
HADRONIC PHYSICS AND
PHYSICS LIST DESIGN

V. Ivanchenko

CERN & Tomsk State University, Tomsk, Russia

25th Geant4 Collaboration Workshop

23 September 2020

Outline

■ Hadronic design update

■ Destruction end of job

■ New utilities for hadron physics configuration

■ Hadronic parameters

■ Variation of hadronic cross sections

■ Initialization of nuclear level data

■ Summary

■ Basic goals or recent modification of Physics Lists:

– Reduce duplicated code in EM and hadronic configurations

– More transparent configuration of models and cross sections

– Optional addition of b-, c- hadrons

– Cross section variation required for systematics studies

V. Ivanchenko 29/20/2020

Motivation

■ Number of EM physics constructors – 12

– Number of particles – 55

■ 14 are configured individually

■ 41 are configured in the same way

■ Number of hadronic builders – 62

■ Number of hadron_inelastic physics – 18

■ Amount of duplicate code is huge

– If we will implement b- and c- meson/baryon physics in the

same style then number of combinations will increase

substantially

■ Hadronic physics was not properly destructed end of run

9/23/2020 V. Ivanchenko 3

Models, hadronic framework

■ All hadronic processes, models, and cross sections are registered and
are destructed end of run

– BuildPhysicsTable(..) method for G4VCrossSectionDataSet and
G4HadronicInteraction

– Components of hadronic framework use G4HadronicInteraction as
a base class

■ G4QuasiElastic, G4ExcitedStringDecay….

■ Simplified instantiation of FTF and QGS model

– Pre-compound is the default transport model

– G4ExcitedStringDecay by default uses
G4LundStringFragmentation

■ Recommendations:

– Do not delete internal objects end of run if they are registered

– Do not use particle type at initialisation, instead use PDG code

■ Elementary cross section G4HadronNucleusXsc is fixed in this respect

9/23/2020 V.Ivanchenko, Hadronic physics progress 4

Destruction of physics at exit
(initial requirements)

■ Why we need full destruction of physics at exit?

– Users have trouble using debug tools like valgrind

– Users may have problem in their application code when destruct
Geant4

– Developers have problem to identify memory leaks

■ Recommendations:

– cross sections, models, and processes should be instantiated via
pointers not be part of any other objects

– no private destruction of these objects is allowed

– We should not use G4THREAD_LOCAL data members

■ Both in hadronics and in Physics Lists constructors

■ The most important pending updates:

– Simplified instantiation of FTF and QGS model

■ Builders should not instantiate Lund fragmentation and Participants

– This should be done without interface change

– Provide correct destruction of HP and AllHP models and cross
sections

9/20/2020 V. Ivanchenko 5

Destruction at exit in 10.7

■ Destruction end of job was not working properly

– Some data members are thread local

– Some was not deleted end of job

■ Difficulty of destruction of physics is in the fact, that cross section,
model, and process classes may be shared between different
particles in different ways for different Physics Lists

– This is strongly needed to reduce memory and CPU for
initialization of physics but make destruction problematic

■ For 10.7beta the most part of physics is destructed due to use of
register/deregister mechanism

– Processes, models, and cross sections should not be deleted
by Physics List classes

– A good part of thread local variables in Physics Lists are
removed

■ What is not done: some hadronic builders are thread local

9/20/2020 V. Ivanchenko 6

New utilities for hadron
physics configuration

■ G4HadParticles – returns several lists of particle PDG codes

– std::vector<G4int>& G4HadParticles::GetKaons();

– std::vector<G4int>& G4HadParticles::GetHyperons);

– std::vector<G4int>& G4HadParticles::GetAntiHyperons();

– …

■ G4HadProcesses – return pointers to hadronic processes per particle and allows adding extra
cross section per particle

– G4HadronicProcess* G4HadProcesses::FindInelasticProcess(const G4String&
partname);

– G4HadronicProcess* G4HadProcesses::FindInelasticProcess(const G4String&
partname);

– G4bool G4HadronicProcesses::AddInelasticCrossSection(const G4ParticleDefinition*,
G4VCrossSectionDataSet* my_xs);

– ……

■ G4HadronicBuilder – build standard set of models and cross sections for group of particles

– G4HadronicBuilder::BuildHyperonsFTFP_BERT();

– G4HadronicBuilder::BuildBCHadronsFTFP_BERT();

– G4HadronicBuilder::BuildHyperonsQGSP_BERT();

9/20/2020 V. Ivanchenko 7

Hadronic parameters

■ Utilities in the previous slide are using G4HadronicParameters class

– User has a chance to change any parameter between
instantiation of the PhysicsList and run initialization

■ G4State_PreInit

■ Both C++ interface and UI commands (not for all) are available

■ Should we force, at least, a printout on each UI command?

