10 ⁻³
$\Delta^{(0,1)}$			-2.8 x 10 ⁻³
$\Delta^{(2,0)}$	+1.3 x 10 ⁻²	+1.3 x 10 ⁻² +5.8 x 10 ⁻³	+5.8 x 10 ⁻³
$\Delta_{ m QED}^{(1,1)}$	+5.5 x 10 ⁻⁴	x 10 ⁻⁴ -5.9 x 10 ⁻³ +1.4 x	
$\Delta_{ m weak}^{(1,1)}$	-1.6 x 10 ⁻³	-2.1 x 10 ⁻³	-2.1 x 10 ⁻³
$\Delta^{(1,1)}$	-1.1 x 10 ⁻³	-8.0 x 10 ⁻³	-2.0 x 10 ⁻³

For NCDY electroweak corrections can be further split as $d\sigma^{(i,1)} = d\sigma^{(i,1)}_{OED} + d\sigma^{(i,1)}_{weak}$

Ratio to NLO QCD

$$d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}}$$

bin-by-bin in differential distributions

the $Z \rightarrow e^+e^-$ branching ratio drops in the ratio

We present results for:

- 13 TeV LHC
- G_{U} scheme: (G_{U}, M_{W}, M_{Z}) as input
- $\mu_F = \mu_R = M_Z/2$

Standard selection criteria (cuts):

- p_{T,l1} > 24 GeV (harder lepton)
- $p_{T,l_2} > 16 \text{ GeV (softer lepton)}$
- \bullet -2.4 < y_1 < 2.4
- m_{II} > 50 GeV
- e- γ recombination for $R_{ev} < 0.1$

$$R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2}$$

	Inclusive	Cuts	Cuts (production)	
$\Delta_{ m QED}^{(0,1)}$	+2.3 x 10 ⁻³	-5.3 x 10 ⁻³	+2.2 x 10 ⁻³	
$\Delta_{ m weak}^{(0,1)}$	-5.5 x 10 ⁻³	-5.0 x 10 ⁻³	-5.0 x 10 ⁻³	
$\Delta^{(0,1)}$	-3.2 x 10 ⁻³	-1.0 x 10 ⁻²	-2.8×10^{-3}	
$\Delta^{(2,0)}$	+1.3 x 10 ⁻²	+5.8 x 10 ⁻³	+5.8 x 10 ⁻³	
$\Delta_{ m QED}^{(1,1)}$	+5.5 x 10 ⁻⁴	-5.9 x 10 ⁻³	+1.4 x 10 ⁻⁴	
$\Delta_{ m weak}^{(1,1)}$	-1.6 x 10 ⁻³	-2.1 x 10 ⁻³	-2.1 x 10 ⁻³	
$\Delta^{(1,1)}$	-1.1 x 10 ⁻³	-8.0 x 10 ⁻³	-2.0 x 10 ⁻³	

Tiny EW corrections due to **G**_{II} scheme

For NCDY electroweak corrections can be further split as $d\sigma^{(i,1)} = d\sigma^{(i,1)}_{\rm QED} + d\sigma^{(i,1)}_{\rm weak}$

Ratio to NLO QCD

$$d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}}$$

bin-by-bin in differential distributions

the $Z \rightarrow e^+e^-$ branching ratio drops in the ratio

We present results for:

- 13 TeV LHC
- G_{μ} scheme: (G_{μ}, M_{W}, M_{Z}) as input
- $\mu_F = \mu_R = M_Z/2$

Standard selection criteria (cuts):

- p_{T,l1} > 24 GeV (harder lepton)
- $p_{T,l_2} > 16 \text{ GeV (softer lepton)}$
- \bullet -2.4 < y₁ < 2.4
- m_{II} > 50 GeV
- e- γ recombination for $R_{e\gamma} < 0.1$

$$R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2}$$

	Inclusive	Cuts	Cuts (production)	
$\Delta_{ m QED}^{(0,1)}$	+2.3 x 10 ⁻³	-5.3 x 10 ⁻³	+2.2 x 10 ⁻³	
$\Delta_{ m weak}^{(0,1)}$	-5.5 x 10 ⁻³	-5.0 x 10 ⁻³	-5.0 x 10 ⁻³	
$\Delta^{(0,1)}$	-3.2 x 10 ⁻³	-1.0 x 10 ⁻²	-2.8 x 10 ⁻³	
$\Delta^{(2,0)}$	+1.3 x 10 ⁻²	+5.8 x 10 ⁻³	+5.8 x 10 ⁻³	
$\Delta_{ m QED}^{(1,1)}$	+5.5 x 10 ⁻⁴	-5.9 x 10 ⁻³	+1.4 x 10 ⁻⁴	
$\Delta_{ m weak}^{(1,1)}$	-1.6 x 10 ⁻³	-2.1 x 10 ⁻³	-2.1 x 10 ⁻³	
$\Delta^{(1,1)}$	-1.1 x 10 ⁻³	-8.0 x 10 ⁻³	-2.0 x 10 ⁻³	

