Elastic O	Scattering of γ -rays	Simulation Design	Results 00	Geant4 Releases O	Summary and Outlook O
	Model	s for low-e sca	nergy g ttering	gamma ela	stic

M. Omer¹ & R. Hajima ^{1,2}

¹Japan Atomic Energy Agency

 $^2\mathsf{National}$ Institutes of Quantum and Radiological Sciences and Technology, Japan

⊠ mohamed.omer.54@kyoto-u.jp

September 18, 2020

Elastic Scattering of γ-rays ●	Simulation Design	Results 00	Geant4 Releases 0	Summary and Outlook
Elastic Scatterin	g of γ -rays			

Elastic Scattering should:

- Include all effective contributing scattering processes.
- Superimpose the processes coherently.
- Polarization-dependant cross section data.

Elastic Scattering of γ -rays o	Simulation Design	Results	Geant4 Releases	Summary and Outlook
	●000	00	0	O
Differential Cross	s Section			

Differential cross section:

• Differential cross section can be calculated from the scattering amplitudes:

$$\frac{d\sigma}{d\Omega} = |A|^2$$

Scattering amplitudes

- Rayleigh scattering amplitudes: calculated from scattering matrix for K-, L-, and M-shells.
- Delbrück scattering amplitudes: interpolated from lowest-order Born approximation data.
- Nuclear Thomson amplitudes: calculated from analytical form.

Superimposing Coherently:

- All amplitude (real and imaginary) are superimposed coherently.
- The whole angular domain is considered.

Polarization effects:

• Stokes parameter formalism with transformation matrix.

Stokes formalism requires transformation matrix. The differential cross section can be written in terms of transformation matrix T as:

 $d\sigma = \xi'^{T} \mathcal{T} \xi$ with $\mathcal{T} = \frac{1}{4} \begin{pmatrix} (|A_{\parallel}|^{2} + |A_{\perp}|^{2}) & (|A_{\parallel}|^{2} - |A_{\perp}|^{2}) & 0 & 0 \\ (|A_{\parallel}|^{2} - |A_{\perp}|^{2}) & (|A_{\parallel}|^{2} + |A_{\perp}|^{2}) & 0 & 0 \\ 0 & 0 & (A_{\parallel}A_{\perp}^{*} + A_{\parallel}^{*}A_{\perp}) & i(A_{\parallel}^{*}A_{\perp} - A_{\parallel}A_{\perp}^{*}) \\ 0 & 0 & i(A_{\parallel}A_{\perp}^{*} - A_{\parallel}^{*}A_{\perp}) & A_{\parallel}A_{\perp}^{*} + A_{\parallel}^{*}A_{\perp} \end{pmatrix}$

 $\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix}$ normalized Stokes vector of the incident beam.

$$\boldsymbol{\xi}' = \begin{pmatrix} 1\\ \boldsymbol{\xi}_1'\\ \boldsymbol{\xi}_2'\\ \boldsymbol{\xi}_3' \end{pmatrix}$$

normalized Stokes vector of the scattered beam.

Elastic Scattering of γ -rays	Simulation Design	Results	Geant4 Releases	Summary and Outlook	
O	00●0	00	0	O	
Convention of Stokes parameters					

Physics Reference Manual, Release 10.6

	Photons	Electrons
ξ_1	linear polarization	polarization in x direction
ξ_2	linear polarization but $\pi/4$ to right	polarization in y direction
ξ_3	circular polarization	polarization in z direction

Other states of polarization can be realized by combining the three parameters.

Clastic Scattering of γ -rays	OOO●	00	O Geant4 Releases	O Summary and Outlook		
Sampling secondaries						

Sampling secondaries

M. Omer & R. Hajima

Elastic Scattering of γ -rays Simulation Design Results Geant4 Releases Summary and Outlook o Scattered Photon Polarization

Polarization caused by elastic scattering:

- Elastic scattering works as a perfect polarizer for γ -rays $\left(\xi^{'}=-1
 ight).$
- At lower energy (0.662 MeV), Rayleigh scattering is dominant.
- At higher energy (1.33 MeV), Delbrück and nuclear Thomson must be included.
- The simulation model results agree with the measured polarization of the scattered photons.

Strong depolarization:

- Strong depolarization is obtained when the incident photon has $(\xi = 0.9802)$.
- Polarization transfer makes the scattered photon having $\left(\xi^{'}=-0.27\right)$ at 90°.
- Again, the simulation model results agree with the measured polarization of the scattered photons, reported by Blumenhagen *et al.*, *New J. Phys.*, 18, 103034, 2016.

8 / 10

Elastic Scattering of γ -rays	Simulation Design	Results	Geant4 Releases	Summary and Outlook	
O		00	•	O	
Coont/ Poloosos					

Geant4 Releases

Tow simulation models of elastic scattering have been included in Geant4 Official Release:

- G4JAEAElasticScatteringModel: From Geant4-10.5 (December 2018).
- G4JAEAPolarizedElasticScatteringModel: From Geant4-10.7-beta (June 2020).

Elastic Scattering of γ -rays o	Simulation Design	Results 00	Geant4 Releases 0	Summary and Outlook
Summary and O	utlook			

- Summary
 - A new EM process accounting for polarization effects of $\gamma\text{-ray}$ elastic scattering was implemented.
 - The process can handle an arbitrary state of polarization of the incident beam and correspondingly transfer polarization to the scattered beam.
 - Validation of the process using experimental data was realized.
- Outlook
 - Extending validation over different Z and E (new experiments).
 - Extending the energy range of the process (new calculations).
 - Take the target polarization into account (new physics).
- Notice: Some events of Polarized Compton Scattering resulted in non-unit polarization vectors.