■ New parameters:

– G4bool EnableBCParticles()

■ Proposed extra parameters:

– G4double EnergyThresholdForHeavyParticles()

■ The default is 1.1 GeV

■ If max energy is below, then no hyperons, anti-ions, b-, c- particle
physics

■ We need to check if this bring some advantages to low-energy
simulations

9/20/2020 V. Ivanchenko 8

Variation of hadronic cross sections
■ For study of systematic uncertainty due to simulation we may considered

following approach:

– For hadronic models we propose to use different Physics Lists

■ FTFP_BERT -> QGSP_BIC, FTFP_INCLXX, or QBBC

– For cross sections we may propose to use a factor to vary cross section
value

■ +- 5-10% would be within Geant4 accuracy

■ Cross section factors are defined via G4HadronicParameters class:

– G4bool ApplyFactorXS() const; // false by default

– G4double XSFactorNucleonInelastic() const ;

– G4double XSFactorNucleonElastic() const ;

– G4double XSFactorPionInelastic() const ;

– G4double XSFactorPionElastic() const ;

– G4double XSFactorHadronInelastic() const ;

– G4double XSFactorHadronElastic() const ;

– G4double XSFactorEM() const ;

■ User must change the flag and set corresponding factor via C++ interface

9/20/2020 V. Ivanchenko 9

Nuclear level data

■ Since 10.3 we have nuclear level data
handled by G4NuclearLevelData class

– Static singleton shared between
all threads

– In 10.5 we had only lazy
initialization per isotope

– In 10.6 two possibilities

■ On demand initialization of all
needed isotopes before the run
Z < Zmax

■ lazy initialization of the data
per isotope badly interacts

– In 10.7 Z < Zmax initialization
will be default

■ The memory used:

– Full data (all levels are
uploaded) takes 56 MB

– Data without e- internal
conversion coefficients 8 MB

20/09/2020 V.Ivanchenko Gamma Level Data 10

G4NuclearLevelData

G4LevelManage (Z,A)

G4NucLevel(index)

Memory profile (FNAL group)
https://g4cpt.fnal.gov/g4p/summary/mem_SimplifiedCalo_higgs.html

V.Ivanchenko Gamma Level Data
1120/09/2020

https://g4cpt.fnal.gov/g4p/summary/mem_SimplifiedCalo_higgs.html

Summary

■ Described developments together with development of Alberto
for decay channels of b-, c- hadrons complete our plans to
improve Physics List configurations for 2020

– We can offer c- and b- hadron physics

– We can offer a method of Geant4 physics variation for
study of systematics

■ It is available for more popular Physics List (FTFP_BERT…,
QGSP_..., QBBC)

■ Should be propagated to other hadron inelastic constructors

– Bug fix and tuning of the approach are not excluded

■ Destruction of all EM and hadronic physics end of run is achieved

■ Optimization of the initialization of nuclear level data structures
is not yet finalized

– By default we upload only data for Z<Zmax

– It is possible to upload all data begin of run

– Recently Makoto proposed convert ASCII data files into
binary compressed file(s)

9/20/2020 V. Ivanchenko 12

Plans for the next release

■ Makoto pointed out that having data structure with many small
files makes problems for HPCs:

– Lazy initialization is difficult at this architecture

– Reading of many small files at initialization is also a
problem

■ Proposed solution:

– Produce one big binary file from these ASCII files

– G4NuclearLevelData::DumpData(const G4String& file)

– Added extra Boolean parameters ReadASCII

– Create 2 binary files

■ One for HEP - no internal e- conversion

■ Second - full data

– May be implemented for the next release

■ Physics_list/builder sub-directory may be cleaned up

– Removing all thread local variables

V.Ivanchenko Gamma Level Data 1320/09/2020