(QCDx)QED corrections strongly

✓ sensitive to selection cuts

For NCDY electroweak corrections can be further split as $d\sigma^{(i,1)} = d\sigma^{(i,1)}_{\rm QED} + d\sigma^{(i,1)}_{\rm weak}$

Ratio to NLO QCD

$$d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}}$$

bin-by-bin in differential distributions

the Z→e⁺e⁻ branching ratio drops in the ratio

We present results for:

- 13 TeV LHC
- G_u scheme: (G_u, M_W, M_Z) as input
- $\mu_F = \mu_R = M_7/2$

Standard selection criteria (cuts):

- p_{T,l1} > 24 GeV (harder lepton)
- $p_{T,l_2} > 16 \text{ GeV (softer lepton)}$
- \bullet -2.4 < y₁ < 2.4
- m_{II} > 50 GeV
- e- γ recombination for $R_{e\gamma} < 0.1$

$$R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2}$$

	Inclusive	Cuts	Cuts (production)
$\Delta_{ m QED}^{(0,1)}$	+2.3 x 10 ⁻³	-5.3 x 10 ⁻³	+2.2 x 10 ⁻³
$\Delta_{ m weak}^{(0,1)}$	-5.5 x 10 ⁻³	-5.0 x 10 ⁻³	-5.0 x 10 ⁻³
$\Delta^{(0,1)}$	-3.2 x 10 ⁻³	-1.0 x 10 ⁻²	-2.8×10^{-3}
$\Delta^{(2,0)}$	+1.3 x 10 ⁻²	+5.8 x 10 ⁻³	+5.8 x 10 ⁻³
$\Delta_{ m QED}^{(1,1)}$	+5.5 x 10 ⁻⁴	-5.9 x 10 ⁻³	+1.4 x 10 ⁻⁴
$\Delta_{ m weak}^{(1,1)}$	-1.6 × 10 ⁻³	-2.1 x 10 ⁻³	-2.1 x 10 ⁻³
$\Delta^{(1,1)}$	-1.1 x 10 ⁻³	-8.0×10^{-3}	-2.0 x 10 ⁻³

NNLO QCD unnaturally

(and accidentally) small.

QCDxEW compete

(eventually larger)

For NCDY electroweak corrections can be further split as $d\sigma^{(i,1)} = d\sigma^{(i,1)}_{OED} + d\sigma^{(i,1)}_{weak}$

Ratio to NLO QCD

$$d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}}$$

bin-by-bin in differential distributions

the $Z \rightarrow e^+e^-$ branching ratio drops in the ratio

We present results for:

- 13 TeV LHC
- G_{U} scheme: (G_{U}, M_{W}, M_{Z}) as input
- $\mu_F = \mu_R = M_7/2$

Standard selection criteria (cuts):

- p_{T,l1} > 24 GeV (harder lepton)
- $p_{T,l_2} > 16 \text{ GeV (softer lepton)}$
- \bullet -2.4 < y_1 < 2.4
- m_{II} > 50 GeV
- e- γ recombination for $R_{ev} < 0.1$

$$R_{e\gamma} = \sqrt{(y_e - y_\gamma)^2 + (\varphi_e - \varphi_\gamma)^2}$$

	Inclusive	Cuts	Cuts (production)	
$\Delta_{ m QED}^{(0,1)}$	+2.3 x 10 ⁻³	-5.3 x 10 ⁻³	+2.2 x 10 ⁻³	
$\Delta_{ m weak}^{(0,1)}$	-5.5 x 10 ⁻³	-5.0 x 10 ⁻³	-5.0 x 10 ⁻³	
$\Delta^{(0,1)}$	-3.2 x 10 ⁻³	-1.0 x 10 ⁻²	-2.8 x 10 ⁻³	
$\Delta^{(2,0)}$	+1.3 x 10 ⁻²	+5.8 x 10 ⁻³	+5.8 x 10 ⁻³	
$\Delta_{ m QED}^{(1,1)}$	+5.5 x 10 ⁻⁴	-5.9 x 10 ⁻³	+1.4 x 10 ⁻⁴	
$\Delta_{ m weak}^{(1,1)}$	-1.6 x 10 ⁻³	-2.1 x 10 ⁻³	-2.1 x 10 ⁻³	
$\Delta^{(1,1)}$	-1.1 x 10 ⁻³	-8.0 x 10 ⁻³	-2.0 x 10 ⁻³	

Production process.

