
1Laurent Garnier - CNRS
 Geant4 Virtual Meeting - 24 Septembre 2020

Laurent Garnier. IRISA
Guy Barrand IJCLab
John Allison G4AI
Frederick JONES TRIUMPH

Updates on Visualization

10.7 Release status

Laurent Garnier - CNRS
 Geant4 Virtual Meeting - 24 Septembre 2020

● OpenGL drivers:
• Study code signing / notarizing issues for using OpenGL from Geant4-based

applications on MacOS 10.15 Catalina O
• Improvements to toolbar in OpenGL Qt - O
• Adapt to newer OpenGL versions, exploit new functionalities and replace

deprecated calls such as glBegin/glEnd - O
• i. => Investigate a way to switch from OpenGL to other thing O
• Guy : Apple/Metal at the Orsay forge

John : A Qt3D visualisation driver for Geant4

• OGLFile to produce image files in batch jobs where no graphics card is
present - O

● Other drivers:
	 ● Wt driver: Remove code O
	 ● Implication of the Qt license changes O

 Fred: Progress on the Open Inventor Qt Visualization Driver
 Extra slide : John : Debugging the geometry of the human phantom

3G.Barrand, CNRS/IN2P3/IJCLAB

Apple/Metal at the Orsay forge

1

Geant4 collaboration meeting Sep 2020

4G.Barrand, CNRS/IN2P3/IJCLAB

2018 :-(

• WWDC June 2018 : Apple, in a // session, announced that the Apple/
OpenGL is deprecated.

• Bad news for people looking for a standard to do visualisation.
• Bad new for me and Geant4, and a lot of scientific software.
• Due to the impact of Apple concerning interactivity, we can’t ignore that…
• Apple promotes their proprietary Metal in remplacement of OpenGL on

their devices. We have to look!

• (No date given about a strong removal of Apple/OpenGL on macOS and
iOS)

2

5G.Barrand, CNRS/IN2P3/IJCLAB

inlib/exlib/sg scene graph logic

• In spirit, same scene graph logic as the great OpenInventor.
• A graph is rendered on screen (or offscreen!) by using an implementation

of a “renderer” for a given technology, for example OpenGL.
• See softinex at http://gbarrand.github.io
• g4tools/plotting done with that by using some offscreen renderers.
• GL-ES renderer. It permits (today) with SAME CODE to visualise on

Linux, macOS, Windows, iOS, Android.
• Then I have to provide a renderer for Apple/Metal…

3

6G.Barrand, CNRS/IN2P3/IJCLAB

Not so easy to do !

• API is in Objective-C or in Swift.
• Apple examples are in Swift buildable from Xcode.
• Nothing in C++ buildable from a “simple make”.
• Stucked……up to the end of June 2020
• Some googling gave a hit on GitHub : naleksiev/

mtlpp which is a C++ wrapper around Metal with an
example to draw a triangle buildable with make :
bingo!

4

7G.Barrand, CNRS/IN2P3/IJCLAB

Summer 2020 at the forge…

• After two months of very painful coding, I have now one
C++ app (a display for ESSnu) that works on macOS by
using Cocoa and Metal.

• And this by using straight the Objective-C Metal API
from C++ (Apple clang permits to mix both languages).

• Painful because the logic of Metal is not similar than
GL-ES (even if ideas of rendering pipline, buffers, etc…
are the same). We have to rethink a new renderer (which
was not the case for offscreen or WebGL ones).

5

8G.Barrand, CNRS/IN2P3/IJCLAB

Summer 2020 at the forge… (2)

• I have correct 3D rendering for basic primitives (points, lines,
segments, triangles, triangle-fan and strip).

• I have lighting.
• I have texture mapping.
• With that I can have my apps working on Metal.

6

And And be sure it had not be easy to get !

9G.Barrand, CNRS/IN2P3/IJCLAB

Can it help for Geant4 ?

• My R&D apps g4exa, g4view should run with Metal and I
am going to release versions of these.

• But it is not based on the “G4 vis system” largely used now.
• The G4 vis system is in principle designed to handle

multiple heterogenous graphics systems (= drivers).
• For example there is an OpenInventor driver and some

offscreen ones (HepRep, VRML).

7

10G.Barrand, CNRS/IN2P3/IJCLAB

Can it help for Geant4 ? (2)

• Right now what is promoted by Geant4 is Qt for the GUI and
OpenGL for the graphics.

