Benchmarking study of Geant4 Auger electrons emitted by medical radioisotopes

S. Bakr¹, T. Kibédi², B. Tee², D. Bolst¹, M. Vos³, M. Alotiby⁴, D. Laurent⁵, D. Herbert Wright^{6,7}, A. Mantero⁸, A. Rosenfeld^{1,9}, V. Ivanchenko^{10,11}, S. Incerti^{12,13}, S. Guatelli^{1,9}

- 1. Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
- 2. Department of Nuclear Physics, Research School of Physics, The Australian National University, Canberra, Australia
- 3. Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australia
- 4. King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
- 5. Lausanne University Hospital, Lausanne, Switzerland
- 6. International Space Elevator Consortium, California, USA
- 7. SLAC National Accelerator Laboratory, California, USA
- 8. SWHARD s.r.l.
- 9. Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
- 10. Geant4 Associates International Ltd.
- 11. Tomsk State University, Tomsk, Russia
- 12. CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Bordeaux, France
- 13. Université de Bordeaux, Bordeaux, France

Goal of the project

Validate Geant4 Auger e- emission with respect to calculated and experimental data.

	Calculations	Experimental
¹²³	BrIccEmis [4] Pomplun [44]	_
¹²⁴	BrlccEmis [4]	-
¹²⁵	BrIccEmis [4] Stepanek [27] Pomplun (KLL spectrum) [26]	ANU (KLL spectrum) [8]
¹³¹ Cs	_	JINR (KLL spectrum) [42]

 [4]	B. Q. Lee, H. Nikjoo, J. Ekman, P. Jonsson, A. E. Stuchbery, and T. Kibedi, "A stochastic cascade model for Auger-electron emitting radionuclides," Int J Radiat Biol, vol. 92, no. 11, pp. 641–653, 2016.
 [8]	M. Alotiby et al., "Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 1251," Phys. Med. Biol., vol. 63, no. 6, pp. 1–9, 2018.
[26]	E. Pomplun, "Auger Electron Spectra - The Basic Data for Understanding the Auger Effect," Acta Oncol. (Madr)., vol. 39, no. 6, pp. 673–679, 2000.
[27]	J. Stepanek, "Methods to determine the fluorescence and Auger spectra due to decay of radionuclides or due to a single atomic-subshell ionization and comparisons with experiments," Med. Phys., vol. 27, no. 7, pp. 1544–1554, 2000.
[42]	A. Kovalik et al., "The electron spectrum from the atomic deexcitation of Xe-131(54)," J. Electron Spectros. Relat. Phenomena, vol. 95, no. 2–3, pp. 231–254, 1998.
[44]	E. Pomplun, "Monte Carlo-simulated Auger electron spectra for nuclides of radiobiological and medical interest – a validation with noble gas ionization data," Int. J. Radiat. Biol., vol. 88, no. 1–2, pp. 108–114, Jan. 2012.

Reference data

Methodology

- Geant4 rdecay01 extended example (Geant4 10.05.p01)
 - 20 mm, cube of galactic material, point source of (I-123, I-124, I-125 and Cs-131) in centre
 - The radioactive decay and the full atomic relaxation are modelled
 - Auger-electron cascade switched on
 - Output: energy spectra of electrons

Geant4 vs other theoretical approaches: I-123

Fig. 1 Energy ranges for Auger electron groups in tellurium according to EADL [21].

Geant4 vs other theoretical approaches: I-124

Fig. 1 Energy ranges for Auger electron groups in tellurium according to EADL [21].

Geant4 vs other theoretical approaches: I-125

Geant4 vs experimental data: I-125

	Geant4		BrlccEmis [4]		Pomplun [26]		Experimental [8]	
Line	Energy (keV)	Yield	Energy (keV)	Yield	Energy (keV)	Yield	Energy (keV)	Yield
KL1L1	21.9765	0.311	21.868	0.263	21.803	0.319	21.890	0.262(5)
KL1L2	22.2725	0.366	22.209	0.397	22.151	0.384	22.118	0.382(12)
KL1L3	22.5515	0.373	22.488	0.457	22.4153	0.454	22.480	0.462(9)
KL2L2	22.5685	0.047	22.501	0.046	-	-	-	-
KL2L3	22.8475	1.000	22.792	1.000	22.737	1.000	22.792	1.000
KL3L3	23.1255	0.503	23.068	0.436	22.970	0.514	23.085	0.435(9)

Geant4 vs experimental data: Cs-131

Experimental

Yield

0.269(21)

0.387(31)

0.37(5)

0.12(4)

1.000

0.421(34)

Energy (keV)

23.526(2)

23.883(2)

24.196(3)

24.187(3)

24.522(20)

24.850(2)

Conclusion

- Benchmarked the emission of Auger electrons deriving from ¹²³I, ¹²⁴I, ¹²⁵I and ¹³¹Cs decays.
 - Against other theoretical approaches: Good agreement for K and M shells.
 However, larger differences for L shell.
 - Against experimental data: a shift in the Auger kinetic energies was found.
 - Possible due to (QED) effects, Breit magnetic electron interaction corrections, atomic structure effects.
 - Generally, good agreement (within 15%).
- Finalising paper to be submitted to NIMA