It removes (strong) dependence on lepton cuts:

weak corrections dominant over QED

Corrections to the integrated cross sections. $\mu_F = \mu_R = M_7$

$$d\Delta^{(i,j)} = \frac{d\sigma^{(i,j)}}{d\sigma^{(0,0)} + d\sigma^{(1,0)}}$$

Ratio to NLO QCD

13 TeV LHC

 G_u scheme: (G_u, M_W, M_Z) as input

$$\mu_F=\mu_R=M_Z$$

 $p_{T,l_1} > 24 \text{ GeV (harder lepton)}$

 $p_{T,l_2} > 16 \text{ GeV (softer lepton)}$

 $-2.4 < y_1 < 2.4$

 $m_{II} > 50 \text{ GeV}$

e- γ recombination for R_{ev} < 0.1

$$\mu_F = \mu_R = M_Z/2$$

$$\begin{array}{|c|c|c|c|c|c|} \hline & Inclusive & Cuts & Cuts (production) \\ \hline $\Delta_{\rm QED}^{(0,1)}$ & $+2.3\times10^{-3}$ & -5.3×10^{-3} & $+2.2\times10^{-3}$ \\ \hline $\Delta_{\rm weak}^{(0,1)}$ & -5.5×10^{-3} & -5.0×10^{-3} & -5.0×10^{-3} \\ \hline $\Delta^{(0,1)}$ & -3.2×10^{-3} & -1.0×10^{-2} & -2.8×10^{-3} \\ \hline $\Delta^{(0,1)}$ & $+1.3\times10^{-2}$ & $+5.8\times10^{-3}$ & $+5.8\times10^{-3}$ \\ \hline $\Delta_{\rm QED}^{(1,1)}$ & $+5.5\times10^{-4}$ & -5.9×10^{-3} & $+1.4\times10^{-4}$ \\ \hline $\Delta_{\rm weak}^{(1,1)}$ & -1.6×10^{-3} & -2.1×10^{-3} & -2.1×10^{-3} \\ \hline $\Delta^{(1,1)}$ & -1.1×10^{-3} & -8.0×10^{-3} & -2.0×10^{-3} \\ \hline \hline \end{tabular}$$

$$\mu_{\rm F} = \mu_{\rm R} = \mathbf{M}_{\rm Z}$$

	Inclusive	Cuts	Cuts (production)	
$\Delta_{ m QED}^{(0,1)}$ +3.1 x 10 ⁻³		-5.5 x 10 ⁻³	+3.0 x 10 ⁻³	
$\Delta_{ m weak}^{(0,1)}$	$\Delta_{ m weak}^{(0,1)}$ -6.2 x 10 ⁻³ $\Delta^{(0,1)}$ -3.1 x 10 ⁻³ $\Delta^{(2,0)}$ -6.3 x 10 ⁻³	-5.8 x 10 ⁻³	-5.8 x 10 ⁻³	
$\Delta^{(0,1)}$		-1.1 x 10 ⁻²	-2.9×10^{-3}	
$\Delta^{(2,0)}$		-1.2 x 10 ⁻²	-1.2 x 10 ⁻²	
$\Delta_{ m QED}^{(1,1)}$	+2.9 x 10 ⁻⁴	-5.2 x 10 ⁻³ -1.5 x 10 ⁻⁴	-1.5 x 10 ⁻⁴	
$\Delta_{ m weak}^{(1,1)}$	(1,1) -9.2 x 10 ⁻⁴	-1.3 x 10 ⁻³	-1.3 x 10 ⁻³	
$\Delta^{(1,1)}$	-6.4 x 10 ⁻⁴	-6.5 x 10 ⁻³	-1.5 x 10 ⁻³	

UNIVERSITY OF OXFORD

Differential distributions: Z case

As for the integrated XS:

- QCDxWeak corrections dominate over QCDxQED in the production mechanism
- In certain kinematic regions
 QCDxEW effects comparable
 to NNLO QCD ones, e.g.
 central y_{II} and low p_{T,II}
- The impact of mixed QCDxEW, as well as the QED-Weak interplay is observable dependent