• Qt comes now with Qt3D to do 3D rendering. Qt people are
going probably to provide an Apple/Metal version of it.
J.Allison made progresses around a G4 Qt3D vis driver.

• Anyway, I would strongly suggest to G4 to not put all its eggs
in the same Qt-basket and still maintain an “academic way”
to do GUI and graphics. If so, the effort done at Orsay may
help in handling Metal for such G4 vis driver.

• (A g4tools (= part of inlib/exlib) G4 vis driver ? Not yet
mature, but the idea makes its way…)

8

11G.Barrand, CNRS/IN2P3/IJCLAB

The X11 way on Macs

• Anyway now X11, OpenMotif, an X11 server, OpenGL/
Mesa, are available in a consistent way (for exemple through
MacPorts) on macOS, then we can always run on Macs this
way without any GUI and graphics Apple software.

• (Avoid to mix with XQuartz libs !).
• (Would Qt/X11 with Mesa/GL be running on these ?)

• (In fact the same is true on Windows by using CYGWIN).

9

John Allison G4 Collab Meeting 2020

A Qt3D visualisation
driver for Geant4

20 September 2020 12

John Allison G4 Collab Meeting 2020

Qt3D
• Qt3D is a new graphical interface within the Qt project
• Qt is free to open source projects
• You have to register

• From https://www.qt.io/blog/2016/06/16/introducing-qt-3d:
• "The Qt3DRender module is a high-level interface to hardware

accelerated graphics. At present Qt 3D uses an OpenGL backend
but we have left the door open to be able to support more
modern APIs such as Vulkan, Metal and DirectX 12 in the future.”

• Qt3D is still “under development”
20 September 2020 13

https://www.qt.io/blog/2016/06/16/introducing-qt-3d
https://www.qt.io/blog/2016/06/16/introducing-qt-3d

John Allison G4 Collab Meeting 2020

Experience so far
• Qt3D is pretty “low-level”

• Documentation sparse; programming tough
• It does not seem to have the very low level control of OpenGL

• For example, I don’t see how to change line width
• Or switch z-buffering off
• But I guess it has to go for the highest common factor of all systems

• Geant4 Qt3D driver
• Wireframe and surface drawing modes look OK

• Hidden edge is weird

• It doesn’t seem to do transparency very well
• Trajectory drawing only works in sequential mode

• I have not implemented changing threads yet
• Markers (e.g., trajectory points) not yet implemented

• Performance is good
• In my personal repository, together with some examples

• Until adopted you have to point to the G4visQt3D library and explicitly register it with the vis manager

20 September 2020 14

John Allison G4 Collab Meeting 202020 September 2020 15

John Allison G4 Collab Meeting 2020

exampleB1: surface style

20 September 2020 16

The blue “envelope” is
supposed to be semi-
transparent but it’s
more like “see-
through”

John Allison G4 Collab Meeting 2020

exampleB1: wireframe
style with 1000 trajectories

20 September 2020 17

John Allison G4 Collab Meeting 2020

Human phantom with a few electrons

20 September 2020 18

John Allison G4 Collab Meeting 2020

test202

20 September 2020 19

John Allison G4 Collab Meeting 2020

Summary
• A promising new driver

• Offers independence from evolution of graphics
interfaces on all platforms

20 September 2020 20

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada
Propriété d’un consortium d’universités canadiennes, géré en co-entreprise à partir d’une contribution administrée par le Conseil national de recherches Canada

Canada’s national laboratory for particle and nuclear physics
Laboratoire national canadien pour la recherche en physique nucléaire

et en physique des particules

Accelerating Science for Canada
Un accélérateur de la démarche scientifique canadienne

Progress on the Open Inventor Qt
Visualization Driver

Frederick Jones, TRIUMF

Geant4 Collaboration Meeting 21-25 September 2020
22

• The Open Inventor (OI) drivers were first developed in 1996-98
principally by J.Kallenbach, G.Barrand and J.Boudreau.

• After Silicon Graphics developed OpenGL, Open Inventor was created
both as a higher-level API for OpenGL applications and as an advanced
3D graphical display and management system, using OpenGL as the
rendering layer.

• Some advantages of OI over basic OpenGL:
• OI provides powerful viewers with effective interactive controls and many

built-in functions. The view is continuously relocatable via the “Seek”
function. Full support for animated displays, transparency, and other effects.

• Scene graph technology allows great flexibility including overlayed 2D or 3D
scenes and information retrieval via picking and mouse-hovering.