Differential distributions: Z case

As for the integrated XS:

- QCDxWeak corrections dominate over QCDxQED in the production mechanism
- In certain kinematic regions
 QCDxEW effects comparable
 to NNLO QCD ones, e.g.
 central y_{II} and low p_{T,II}
- The impact of mixed QCDxEW, as well as the QED-Weak interplay is observable dependent

both EW and QED effects must be considered for the required $O(\alpha\alpha_s)$ accuracy

Differential distributions: Z case

Collins-Soper angle *∂**

$$\cos \theta^* = \operatorname{sgn}(p_{z,ll}) \frac{P_{l^-}^+ P_{l^+}^- - P_{l^-}^- P_{l^+}^+}{\sqrt{m_{ll}^2 \left(m_{ll}^2 + p_{\perp,ll}^2\right)}}$$

cos9* allows for a precise determination of the weak mixing angle at the LHC

- for cos9* QED and weak effects have a similar impact even when fs corrections are included
- LO kinematic boundary
 <sub>p_{T,11} < M_Z/2.
 Effects more pronounced when
 FS QED corrections are included.
 Sensitivity to selection cuts

 </sub>

Comparison against factorised approximation: Z case

Exact:
$$d\sigma = d\sigma^{LO} \left(1 + \delta_{QCD} + \delta_{EW} + \delta_{QCD \times EW} \right)$$

$$\delta_{
m QCD}$$
 ~ NLO+NNLO QCD

Multiplicative approximation:

$$d\sigma = d\sigma^{LO} (1 + \delta_{QCD}) (1 + \delta_{EW})$$

widely adopted method to estimate missing mixed QCDxEW effects.

NB: δ defined wrt LO

At the integrated cross section level:

	$\delta_{ m QCD} imes \delta_{ m EW}$	$\delta_{ ext{QCD} imes ext{EW}}$
Inclusive	-1.17 x 10 ⁻³	-1.40 x 10 ⁻³
Cuts	-0.51 x 10 ⁻²	-1.09 x 10 ⁻²
Cuts (production)	-1.38 x 10 ⁻³	-2.65 x 10 ⁻³

DISCLAIMER: we have not performed extensive phenomenological studies for the W yet. Work in progress for a future publication

 $\sigma_{pp \to W^+} = \sigma_{\text{LO}} + \Delta \sigma_{\text{NLO},\alpha_s} + \Delta \sigma_{\text{NLO},\alpha} + \Delta \sigma_{\text{NLO},\alpha\alpha_s}$ To present results for the fiducial cross section we write:

We present results for:

• 13 TeV LHC

• G_u scheme: (G_μ, M_W, M_Z) as input

•
$$\mu_F = \mu_R = M_W, M_W/2, M_W/4$$

Selection criteria (cuts):

•
$$p_{T.e+} > 15 \text{ GeV}$$

•
$$p_{T,miss} > 15 \text{ GeV}$$

•
$$-2.4 < y_{e+} < 2.4$$

NLO EW corrections are tiny: O(0.02%):

mostly due to the G_{II} scheme

Mixed QCDxEW corrections also very small (below permille) though larger than NLO EW (at least for this setup)

$\sigma[pb]$	channel	$\mu = M_W$	$\mu = M_W/2$	$\mu = M_W/4$
$\sigma_{ m LO}$		6007.6	5195.0	4325.9
$\Delta \sigma_{ m NLO,lpha_s}$	all ch.	508.8	1137.0	1782.2
	$qar{q}'$	1455.2	1126.7	839.2
	qg/gq	-946.4	10.3	943.0
$\Delta\sigma_{\mathrm{NLO},lpha}$	all ch.	2.1	-1.0	-2.6
	$qar{q}'$	-2.2	-5.2	-6.7
	$q\gamma/\gamma q$	4.2	4.2	4.04
$\Delta \sigma_{ m NNLO, lpha_{ m s}lpha}$	all ch.	-2.4	-2.3	-2.8
	$\mid q ar q'/q q' \mid$	-1.0	-1.2	-1.0
	qg/gq	-1.4	-1.2	-2.1
	$ q\gamma/\gamma q $	0.06	0.03	-0.04
	$g\gamma/\gamma g$	-0.12	0.04	0.30

Differential distributions: W case

$$\mathrm{d}\Delta^{(i,j)} = \frac{\mathrm{d}\sigma^{(i,j)}}{\mathrm{d}\sigma^{(0,0)} + \mathrm{d}\sigma^{(1,0)}}$$

Bin-by-bin ratios of NLO EW and NNLO mixed QCDxEW corrections

However, shapes are significantly different

NLO QCD

45

50

55

40

 $p_{\perp,e}$ [GeV]

EW Working Group General Meeting

Conclusions

For the required level of accuracy and for the upcoming HL-LHC phase, NNLO QCDxEW corrections to DY need to be taken into account.