• Multi-platform support. Application code is OS-independent. Works with
different GUI toolkits: Xt/Motif, Windows, Qt, through specific libraries SoXt,
SoWin, and SoQt. Many common “So” methods for writing event-driven
viewer functions.

• The existing G4 drivers are based on SoXt (for Unix and MacOS with
XQuartz installed) and SoWin.

• The current effort is to produce a driver based on SoQt, initially for Unix
and MacOS, and later for Windows, thus potentially a common OI driver
for all our supported platforms.

Background: Open Inventor Vis Drivers

Geant4 Collaboration Meeting 21-25 September 2020
23

Class Structure for Open Inventor Qt Viewer

G4VGraphicsSystem G4VInteractorManager G4VViewer

G4OpenInventor
G4SoQt

G4OpenInventorViewer

G4OpenInventorQtViewer

G4SoQtExaminerViewer

G4OpenInventorQt

SoQt::Init()

SoQt::MainLoop()

SoQtExaminerViewer
createViewer()

Four new classes are required.
Minimal other changes: register OIQt in G4VisExecutive and make
 G4VInteractorManager::secondaryLoop() virtual.

G4SoQtExaminerViewer is the Qt equivalent of G4SoXtExaminerViewer

Geant4 Collaboration Meeting 21-25 September 2020
24

OI Driver Developments at TRIUMF

• For our beam physics applications we found the OI viewer to be
indispensable because of its interactive controls and ability to easily
relocate the view (seek function). But we needed further functionality.

• We started a background project to add the following features:
• A Bookmark facility to save/restore views and camera parameters, allowing random

access to them or sequential “slide shows” of interactive 3D views.
• Stepwise navigation or animation through the geometry along a trajectory or reference

path, with precise view rotations.
• Superimposed text layer allowing mouse-over readout of solids and trajectories (very

useful to obtain specifics of a track).
• The new “extended viewer” Vis Driver (OIXE) was completed in 2015. It

relies on the Coin3D implementation of OI which is available for all OS
and has been made a requirement for the Vis-OI category.

• Requirement of the current development: the Qt-based driver (OIQt) will
contain all the added features of the OIXE driver.

• SoXt to SoQt migration process: Unqualified “So…” calls mostly go over
unchanged, but code based on “SoXt…” methods must be rewritten
using Qt widgets and event handling. Many new menus, buttons,
dialogs and callback functions have been implemented.

Geant4 Collaboration Meeting 21-25 September 2020
25

Extensions to Open Inventor Viewer

Save bookmark

Next bookmark

Previous bookmark

Extended picking &
mouse-over display

Pick reference path
(trajectory)

Toggle wireframe

Bookmark List
Click for random access or
use viewer buttons for
sequential access

Element List
Ordered by distance
along reference path.
Click to navigate to
element or use arrow
keys to travel between
elements and rotate
around them.

Built-in viewer
controls

Input/Output menu

Geant4 Collaboration Meeting 21-25 September 2020
26

Summary: Progress on OIQt Development

• Phases completed:
• Corrections to CMake configuration and addition of

GEANT4_USE_INVENTOR_QT option.
• A prototype OIQt viewer (fully functional but no add-ons) was released in

Geant4 10.7 Beta.
• All functions migrated to Qt widgets.
• All Bookmark functions implemented.
• Element navigation, rotation, and geometry fly-through.
• Superimposed scene, extended picking, and mouse-over readouts for

volumes and trajectories.
• Phases remaining:
• Add some viewer I/O functions such as PS and PDF output.
• Improve layout of the Lists Dialog (Qt Designer).
• General shake-down to remove glitches and resolve some inter-

operability issues (e.g. embedding in the Qt UI).
Special thanks to John Allison for his interest in this project and for essential

feedback and support.

John Allison

Debugging the geometry
of the human phantom

29/11/2019 27

John Allison

/vis/drawLogicalVolume logicalTrunk
• You have to know the

name of the relevant
logical volume
• Use /vis/drawTree

• This shows all
daughters
• Overlapping volumes

in pink
• Overlapping points in

pale blue

29/11/2019 28

John Allison

Clavicles

29/11/2019 29

Shows overlapping
clavicles

Easily fixed
Move 2 cm +y

John Allison

All OK

29/11/2019 30

Shows
geometry
voxels

and Boolean
components

Questions ?

Laurent Garnier - CNRS / Geant4 Collaboration
Meeting - 23 Septembre 2019 - JLab