We are witnessing fast and constant progress from the side of theoretical calculations.

First results towards a complete fully off-shell calculation

- QCDxQED corrections to off-shell Z-boson decaying to neutrinos
- O(N_fαα_s) corrections to off-shell W/Z-boson

Mixed QCDxEW corrections to Z production at the resonance:

- mixed QCDxEW corrections to inclusive XS. Reduction of EW theory uncertainty
- mixed QCDxEW corrections are generally small: O(10⁻³), however...
- interplay between QCDxQED and QCDxWeak
- effects vary with the observable and depend strongly on the selection cuts

Mixed QCDxEW corrections to W production at the resonance:

- mixed QCDxEW corrections are tiny: O(10⁻³), however...
- They must be included if we aim at O(10 MeV) accuracy on the W-mass
- Mixed QCDxEW corrections to Z and W both crucial for pheno studies

complete mixed QCDxEW corrections needed (where possible) if accuracy target is < 1%

Outlook

Detailed phenomenological studies at the resonance

- Combined mixed QCDxEW corrections to both Z and W are crucial for pheno studies of precision observables
- Proper assessment of impact on W mass extraction is now possible

Mixed QCDxEW corrections away from the resonance

- Crucial for studies in high-invariant mass regions
- Assessment of validity of most used approximations
- Many interesting formal aspects of perturbative calculations

Inclusion of N3LO QCD corrections in the analysis of uncertainties

- N3LO QCD corrections to the production of a virtual photon [Duhr, Dulat, Mistlberger 2001.07717]
- N3LO QCD corrections to CCDY [Duhr, Dulat, Mistlberger 2007.13313]

Backup

erc

On-shell Z production in the narrow-width approximation

The production of a Z boson is computed in the narrow width approximation

$$d\sigma_{pp\to e^+e^-} = Br \left(Z \to e^+e^- \right) d\sigma_{pp\to Z} \frac{d\Gamma_{Z\to e^+e^-}}{\Gamma_{Z\to e^+e^-}}$$

The cross section for the process pp \rightarrow Z \rightarrow e⁺e⁻ can be expanded in power of α_s and α_s

$$d\sigma = \sum_{i,j} \frac{\alpha_s^i}{2\pi} \frac{\alpha^j}{2\pi} \delta\sigma^{(i,j)} = \sum_{i,j} d\sigma^{(i,j)}$$

The partial decay width is expanded perturbatively, so is the ratio $d\Gamma/\Gamma$:

$$\Gamma_{Z \to e^+ e^-} = \Gamma^0 \times \left(1 + \alpha \delta_{\text{dec}}^{(0,1)} + \alpha \alpha_s \delta_{\text{dec}}^{(1,1)} \right) + \mathcal{O}(\alpha^2, \alpha_s^2) \qquad d\Gamma_{Z \to e^+ e^-} = d\Gamma^{(0,0)} + d\Gamma^{(0,1)} + d\Gamma^{(1,1)} + \mathcal{O}(\alpha^2, \alpha_s^2)$$

The mixed QCDxEW corrections to the cross sections thus read

$$\mathrm{d}\sigma^{(1,1)} = \mathrm{Br}(Z \to e^+ e^-) \times \left[\mathrm{d}\sigma^{(1,1)}_{pp \to Z} \times \frac{\mathrm{d}\Gamma^{(0,0)}}{\Gamma^0} + \right]$$
 "production only"

$$d\sigma_{pp\to Z}^{(1,0)} \times \left(\frac{d\Gamma^{(0,1)}}{\Gamma^{0}} - \alpha \frac{d\Gamma^{(0,0)}}{\Gamma^{0}} \delta_{\text{dec}}^{(0,1)}\right) + d\sigma_{pp\to Z}^{(0,0)} \times \left(\frac{d\Gamma^{(1,1)}}{\Gamma^{0}} - \alpha \alpha_{s} \frac{d\Gamma^{(0,0)}}{\Gamma^{0}} \delta_{\text{dec}}^{(1,1)}\right)\right]$$

final-state effects

